Genome-Wide Prediction and Analysis of Oryza Species NRP Genes in Rice Blast Resistance
Abstract
:1. Introduction
2. Results
2.1. Whole-Genome Characterization and Phylogenic Analysis of NRP Genes in Oryza Species
2.2. Synteny Analysis of the NRP Gene Family in Oryza Species
2.3. NRP Genes in the O. sativa japonica Group were Differentially Expressed during M. oryzae Infection
2.4. OsNRP1, a NRP Protein in the O. sativa japonica Group, may Enhance Blast Fungus Resistance
2.5. Predicted Protein-Protein Interaction (PPI) Network of OsNRP1
2.6. Investigation of Cis-Element within OsNRP1 Promoter and Conserved Motifs in NRP Genes
3. Discussion
4. Method and Materials
4.1. Sequence Retrieval and Identification of NRP Proteins
4.2. Phylogenic and Evolution Analysis of NRP Family in Oryza Species
4.3. Synteny Analysis
4.4. Construction of OsNRP1OX Transgenic Lines
4.5. Inoculation Assays
4.6. Real-Time RT-PCR
4.7. PPI Networks Prediction and Cis-Element Analysis
4.8. Analyzing Conserved Motifs of NRP Proteins in Oryza Species
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef]
- Dean, R.A.; Talbot, N.J.; Ebbole, D.J.; Farman, M.L.; Mitchell, T.K.; Orbach, M.J.; Thon, M.; Kulkarni, R.; Xu, J.R.; Pan, H.; et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 2005, 434, 980–986. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Dangl, J.L.; Horvath, D.M.; Staskawicz, B.J. Pivoting the plant immune system from dissection to deployment. Science 2013, 341, 746–751. [Google Scholar] [CrossRef] [Green Version]
- Vance, R.E.; Isberg, R.R.; Portnoy, D.A. Patterns of pathogenesis: Discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 2009, 6, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, J.; Triplett, L.; Leach, J.E.; Wang, G.-L. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu. Rev. Phytopathol. 2014, 52, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Devi, S.R.; Singh, K.; Umakanth, B.; Vishalakshi, B.; Renuka, P.; Sudhakar, K.V.; Prasad, M.; Viraktamath, B.; Babu, V.R.; Madhav, M. Development and identification of novel rice blast resistant sources and their characterization using molecular markers. Rice Sci. 2015, 22, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Ballini, E.; Morel, J.-B.; Droc, G.; Price, A.; Courtois, B.; Notteghem, J.-L.; Tharreau, D. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol. Plant-Microbe Interact. 2008, 21, 859–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Chern, M.; Yin, J.; Wang, J.; Chen, X. Recent advances in broad-spectrum resistance to the rice blast disease. Curr. Opin. Plant Biol. 2019, 50, 114–120. [Google Scholar] [CrossRef]
- Yin, J.; Zou, L.; Zhu, X.; Cao, Y.; He, M.; Chen, X. Fighting the enemy: How rice survives the blast pathogen’s attack. Crop J. 2021, 9, 543–552. [Google Scholar] [CrossRef]
- Kørner, C.J.; Du, X.; Vollmer, M.E.; Pajerowska-Mukhtar, K.M. Endoplasmic reticulum stress signaling in plant immunity—At the crossroad of life and death. Int. J. Mol. Sci. 2015, 16, 26582–26598. [Google Scholar] [CrossRef] [Green Version]
- Reis, P.A.; Carpinetti, P.A.; Freitas, P.P.; Santos, E.G.; Camargos, L.F.; Oliveira, I.H.; Silva, J.C.F.; Carvalho, H.H.; Dal-Bianco, M.; Soares-Ramos, J.R.; et al. Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants. BMC Plant Biol. 2016, 16, 156. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.; Zhou, J.-M. Plant–bacterial pathogen interactions mediated by type III effectors. Curr. Opin. Plant Biol. 2012, 15, 469–476. [Google Scholar] [CrossRef]
