Update on Current Microbiological Techniques for Pathogen Identification in Infectious Endophthalmitis
Abstract
:1. Introduction
2. Nucleotide Based Methods: Can PCR Prevail When Cultures Fail?
2.1. Specific PCR and Quantitative PCR
2.2. Specific Targeting of Commonly Implicated Pathogens Pathogens: Multi-Mono PCR (mmPCR) and Target High-Throughput Sequencing
2.3. Whole Genome Sequencing: Identify the Pathogen without a Priori Determined Target Gene
3. MALDI-TOF MS: Using Proteomic Fingerprints to Find the Culprit Pathogen
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Durand, M.L. Bacterial and Fungal Endophthalmitis. Clin. Microbiol. Rev. 2017, 30, 597–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, J.P.; Santos, F.M.; Rocha, A.S.; Castro-de-Sousa, J.P.; Queiroz, J.A.; Passarinha, L.A.; Tomaz, C.T. Vitreous humor in the pathologic scope: Insights from proteomic approaches. Proteom. Clin. Appl. 2015, 9, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Goel, M.; Picciani, R.G.; Lee, R.K.; Bhattacharya, S.K. Aqueous humor dynamics: A review. Open Ophthalmol. J. 2010, 4, 52–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, F.; Wu, K.; Liao, J.; Zheng, Y.; Yuan, Z.; Tan, J.; Lin, X. Causative Microorganisms of Infectious Endophthalmitis: A 5-Year Retrospective Study. J. Ophthalmol. 2016, 2016, 6764192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, T.L.; Eykyn, S.J.; Graham, E.M.; Stanford, M.R. Endogenous bacterial endophthalmitis: A 17-year prospective series and review of 267 reported cases. Surv. Ophthalmol. 2003, 48, 403–423. [Google Scholar] [CrossRef]
- Taban, M.; Behrens, A.; Newcomb, R.L.; Nobe, M.Y.; Saedi, G.; Sweet, P.M.; McDonnell, P.J. Acute endophthalmitis following cataract surgery: A systematic review of the literature. Arch. Ophthalmol. 2005, 123, 613–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosacki, J.; Boisset, S.; Maurin, M.; Cornut, P.-L.; Thuret, G.; Hubanova, R.; Vandenesch, F.; Carricajo, A.; Aptel, F.; Chiquet, C.; et al. Specific PCR and Quantitative Real-Time PCR in Ocular Samples from Acute and Delayed-Onset Postoperative Endophthalmitis. Am. J. Ophthalmol. 2020, 212, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Van Halsema, J.; Jansen, R.; Heineken, A.; Ossewaarde, T.M.; Meester-Smoor, M.A.; van Meurs, J.C. Validation of a multi-species-specific PCR panel to diagnose patients with suspected postoperative bacterial endophthalmitis. Acta Ophthalmol. 2022, 100, e827–e832. [Google Scholar] [CrossRef]
- Gandhi, J.; Jayasudha, R.; Naik, P.; Sharma, S.; Dave, V.P.; Joseph, J. Targeted High-Throughput Sequencing Identifies Predominantly Fungal Pathogens in Patients with Clinically Infectious, Culture-Negative Endophthalmitis in South India. Microorganisms 2019, 7, 411. [Google Scholar] [CrossRef] [Green Version]
- Lundström, M.; Wejde, G.; Stenevi, U.; Thorburn, W.; Montan, P. Endophthalmitis after cataract surgery: A nationwide prospective study evaluating incidence in relation to incision type and location. Ophthalmology 2007, 114, 866–870. [Google Scholar] [CrossRef]
- Ng, E.W.M.; Costa, J.R.; Samiy, N.; Ruoff, K.L.; Connolly, E.; Cousins, F.V.; D’Amico, D.J. Contribution of pneumolysin and autolysin to the pathogenesis of experimental pneumococcal endophthalmitis. Retina 2002, 22, 622–632. [Google Scholar] [CrossRef]
