Reactivation of Vertebral Growth Plate Function in Vertebral Body Tethering in an Animal Model
Abstract
:1. Introduction
2. Results
2.1. Radiological Examination
2.2. Histopathological Examination
3. Discussion
4. Materials and Methods
4.1. Method
4.2. Experimental Design
4.2.1. Radiological Examination
4.2.2. Histopathological Examination
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verhofste, B.P.; Whitaker, A.T.; Glotzbecker, M.P.; Miller, P.E.; Karlin, L.I.; Hedequist, D.J.; Emans, J.B.; Hresko, M.T. Efficacy of Bracing in Skeletally Immature Patients with Moderate-Severe Idiopathic Scoliosis Curves between 40° and 60°. Spine Deform. 2020, 8, 911–920. [Google Scholar] [CrossRef]
- Skaggs, D.L.; Akbarnia, B.A.; Flynn, J.M.; Myung, K.S.; Sponseller, P.D.; Vitale, M.G.; Chest Wall and Spine Deformity Study Group; Growing Spine Study Group; Pediatric Orthopaedic Society of North America; Scoliosis Research Society Growing Spine Study Committee. A Classification of Growth Friendly Spine Implants. J. Pediatr. Orthop. 2014, 34, 260–274. [Google Scholar] [CrossRef]
- Baker, C.E.; Milbrandt, T.A.; Larson, A.N. Anterior Vertebral Body Tethering for Adolescent Idiopathic Scoliosis: Early Results and Future Directions. Orthop. Clin. N. Am. 2021, 52, 137–147. [Google Scholar] [CrossRef]
- Aronsson, D.D.; Stokes, I.A.F. Nonfusion Treatment of Adolescent Idiopathic Scoliosis by Growth Modulation and Remodeling. J. Pediatr. Orthop. 2011, 31, S99–S106. [Google Scholar] [CrossRef]
- Ohashi, N.; Robling, A.G.; Burr, D.B.; Turner, C.H. The Effects of Dynamic Axial Loading on the Rat Growth Plate. J. Bone Min. Res. 2002, 17, 284–292. [Google Scholar] [CrossRef]
- Braun, J.T.; Hoffman, M.; Akyuz, E.; Ogilvie, J.W.; Brodke, D.S.; Bachus, K.N. Mechanical Modulation of Vertebral Growth in the Fusionless Treatment of Progressive Scoliosis in an Experimental Model. Spine 2006, 31, 1314–1320. [Google Scholar] [CrossRef]
- Newton, P.O.; Farnsworth, C.L.; Faro, F.D.; Mahar, A.T.; Odell, T.R.; Mohamad, F.; Breisch, E.; Fricka, K.; Upasani, V.V.; Amiel, D. Spinal Growth Modulation with an Anterolateral Flexible Tether in an Immature Bovine Model: Disc Health and Motion Preservation. Spine 2008, 33, 724–733. [Google Scholar] [CrossRef]
- Bick, E.M.; Copel, J.W. Longitudinal Growth of the Human Vertebra; a Contribution to Human Osteogeny. J. Bone. Joint. Surg. Am. 1950, 32, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Hueter, C. Anatomische Studien an Den Extremitaetenge-Lenken Neugeborener Und Erwachsener. Arch. Pathol. Anat. Physiol. Klin. Med. 1862, 25, 572–599. [Google Scholar] [CrossRef]
- Volkmann, R. Und Kankenheiten der Bewegungsorgane. In Handbuch der Allgemeinen und Speciellen Chirurgie Bd UU; Von Pitha, F.R., Billroth, T., Eds.; Teil II, Ferdinand Enke: Stuttgart, Germany, 1882. [Google Scholar]
- Smit, T.H. Adolescent Idiopathic Scoliosis: The Mechanobiology of Differential Growth. JOR Spine 2020, 3, e1115. [Google Scholar] [CrossRef]
- Niehoff, A.; Kersting, U.G.; Zaucke, F.; Morlock, M.M.; Brüggemann, G.-P. Adaptation of Mechanical, Morphological, and Biochemical Properties of the Rat Growth Plate to Dose-Dependent Voluntary Exercise. Bone 2004, 35, 899–908. [Google Scholar] [CrossRef]
- The Biomechanics of Back Pain-9780702043130|Elsevier Health. Available online: https://www.eu.elsevierhealth.com/the-biomechanics-of-back-pain-9780702043130.html (accessed on 10 April 2022).