- Mukhtar, M.S.; Carvunis, A.-R.; Dreze, M.; Epple, P.; Steinbrenner, J.; Moore, J.; Tasan, M.; Galli, M.; Hao, T.; Nishimura, M.T.; et al. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 2011, 333, 596–601. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.; Verchot, J.; Dickman, M.B. When supply does not meet demand-ER stress and plant programmed cell death. Front. Plant Sci. 2014, 5, 211. [Google Scholar] [CrossRef] [Green Version]
- Tenhaken, R.; Doerks, T.; Bork, P. DCD—A novel plant specific domain in proteins involved in development and programmed cell death. BMC Bioinform. 2005, 6, 169. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, A.A.; Tenhaken, R. A new cell wall located N-rich protein is strongly induced during the hypersensitive response in Glycine max L. Eur. J. Plant Pathol. 2001, 107, 323–336. [Google Scholar] [CrossRef]
- Choi, J.-A.; Song, C.-H. Insights into the role of endoplasmic reticulum stress in infectious diseases. Front. Immunol. 2020, 10, 3147. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.D.; Reis, P.A.; Valente, M.A.S.; Irsigler, A.S.; Carvalho, C.M.; Loureiro, M.E.; Aragão, F.J.L.; Boston, R.S.; Fietto, L.G.; Fontes, E.P.B. A new branch of endoplasmic reticulum stress signaling and the osmotic signal converge on plant-specific asparagine-rich proteins to promote cell death. J. Biol. Chem. 2008, 283, 20209–20219. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.S.; Reis, P.A.; Dadalto, S.P.; Faria, J.A.; Fontes, E.P.; Fietto, L.G. A novel transcription factor, ERD15 (Early Responsive to Dehydration 15), connects endoplasmic reticulum stress with an osmotic stress-induced cell death signal. J. Biol. Chem. 2011, 286, 20020–20030. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.C.; Reis, P.A.; Calil, I.P.; Carvalho, H.H.; Aragão, F.J.; Fontes, E.P. GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress-and osmotic stress-induced cell death responses through a vacuolar processing enzyme. Proc. Natl. Acad. Sci. USA 2013, 110, 19627–19632. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.; Fang, Y.-X.; Zhang, Z.; Zheng, J.; Zhang, X.; Li, J.; Niu, C.; Xue, D.; Zhang, X. Genome-wide identification and expression pattern analysis of the KCS gene family in barley. Plant Growth Regul. 2021, 93, 89–103. [Google Scholar] [CrossRef]
- Kesawat, M.S.; Kherawat, B.S.; Singh, A.; Dey, P.; Routray, S.; Mohapatra, C.; Saha, D.; Ram, C.; Siddique, K.H.M.; Kumar, A.; et al. Genome-Wide Analysis and Characterization of the Proline-Rich Extensin-like Receptor Kinases (PERKs) Gene Family Reveals Their Role in Different Developmental Stages and Stress Conditions in Wheat (Triticum aestivum L.). Plants 2022, 11, 496. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, H.; Liu, J.; Du, Q.; Lu, S.; Liu, C. Genome-wide identification and functional characterization of natural antisense transcripts in Salvia miltiorrhiza. Sci. Rep. 2021, 11, 4769. [Google Scholar] [CrossRef]
- Baruah, P.M.; Krishnatreya, D.B.; Bordoloi, K.S.; Gill, S.S.; Agarwala, N. Genome wide identification and characterization of abiotic stress responsive lncRNAs in Capsicum annuum. Plant Physiol. Biochem. 2021, 162, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486–487. [Google Scholar] [CrossRef]
- Koonin, E.V.; Rogozin, I.B. Getting positive about selection. Genome Biol. 2003, 4, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, D.; Qi, Z.; Du, Y.; Yu, J.; Yu, M.; Zhang, R.; Cao, H.; Pan, X.; Qiao, J.; Song, T.; et al. Identification of Differentially Expressed Genes Reveal Conserved Mechanisms in the Rice-Magnaporthe oryzae Interaction. Front. Plant Sci. 2022, 13, 723356. [Google Scholar] [CrossRef]