- Sanders, M.E.; Norcross, E.W.; Robertson, Z.M.; Moore, Q.C.; Fratkin, J.; Marquart, M.E. The Streptococcus pneumoniae Capsule Is Required for Full Virulence in Pneumococcal Endophthalmitis. Invest. Ophthalmol. Vis. Sci. 2011, 52, 865–872. [Google Scholar] [CrossRef] [Green Version]
- Parkunan, S.M.; Randall, C.B.; Astley, R.A.; Furtado, G.C.; Lira, S.A.; Callegan, M.C. CXCL1, but not IL-6, significantly impacts intraocular inflammation during infection. J. Leukoc. Biol. 2016, 100, 1125–1134. [Google Scholar] [CrossRef]
- Baillif, S.; Ecochard, R.; Casoli, E.; Freney, J.; Burillon, C.; Kodjikian, L. Adherence and kinetics of biofilm formation of Staphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions. J. Cataract Refract Surg. 2008, 34, 153–158. [Google Scholar] [CrossRef]
- Mazoteras, P.; Quiles, M.G.; Martins Bispo, P.J.; Höfling-Lima, A.L.; Pignatari, A.C.; Casaroli-Marano, R.P. Analysis of Intraocular Lens Biofilms and Fluids After Long-Term Uncomplicated Cataract Surgery. Am. J. Ophthalmol. 2016, 169, 46–57. [Google Scholar] [CrossRef]
- Buchta, V.; Feuermannová, A.; Váša, M.; Bašková, L.; Kutová, R.; Kubátová, A.; Vejsová, M. Outbreak of fungal endophthalmitis due to Fusarium oxysporum following cataract surgery. Mycopathologia 2014, 177, 115–121. [Google Scholar] [CrossRef]
- Results of the Endophthalmitis Vitrectomy Study. A randomized trial of immediate vitrectomy and of intravenous antibiotics for the treatment of postoperative bacterial endophthalmitis. Endophthalmitis Vitrectomy Study Group. Arch. Ophthalmol. 1995, 113, 1479–1496. [Google Scholar] [CrossRef]
- Doft, B.H.; Kelsey, S.F.; Wisniewski, S.R. Additional procedures after the initial vitrectomy or tap-biopsy in the Endophthalmitis Vitrectomy Study. Ophthalmology 1998, 105, 707–716. [Google Scholar] [CrossRef]
- Shirodkar, A.R.; Pathengay, A.; Flynn, H.W., Jr.; Albini, T.A.; Berrocal, A.M.; Davis, J.L.; Lalwani, G.A.; Murray, T.G.; Smiddy, W.E.; Miller, D. Delayed- versus acute-onset endophthalmitis after cataract surgery. Am. J. Ophthalmol. 2012, 153, 391–398.e2. [Google Scholar] [CrossRef] [Green Version]
- Fileta, J.B.; Scott, I.U.; Flynn, H.W., Jr. Meta-analysis of infectious endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents. Ophthalmic Surg. Lasers Imaging Retin. 2014, 45, 143–149. [Google Scholar] [CrossRef]
- VanderBeek, B.L.; Bonaffini, S.G.; Ma, L. The Association between Intravitreal Steroids and Post-Injection Endophthalmitis Rates. Ophthalmology 2015, 122, 2311–2315.e1. [Google Scholar] [CrossRef] [Green Version]
- Lyall, D.A.M.; Tey, A.; Foot, B.; Roxburgh, S.T.D.; Virdi, M.; Robertson, C.; MacEwen, C.J. Post-intravitreal anti-VEGF endophthalmitis in the United Kingdom: Incidence, features, risk factors, and outcomes. Eye 2012, 26, 1517–1526. [Google Scholar] [CrossRef]
- McCannel, C.A. Meta-analysis of endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents: Causative organisms and possible prevention strategies. Retina 2011, 31, 654–661. [Google Scholar] [CrossRef]