- Nachemson, A.; Elfström, G. Intravital Dynamic Pressure Measurements in Lumbar Discs. A Study of Common Movements, Maneuvers and Exercises. Scand. J. Rehabil. Med. Suppl. 1970, 1, 1–40. [Google Scholar]
- Wilke, H.; Neef, P.; Hinz, B.; Seidel, H.; Claes, L. Intradiscal Pressure Together with Anthropometric Data--a Data Set for the Validation of Models. Clin. Biomech. 2001, 16 (Suppl. S1), S111–S126. [Google Scholar] [CrossRef]
- Piszczatowski, S. Material Aspects of Growth Plate Modelling Using Carter’s and Stokes’s Approaches. Acta Bioeng. Biomech. 2011, 13, 3–14. [Google Scholar]
- Carter, D.R.; Wong, M. The Role of Mechanical Loading Histories in the Development of Diarthrodial Joints. J. Orthop. Res. 1988, 6, 804–816. [Google Scholar] [CrossRef]
- Lane Smith, R.; Trindade, M.C.; Ikenoue, T.; Mohtai, M.; Das, P.; Carter, D.R.; Goodman, S.B.; Schurman, D.J. Effects of Shear Stress on Articular Chondrocyte Metabolism. Biorheology 2000, 37, 95–107. [Google Scholar] [PubMed]
- Carter, D.R.; Wong, M. Modelling Cartilage Mechanobiology. Philos. Trans. R. Soc. Lond B Biol. Sci. 2003, 358, 1461–1471. [Google Scholar] [CrossRef]
- Wong, M.; Carter, D.R. A Theoretical Model of Endochondral Ossification and Bone Architectural Construction in Long Bone Ontogeny. Anat. Embryol. 1990, 181, 523–532. [Google Scholar] [CrossRef]
- Kaufman, R.P.; Topper, T. The Influence of Static Mean Stresses Applied Normal to the Maximum Shear Planes in Multiaxial Fatigue. In European Structural Integrity Society; Carpinteri, A., de Freitas, M., Spagnoli, A., Eds.; Biaxial/Multiaxial Fatigue and Fracture; Elsevier: Amsterdam, The Netherlands, 2003; Volume 31, pp. 123–143. [Google Scholar]
- Mikic, B. Epigenetic Influences on Long Bone Growth, Development, and Evolution; Stanford University: Stanford, CA USA, 1996. [Google Scholar]
- Stevens, S.S.; Beaupré, G.S.; Carter, D.R. Computer Model of Endochondral Growth and Ossification in Long Bones: Biological and Mechanobiological Influences. J. Orthop. Res. 1999, 17, 646–653. [Google Scholar] [CrossRef]
- Piszczatowski, S. Geometrical Aspects of Growth Plate Modelling Using Carter’s and Stokes’s Approaches. Acta Bioeng. Biomech. 2012, 14, 93–106. [Google Scholar] [PubMed]
- Frost, H.M. A Chondral Modeling Theory. Calcif. Tissue Int. 1979, 28, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M. Bone’s Mechanostat: A 2003 Update. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 2003, 275, 1081–1101. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, S.; Natarajan, R.N.; Babu, J.N.; Kanna, P.R.M.; Shetty, A.P.; Andersson, G.B.J. Lumbar Vertebral Growth Is Governed by “Chondral Growth Force Response Curve” Rather than “Hueter-Volkmann Law”: A Clinico-Biomechanical Study of Growth Modulation Changes in Childhood Spinal Tuberculosis. Spine 2011, 36, E1435–E1445. [Google Scholar] [CrossRef] [PubMed]
- Latalski, M.; Danielewicz-Bromberek, A.; Fatyga, M.; Latalska, M.; Kröber, M.; Zwolak, P. Current Insights into the Aetiology of Adolescent Idiopathic Scoliosis. Arch. Orthop. Trauma Surg. 2017, 137, 1327–1333. [Google Scholar] [CrossRef]
- Ouellet, J.; Odent, T. Animal Models for Scoliosis Research: State of the Art, Current Concepts and Future Perspective Applications. Eur. Spine J. 2013, 22, 81–95. [Google Scholar] [CrossRef]
- Cheung, K.M.C.; Lu, D.S.; Poon, A.M.S.; Wang, T.; Luk, K.D.K.; Leong, J.C.Y. Effect of Melatonin Suppression on Scoliosis Development in Chickens by Either Constant Light or Surgical Pinealectomy. Spine 2003, 28, 1941–1944. [Google Scholar] [CrossRef] [PubMed]