- Hoepflinger, M.C.; Pieslinger, A.M.; Tenhaken, R. Investigations on N-rich protein (NRP) of Arabidopsis thaliana under different stress conditions. Plant Physiol. Biochem. 2011, 49, 293–302. [Google Scholar] [CrossRef]
- de Camargos, L.F.; Fraga, O.T.; Oliveira, C.C.; da Silva, J.C.F.; Fontes, E.P.B.; Reis, P.A.B. Development and cell death domain-containing asparagine-rich protein (DCD/NRP): An essential protein in plant development and stress responses. Theor. Exp. Plant Physiol. 2019, 31, 59–70. [Google Scholar] [CrossRef]
- Menguer, P.K.; Sperotto, R.A.; Ricachenevsky, F.K. A walk on the wild side: Oryza species as source for rice abiotic stress tolerance. Genet. Mol. Biol. 2017, 40, 238–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.; Yang, W.; Zhao, B.; Wang, L.; Zhang, P.; Ouyang, Y.; Chang, Y.; Chen, G.; Zhang, J.; Wang, S.; et al. The Kelch-F-box protein SMALL AND GLOSSY LEAVES 1 (SAGL1) negatively influences salicylic acid biosynthesis in Arabidopsis thaliana by promoting the turn-over of transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1). New Phytol. 2022, 235, 885–897. [Google Scholar] [CrossRef]
- Carvalho, H.H.; Silva, P.A.; Mendes, G.C.; Brustolini, O.J.; Pimenta, M.R.; Gouveia, B.C.; Valente, M.A.S.; Ramos, H.J.; Soares-Ramos, J.R.; Fontes, E.P. The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events. Plant Physiol. 2014, 164, 654–670. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, N.; Martinez, I.M.; Kimata, Y.; Kohno, K.; Sano, H.; Chrispeels, M.J. Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases. Plant Physiol. 2001, 127, 949–962. [Google Scholar] [CrossRef]
- Hayashi, S.; Wakasa, Y.; Takahashi, H.; Kawakatsu, T.; Takaiwa, F. Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice. Plant J. 2012, 69, 946–956. [Google Scholar] [CrossRef]
- Iwata, Y.; Fedoroff, N.V.; Koizumi, N. Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell 2008, 20, 3107–3121. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zou, B.; Shao, Q.; Cui, Y.; Lu, S.; Zhang, Y.; Huang, Q.; Huang, J.; Hua, J. Natural variation reveals that OsSAP16 controls low-temperature germination in rice. J. Exp. Bot. 2018, 69, 413–421. [Google Scholar] [CrossRef]
- Tyagi, H.; Jha, S.; Sharma, M.; Giri, J.; Tyagi, A.K. Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. Plant Sci. 2014, 225, 68–76. [Google Scholar] [CrossRef]
- Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016, 44, D279–D285. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23, 127–128. [Google Scholar] [CrossRef] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, Y.; Liu, Y.; Zhao, C.; Zhou, L.; Chen, T.; Zhao, Q.Y.; Pillay, B.; Wang, C. Evaluation of suitable reference genes for normalization of quantitative real-time PCR analysis in rice plants under Xanthomonas oryzae pv. Oryzae-infection and melatonin supplementation. Food Prod. Process. Nutr. 2020, 2, 22. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
Species | Chromosomes | Genome Group | NRP Proteins | Whole Proteins |
---|---|---|---|---|
Oryza barthii | 24 (12 × 2) | AA | 11 | 41595 |
Oryza brachyantha | 24 (12 × 2) | FF | 9 | 32038 |
Oryza glaberrima | 24 (12 × 2) | AA | 10 | 33164 |
Oryza longistaminata | 24 (12 × 2) | AA | 12 | 31686 |
Oryza meridionalis | 24 (12 × 2) | AA | 10 | 43455 |
Oryza nivara | 24 (12 × 2) | AA | 11 | 48360 |
Oryza punctata | 24 (12 × 2) | BB | 11 | 41060 |
Oryza rufipogon | 24 (12 × 2) | AA | 11 | 47441 |
Oryza sativa indica group | 24 (12 × 2) | AA | 13 | 40745 |