- Bhagat, N.; Nagori, S.; Zarbin, M. Post-traumatic Infectious Endophthalmitis. Surv. Ophthalmol. 2011, 56, 214–251. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Sawada, A.; Mayama, C.; Araie, M.; Ohkubo, S.; Sugiyama, K.; Kuwayama, Y. The 5-year incidence of bleb-related infection and its risk factors after filtering surgeries with adjunctive mitomycin C: Collaborative bleb-related infection incidence and treatment study 2. Ophthalmology 2014, 121, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Jones, M.N.; Srinivasan, S.; Neal, T.J.; Armitage, W.J.; Kaye, S.B.; NHSBT Ocular Tissue Advisory Group and Contributing Ophthalmologists (OTAG Audit Study 18). Endophthalmitis after penetrating keratoplasty. Ophthalmology 2015, 122, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.R.; Flynn, H.W., Jr.; Miller, D.; Forster, R.K.; Alfonso, E.C. Infectious keratitis progressing to endophthalmitis: A 15-year study of microbiology, associated factors, and clinical outcomes. Ophthalmology 2012, 119, 2443–2449. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, K.D.; Flynn, H.W., Jr.; Alfonso, E.C.; Miller, D. Fusarium endophthalmitis following keratitis associated with contact lenses. Ophthalmic Surg. Lasers Imaging 2006, 37, 310–313. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Wang, C.-Y.; Tsai, H.-Y.; Lee, H.-N. Intracameral voriconazole injection in the treatment of fungal endophthalmitis resulting from keratitis. Am. J. Ophthalmol. 2010, 149, 916–921. [Google Scholar] [CrossRef]
- Durand, M.L. Endophthalmitis: An Overview. In Endophthalmitis; Durand, M.L., Miller, J.W., Young, L.H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–16. [Google Scholar]
- Okada, A.A.; Johnson, R.P.; Liles, W.C.; D’Amico, D.J.; Baker, A.S. Endogenous bacterial endophthalmitis. Report of a ten-year retrospective study. Ophthalmology 1994, 101, 832–838. [Google Scholar] [CrossRef]
- Vaziri, K.; Pershing, S.; Albini, T.A.; Moshfeghi, D.M.; Moshfeghi, A.A. Risk factors predictive of endogenous endophthalmitis among hospitalized patients with hematogenous infections in the United States. Am. J. Ophthalmol. 2015, 159, 498–504. [Google Scholar] [CrossRef]
- Jackson, T.L.; Paraskevopoulos, T.; Georgalas, I. Systematic review of 342 cases of endogenous bacterial endophthalmitis. Surv. Ophthalmol. 2014, 59, 627–635. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2015, 62, e1–e50. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, K.; Sawada, A.; Suemori, S.; Kawakami, H.; Niwa, Y.; Kondo, Y.; Ohkusu, K.; Yamada, N.; Ogura, S.; Yaguchi, T.; et al. Intraocular penetration of intravenous micafungin in inflamed human eyes. Antimicrob. Agents Chemother. 2013, 57, 4027–4030. [Google Scholar] [CrossRef] [Green Version]
- Reuter, J.A.; Spacek, D.V.; Snyder, M.P. High-throughput sequencing technologies. Mol. Cell. 2015, 58, 586–597. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; de Freitas Oliveira, L.M.; de Aquino Ferreira, B.F.; Kato, J.M.; Rossi, F.; de Lemes Giuntini Correa, K.; Pimentel, S.L.G.; Yamamoto, J.H.; Almeida, J.N., Jr. BactecTM blood culture bottles allied to MALDI-TOF mass spectrometry: Rapid etiologic diagnosis of bacterial endophthalmitis. Diagn. Microbiol. Infect. Dis. 2017, 88, 222–224. [Google Scholar] [CrossRef]