- Stokes, I.A.F.; Aronsson, D.D.; Dimock, A.N.; Cortright, V.; Beck, S. Endochondral Growth in Growth Plates of Three Species at Two Anatomical Locations Modulated by Mechanical Compression and Tension. J. Orthop. Res. 2006, 24, 1327–1334. [Google Scholar] [CrossRef]
- Stokes, I.A.; Mente, P.L.; Iatridis, J.C.; Farnum, C.E.; Aronsson, D.D. Enlargement of Growth Plate Chondrocytes Modulated by Sustained Mechanical Loading. J. Bone Joint Surg. Am. 2002, 84, 1842–1848. [Google Scholar] [CrossRef]
- Chay, E.; Patel, A.; Ungar, B.; Leung, A.; Moal, B.; Lafage, V.; Farcy, J.-P.; Schwab, F. Impact of Unilateral Corrective Tethering on the Histology of the Growth Plate in an Established Porcine Model for Thoracic Scoliosis. Spine 2012, 37, E883–E889. [Google Scholar] [CrossRef]
- Yeung, K.H.; Man, G.; Hung, A.; Lam, T.P.; Cheng, J.; Chu, W. Morphological Changes of Intervertebral Disc in Relation with Curve Severity of Patients with Adolescent Idiopathic Scoliosis—A T2-Weighted MRI Study. Stud. Health Technol. Inform. 2021, 280, 37–39. [Google Scholar] [CrossRef]
- Lonner, B.S.; Ren, Y.; Upasani, V.V.; Marks, M.M.; Newton, P.O.; Samdani, A.F.; Chen, K.; Shufflebarger, H.L.; Shah, S.A.; Lefton, D.R.; et al. Disc Degeneration in Unfused Caudal Motion Segments Ten Years Following Surgery for Adolescent Idiopathic Scoliosis. Spine Deform. 2018, 6, 684–690. [Google Scholar] [CrossRef]
- Lalande, V.; Villemure, I.; Parent, S.; Aubin, C.-É. Induced Pressures on the Epiphyseal Growth Plate with Non Segmental Anterior Spine Tethering. Spine Deform. 2020, 8, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Stokes, I.A.; Spence, H.; Aronsson, D.D.; Kilmer, N. Mechanical Modulation of Vertebral Body Growth. Implications for Scoliosis Progression. Spine 1996, 21, 1162–1167. [Google Scholar] [CrossRef]
- Mente, P.L.; Aronsson, D.D.; Stokes, I.A.; Iatridis, J.C. Mechanical Modulation of Growth for the Correction of Vertebral Wedge Deformities. J. Orthop. Res. 1999, 17, 518–524. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latalski, M.; Szponder, T.; Starobrat, G.; Warda, E.; Wójciak, M.; Dresler, S.; Danielewicz, A.; Sawicki, J.; Sowa, I. Reactivation of Vertebral Growth Plate Function in Vertebral Body Tethering in an Animal Model. Int. J. Mol. Sci. 2022, 23, 11596. https://doi.org/10.3390/ijms231911596
Latalski M, Szponder T, Starobrat G, Warda E, Wójciak M, Dresler S, Danielewicz A, Sawicki J, Sowa I. Reactivation of Vertebral Growth Plate Function in Vertebral Body Tethering in an Animal Model. International Journal of Molecular Sciences. 2022; 23(19):11596. https://doi.org/10.3390/ijms231911596
Chicago/Turabian StyleLatalski, Michał, Tomasz Szponder, Grzegorz Starobrat, Edward Warda, Magdalena Wójciak, Sławomir Dresler, Anna Danielewicz, Jan Sawicki, and Ireneusz Sowa. 2022. "Reactivation of Vertebral Growth Plate Function in Vertebral Body Tethering in an Animal Model" International Journal of Molecular Sciences 23, no. 19: 11596. https://doi.org/10.3390/ijms231911596
APA StyleLatalski, M., Szponder, T., Starobrat, G., Warda, E., Wójciak, M., Dresler, S., Danielewicz, A., Sawicki, J., & Sowa, I. (2022). Reactivation of Vertebral Growth Plate Function in Vertebral Body Tethering in an Animal Model. International Journal of Molecular Sciences, 23(19), 11596. https://doi.org/10.3390/ijms231911596