Oryza sativa japonica group | 24 (12 × 2) | AA | 12 | 42419 |
Oryza glumipatula | 24 (12 × 2) | AA | 11 | 46893 |
Glycine max | 40 (20 × 2) | - | 15 | 88412 |
Motifs Accession in PLACE Database | Signal Sequence | Numbers | Functional Annotations |
---|---|---|---|
CACTFTPPCA1 | YACT | 130 | cis-regulatory elements for the promoter of C4 phosphoenolpyruvate carboxylase |
ARR1AT | NGATT | 107 | Response regulator (ARR1)-binding element |
DOFCOREZM | AAAG | 107 | cis-regulatory elements required for binding of Dof proteins that enhance transcription of cytosolic orthophosphate kinase (CyPPDK) |
GT1CONSENSUS | GRWAAW | 89 | cis-regulatory elements of GT-1 binding site for promoter of many light-regulated genes |
CAATBOX1 | CAAT | 74 | cis-regulatory elements for promoter of pea legumin gene |
WRKY71OS | TGAC | 65 | Binding site of WRKY proteins |
GTGANTG10 | GTGA | 61 | cis-regulatory elements in the promoter of late pollen gene that is homologous to pectate lyase |
POLLEN1LELAT52 | AGAAA | 61 | regulatory elements required for specific expression of pollen gene |
EBOXBNNAPA | CANNTG | 56 | E-box of napA storage-protein gene and R response element (RRE) responsible for light responsiveness |
GATABOX | GATA | 56 | cis-regulatory elements in the promoter of chlorophyll a/b binding protein |
MYCCONSENSUSAT | CANNTG | 56 | MYC recognition site in the promoters of the dehydration-responsive gene and ICE1, which involve incold stress response |
ROOTMOTIFTAPOX1 | ATATT | 49 | Motif in the rolD promoter that is highly specific to regenerating plants |
CGCGBOXAT | VCGCGB | 45 | Motifs recognized by signal-responsive genes, like plant bZIP proteins |
ACGTATERD1 | ACGT | 44 | cis-regulatory elements involve in early response to dehydration |
CURECORECR | GTAC | 40 | copper-response element involve in oxygen-response |
WBOXNTERF3 | TGACY | 30 | Binding site of WRKY proteins that involve in activation of ERF3 gene by wounding |
MYBCORE | CNGTTR | 29 | MYB binding site involve in regulation of response to water-stress and flavonoid biosynthesis |
NODCON2GM | CTCTT | 28 | nodulin consensus sequences |
OSE2ROOTNODULE | CTCTT | 28 | cis-regulatory elements of promoters activated in infected cells of root nodules |
GT1GMSCAM4 | GAAAAA | 27 | cis-regulatory elements involve in pathogen- and salt-induced gene expression |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, D.; Yu, J.; Song, T.; Zhang, R.; Du, Y.; Yu, M.; Cao, H.; Pan, X.; Qiao, J.; Liu, Y.; et al. Genome-Wide Prediction and Analysis of Oryza Species NRP Genes in Rice Blast Resistance. Int. J. Mol. Sci. 2022, 23, 11967. https://doi.org/10.3390/ijms231911967
Liang D, Yu J, Song T, Zhang R, Du Y, Yu M, Cao H, Pan X, Qiao J, Liu Y, et al. Genome-Wide Prediction and Analysis of Oryza Species NRP Genes in Rice Blast Resistance. International Journal of Molecular Sciences. 2022; 23(19):11967. https://doi.org/10.3390/ijms231911967
Chicago/Turabian StyleLiang, Dong, Junjie Yu, Tianqiao Song, Rongsheng Zhang, Yan Du, Mina Yu, Huijuan Cao, Xiayan Pan, Junqing Qiao, Youzhou Liu, and et al. 2022. "Genome-Wide Prediction and Analysis of Oryza Species NRP Genes in Rice Blast Resistance" International Journal of Molecular Sciences 23, no. 19: 11967. https://doi.org/10.3390/ijms231911967
APA StyleLiang, D., Yu, J., Song, T., Zhang, R., Du, Y., Yu, M., Cao, H., Pan, X., Qiao, J., Liu, Y., Qi, Z., & Liu, Y. (2022). Genome-Wide Prediction and Analysis of Oryza Species NRP Genes in Rice Blast Resistance. International Journal of Molecular Sciences, 23(19), 11967. https://doi.org/10.3390/ijms231911967