- Mailhac, A.; Durand, H.; Boisset, S.; Maubon, D.; Berger, F.; Maurin, M.; Chiquet, C.; Bidart, M. MALDI-TOF mass spectrometry for rapid diagnosis of postoperative endophthalmitis. J. Proteom. 2017, 152, 150–152. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, C.; Zhang, P.; Feng, C.; Zhang, T.; Sun, Z.; Zhuang, H.; Chen, H.; Chang, Q.; Jiang, R.; et al. Diagnostic Performance of MALDI-TOF MS Compared to Conventional Microbiological Cultures in Patients with Suspected Endophthalmitis. Ocul. Immunol. Inflamm. 2020, 28, 483–490. [Google Scholar] [CrossRef]
- Biswas, S.; Rolain, J.-M. Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J. Microbiol. Methods 2013, 92, 14–24. [Google Scholar] [CrossRef]
- Íñigo, M.; Coello, A.; Fernández-Rivas, G.; Rivaya, B.; Hidalgo, J.; Quesada, M.D.; Ausina, V. Direct Identification of Urinary Tract Pathogens from Urine Samples, Combining Urine Screening Methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2016, 54, 988–993. [Google Scholar] [CrossRef]
- Mishra, D.; Satpathy, G.; Chawla, R.; Paliwal, D.; Panda, S.K. Targeted metagenomics using next generation sequencing in laboratory diagnosis of culture negative endophthalmitis. Heliyon 2021, 7, e06780. [Google Scholar] [CrossRef]
- Das, T. Endophthalmitis Management: Stain-Culture, Empirical Treatment, and Beyond. Asia Pac. J. Ophthalmol. 2020, 9, 1–3. [Google Scholar] [CrossRef]
- Lee, C.S.; Hong, B.; Kasi, S.K.; Aderman, C.; Talcott, K.E.; Adam, M.K.; Yue, B.; Akileswaran, L.; Nakamichi, K.; Wu, Y.; et al. Prognostic Utility of Whole-Genome Sequencing and Polymerase Chain Reaction Tests of Ocular Fluids in Postprocedural Endophthalmitis. Am. J. Ophthalmol. 2020, 217, 325–334. [Google Scholar] [CrossRef]
- Hong, B.K.; Lee, C.S.; van Gelder, R.N.; Garg, S.J. Emerging techniques for pathogen discovery in endophthalmitis. Curr. Opin. Ophthalmol. 2015, 26, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-F.; Hou, X.; Xiao, M.; Zhang, L.; Cheng, J.-W.; Zhou, M.-L.; Huang, J.; Zhang, J.; Xu, Y.; Hsueh, P. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. Microorganisms 2021, 9, 1536. [Google Scholar] [CrossRef]
- Angeletti, S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J. Microbiol. Methods 2017, 138, 20–29. [Google Scholar] [CrossRef]
- Mellmann, A.; Harmsen, D.; Cummings, C.A.; Zentz, E.B.; Leopold, S.R.; Rico, A.; Prior, K.; Szczepanowski, R.; Ji, Y.; Zhang, W.; et al. Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology. PLoS ONE 2011, 6, e22751. [Google Scholar] [CrossRef]
- Chun, L.Y.; Dolle-Molle, L.; Bethel, C.; Dimitroyannis, R.C.; Williams, B.L.; Schechet, S.A.; Hariprasad, S.M.; Missiakas, D.; Schneewind, O.; Beavis, K.G.; et al. Rapid pathogen identification and antimicrobial susceptibility testing in in vitro endophthalmitis with matrix assisted laser desorption-ionization Time-of-Flight Mass Spectrometry and VITEK 2 without prior culture. PLoS ONE 2019, 14, e0227071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lévesque, S.; Dufresne, P.J.; Soualhine, H.; Domingo, M.C. A side by side comparison of Bruker Biotyper and VITEK MS: Utility of MALDI-TOF MS technology for microorganism identification in a public health reference. PLoS ONE 2015, 10, e0144878. [Google Scholar] [CrossRef] [PubMed]
