Virus-Associated Nephropathies: A Narrative Review
Abstract
:1. Introduction
2. Human Immunodeficiency Virus (HIV)
3. Hepatitis Viruses
3.1. Hepatitis A Virus (HAV)
3.2. Hepatitis B Virus (HBV)
3.3. Hepatitis C Virus (HCV)
3.4. Hepatitis E Virus (HEV)
4. Respiratory Viruses
4.1. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
4.2. Influenza Virus
5. The Herpesviridae Family
5.1. Herpes Simplex Viruses (HSV) 1 and 2
5.2. Varicella-Zoster Virus (VZV)
5.3. Epstein Barr Virus (EBV)
5.4. Cytomegalovirus (CMV)
5.5. Human Herpesvirus 6 (HHV6)
5.6. Human Herpesvirus 8 (HHV8)
6. Polyomaviruses
6.1. BK Polyomavirus (BKPyV)
6.2. JC Virus
7. Others
7.1. Dengue Virus (DENV)
7.2. Hantaviruses
7.3. Parvovirus B19 (B19V)
7.4. Human Adenovirus (HAdV)
7.5. Measles Virus (MeV)
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Pybus, O.G.; Rambaut, A. Evolutionary Analysis of the Dynamics of Viral Infectious Disease. Nat. Rev. Genet. 2009, 10, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Spallone, A.; Ariza-Heredia, E.J.; Chemaly, R.F. Acute and Latent Viral Infections in Immunocompromised Patients: A Tale of Brave Battles and Menacing Foes. Clin. Microbiol. Infect. 2022, 28, 1319–1320. [Google Scholar] [CrossRef] [PubMed]
- Rouse, B.T.; Sehrawat, S. Immunity and Immunopathology to Viruses: What Decides the Outcome? Nat. Rev. Immunol. 2010, 10, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.Y.; Low, S.G.; Vasanwala, F.F.; Baikunje, S.; Low, L.L. Varicella Infections in Patients with End Stage Renal Disease: A Systematic Review. BMC Nephrol. 2018, 19, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, A.; Ison, M.G.; Danziger-Isakov, L. Long-Term Infectious Complications of Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2022, 17, 286–295. [Google Scholar] [CrossRef]
- Beam, E.; Dioverti, V.; Razonable, R.R. Emerging Cytomegalovirus Management Strategies After Solid Organ Transplantation: Challenges and Opportunities. Curr. Infect. Dis. Rep. 2014, 16, 419. [Google Scholar] [CrossRef]
- Chen, X.-T.; Yang, S.-C.; Chen, W.-F.; Li, J.; Deng, S.-X.; Qiu, J.; Fei, J.-G.; Deng, R.-H.; Chen, Y.-Y.; Chen, P.-S.; et al. Glomerular Parietal Epithelial Cells Infection Is Associated With Poor Graft Outcome in Kidney Transplant Recipients With BK Polyomavirus–Associated Nephropathy. J. Infect. Dis. 2019, 219, 1879–1886. [Google Scholar] [CrossRef]
- Krautkrämer, E.; Grouls, S.; Stein, N.; Reiser, J.; Zeier, M. Pathogenic Old World Hantaviruses Infect Renal Glomerular and Tubular Cells and Induce Disassembling of Cell-to-Cell Contacts. J. Virol. 2011, 85, 9811–9823. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.J.; Gretch, D.R.; Yamabe, H.; Hart, J.; Bacchi, C.E.; Hartwell, P.; Couser, W.G.; Corey, L.; Wener, M.H.; Alpers, C.E. Membranoproliferative Glomerulonephritis Associated with Hepatitis C Virus Infection. N. Engl. J. Med. 1993, 328, 465–470. [Google Scholar] [CrossRef]
- Four Decades of HIV/AIDS—Where Do We Stand? EClinicalMedicine 2021, 35, 100943. [CrossRef]
- Cohen, S.D.; Kopp, J.B.; Kimmel, P.L. Kidney Diseases Associated with Human Immunodeficiency Virus Infection. N. Engl. J. Med. 2017, 377, 2363–2374. [Google Scholar] [CrossRef] [PubMed]