- Segawa, S.; Sawai, S.; Murata, S.; Nishimura, M. Direct application of MALDI-TOF mass spectrometry to cerebrospinal fluid for rapid pathogen identification in a patient with bacterial meningitis. Clin. Chim. Acta. 2014, 435, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, K.; Kishor, K.; Schwartz, S.G.; Maharaj, A.S.; Moshfeghi, D.M.; Moshfeghi, A.A.; Flynn, H.W., Jr. Incidence of bleb-associated endophthalmitis in the United States. Clin. Ophthalmol. 2015, 9, 317–322. [Google Scholar]
- Angrup, A.; Krishnamoorthi, S.; Biswal, M.; Gautam, V.; Ray, P.; Agarwal, A.; Dogra, M.R.; Singh, R.; Katoch, D.; Gupta, V. Utility of MALDI-TOF mass spectrometry in an outbreak investigation of acute endophthalmitis following intravitreal injection. J. Hosp. Infect. 2018, 100, e253–e256. [Google Scholar] [CrossRef]
- Song, Z.; Liu, X.; Zhu, M.; Tan, Y.; Wu, K. Using MALDI-TOF-MS to test Staphylococcus aureus-infected vitreous. Mol. Vis. 2017, 23, 407–415. [Google Scholar]
- Chun, L.Y.; Dolle Molle, L.; Schneewind, O.; Missiakas, D.; Beavis, K.G.; Skondra, D. Rapid Pathogen Identification with Direct Application of MALDI-TOF Mass Spectrometry on an Endophthalmitis Vitreous Sample Without Prior Culture. J. Vitr. Dis. 2019, 3, 255–259. [Google Scholar] [CrossRef]
- Collins, M.D.; Hutson, R.A.; Falsen, E.; Sjöden, B.; Facklam, R.R. Description of Gemella sanguinis sp. nov., isolated from human clinical specimens. J. Clin. Microbiol. 1998, 36, 3090–3093. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-H.; Tsai, K.-T. Gemella sanguinis endocarditis: First case report in Taiwan and review of the literature. J. Formos. Med. Assoc. 2014, 113, 562–565. [Google Scholar] [CrossRef] [Green Version]
- Cornut, P.-L.; Boisset, S.; Romanet, J.-P.; Maurin, M.; Carricajo, A.; Benito, Y.; Vandenesch, F.; Chiquet, C. Principles and applications of molecular biology techniques for the microbiological diagnosis of acute post-operative endophthalmitis. Surv. Ophthalmol. 2014, 59, 286–303. [Google Scholar] [CrossRef]
- Sawada, A.; Mochizuki, K.; Katada, T.; Kawakami, H.; Yamamoto, T.; Mikamo, H.; Watanebe, K. Gemella species-associated late-onset endophthalmitis after trabeculectomy with adjunctive mitomycin C. J. Glaucoma 2009, 18, 496–497. [Google Scholar] [CrossRef]
- Johansson, Å.; Nagy, E.; Sóki, J. Instant screening and verification of carbapenemase activity in Bacteroides fragilis in positive blood culture, using matrix-assisted laser desorption ionization--time of flight mass spectrometry. J. Med. Microbiol. 2014, 63, 1105–1110. [Google Scholar] [CrossRef] [Green Version]
- Florio, W.; Baldeschi, L.; Rizzato, C.; Tavanti, A.; Ghelardi, E.; Lupetti, A. Detection of Antibiotic-Resistance by MALDI-TOF Mass Spectrometry: An Expanding Area. Front. Cell. Infect. Microbiol. 2020, 10, 572909. [Google Scholar] [CrossRef]
- Bobenchik, A.M.; Hindler, J.A.; Giltner, C.L.; Saeki, S.; Humphries, R.M. Performance of Vitek 2 for antimicrobial susceptibility testing of Staphylococcus spp. and Enterococcus spp. J. Clin. Microbiol. 2014, 52, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Ling, T.K.W.; Liu, Z.K.; Cheng, A.F.B. Evaluation of the VITEK 2 system for rapid direct identification and susceptibility testing of gram-negative bacilli from positive blood cultures. J. Clin. Microbiol. 2003, 41, 4705–4707. [Google Scholar] [CrossRef]
Technique | Volume of Analyte Required | Rate of Pathogen Identification with Technique Described | Approximate Time-to-Result from Sample Acquisition to Pathogen Identification | Rate of Pathogen Identification with Standard Gram Stain and Culture | Reference |
---|---|---|---|---|---|
16S rRNA panbacterial PCR | 150–500 μL for DNA extraction | 67/137 (49%) bacteria in culture-positive samples | 2–3 days | 77/142 (54%) bacteria | Kosacki et al., 2020 [7] |
150–500 μL for DNA extraction | 6/25 (24%) bacteria in culture-negative samples | 2–3 days | 0/25 (0%) | ||
quantitative PCR (qPCR or rtPCR) | 150–500 μL for DNA extraction | 8/120 (7%) bacteria from all samples | 2–3 h | 77/142 (54%) bacteria | |
Multi-mono PCR (mmpCR) | 200 μL for DNA extraction | 24/27 (89%) bacteria in culture-positive samples | 90 min (time for rtPCR) | 27/27 (100%) bacteria | van Halsema et al., 2021 [8] |
Targeted High-throughput sequencing | 500 μL for DNA extraction | 14/15 (93.3%) bacteria, 3/3 (100%) fungi in culture-positive samples | 2–8 h | 15/18 (83.3%) bacteria, 3/18 (16.7%) fungi | Gandhi et al., 2019 [9], Reuter et al., 2015 [36], Mellman et al., 2011 [48] |
500 μL for DNA extraction | 11/57 (19.3%) bacteria, 36/57 (63.1%) fungi in culture-negative samples | 2–8 h | 0/57 (0%) | ||
Whole genome sequencing | 1 ng DNA | 17/20 (85%) bacteria in culture-positive samples | 24 h | 24/24 (100%) bacteria | Lee et al., 2020 [44] |
1 ng DNA | 8/22 (36%) bacteria in culture-negative samples | 24 h | 0/22 (0%) | ||
MALDI-TOF MS in vitro direct analysis | 103 to 104 cells per analyte | 12/14 (85.7%) bacteria in samples with visible pellet with 96.1–99.9% confidence value | 30 min | N/A; 2/2 (100%) bacterial control | Chun et al., 2019 [49] |
MALDI-TOF MS analysis of culture-grown samples | 65/90 (72%) to 37/41 (90.2%) bacteria in culture-positive samples | 5 days for culture growth + 14.4 h protein extraction for MALDI-TOF MS | 41/41 (100%) bacteria | Tanaka et al., 2017 [37] | |
29/44 (65.9%) bacteria in all samples | 3.17 days | 20/44 (45.5%) bacteria | Xu et al., 2020 [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chun, L.Y.; Dahmer, D.J.; Amin, S.V.; Hariprasad, S.M.; Skondra, D. Update on Current Microbiological Techniques for Pathogen Identification in Infectious Endophthalmitis. Int. J. Mol. Sci. 2022, 23, 11883. https://doi.org/10.3390/ijms231911883
Chun LY, Dahmer DJ, Amin SV, Hariprasad SM, Skondra D. Update on Current Microbiological Techniques for Pathogen Identification in Infectious Endophthalmitis. International Journal of Molecular Sciences. 2022; 23(19):11883. https://doi.org/10.3390/ijms231911883
Chicago/Turabian StyleChun, Lindsay Y., Donavon J. Dahmer, Shivam V. Amin, Seenu M. Hariprasad, and Dimitra Skondra. 2022. "Update on Current Microbiological Techniques for Pathogen Identification in Infectious Endophthalmitis" International Journal of Molecular Sciences 23, no. 19: 11883. https://doi.org/10.3390/ijms231911883
APA StyleChun, L. Y., Dahmer, D. J., Amin, S. V., Hariprasad, S. M., & Skondra, D. (2022). Update on Current Microbiological Techniques for Pathogen Identification in Infectious Endophthalmitis. International Journal of Molecular Sciences, 23(19), 11883. https://doi.org/10.3390/ijms231911883