- Rao, T.K.S.; Filippone, E.J.; Nicastri, A.D.; Landesman, S.H.; Frank, E.; Chen, C.K.; Friedman, E.A. Associated Focal and Segmental Glomerulosclerosis in the Acquired Immunodeficiency Syndrome. N. Engl. J. Med. 1984, 310, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Lescure, F.-X.; Flateau, C.; Pacanowski, J.; Brocheriou, I.; Rondeau, E.; Girard, P.-M.; Ronco, P.; Pialoux, G.; Plaisier, E. HIV-Associated Kidney Glomerular Diseases: Changes with Time and HAART. Nephrol. Dial. Transpl. 2012, 27, 2349–2355. [Google Scholar] [CrossRef] [PubMed]
- Pardo, V.; Aldana, M.; Colton, R.M.; Fischl, M.A.; Jaffe, D.; Moskowitz, L.; Hensley, G.T.; Bourgoignie, J.J. Glomerular Lesions in the Acquired Immunodeficiency Syndrome. Ann. Intern. Med. 1984, 101, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.Z.; Naicker, S.; Winkler, C.A.; Kopp, J.B. HIV-Associated Nephropathies: Epidemiology, Pathology, Mechanisms and Treatment. Nat. Rev. Nephrol. 2015, 11, 150–160. [Google Scholar] [CrossRef]
- Hatsukari, I.; Singh, P.; Hitosugi, N.; Messmer, D.; Valderrama, E.; Teichberg, S.; Chaung, W.; Gross, E.; Schmidtmayerova, H.; Singhal, P.C. DEC-205-Mediated Internalization of HIV-1 Results in the Establishment of Silent Infection in Renal Tubular Cells. J. Am. Soc. Nephrol. JASN 2007, 18, 780–787. [Google Scholar] [CrossRef]
- Xie, X.; Colberg-Poley, A.M.; Das, J.R.; Li, J.; Zhang, A.; Tang, P.; Jerebtsova, M.; Gutkind, J.S.; Ray, P.E. The Basic Domain of HIV-Tat Transactivating Protein Is Essential for Its Targeting to Lipid Rafts and Regulating Fibroblast Growth Factor-2 Signaling in Podocytes Isolated from Children with HIV-1-Associated Nephropathy. J. Am. Soc. Nephrol. JASN 2014, 25, 1800–1813. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Zuo, Y.; Ma, J.; Fogo, A.B.; Jolicoeur, P.; Ichikawa, I.; Matsusaka, T. Expression of HIV-1 Genes in Podocytes Alone Can Lead to the Full Spectrum of HIV-1-Associated Nephropathy. Kidney Int. 2005, 68, 1048–1060. [Google Scholar] [CrossRef] [Green Version]
- Nichols, B.; Jog, P.; Lee, J.H.; Blackler, D.; Wilmot, M.; D’Agati, V.; Markowitz, G.; Kopp, J.B.; Alper, S.L.; Pollak, M.R.; et al. Innate Immunity Pathways Regulate the Nephropathy Gene Apolipoprotein L1. Kidney Int. 2015, 87, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Kopp, J.B.; Nelson, G.W.; Sampath, K.; Johnson, R.C.; Genovese, G.; An, P.; Friedman, D.; Briggs, W.; Dart, R.; Korbet, S.; et al. APOL1 Genetic Variants in Focal Segmental Glomerulosclerosis and HIV-Associated Nephropathy. J. Am. Soc. Nephrol. 2011, 22, 2129–2137. [Google Scholar] [CrossRef]
- Nobakht, E.; Cohen, S.D.; Rosenberg, A.Z.; Kimmel, P.L. HIV-Associated Immune Complex Kidney Disease. Nat. Rev. Nephrol. 2016, 12, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, C.M.; Morgello, S.; Katz-Malamed, R.; Wei, C.; Klotman, M.E.; Klotman, P.E.; D’Agati, V.D. The Spectrum of Kidney Disease in Patients with AIDS in the Era of Antiretroviral Therapy. Kidney Int. 2009, 75, 428–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, M.; Kaul, S.; Eustace, J.A. HIV-Associated Immune Complex Glomerulonephritis with “Lupus-like” Features: A Clinicopathologic Study of 14 Cases. Kidney Int. 2005, 67, 1381–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghrenassia, E.; Martis, N.; Boyer, J.; Burel-Vandenbos, F.; Mekinian, A.; Coppo, P. The Diffuse Infiltrative Lymphocytosis Syndrome (DILS). A Comprehensive Review. J. Autoimmun. 2015, 59, 19–25. [Google Scholar] [CrossRef]
- Becker, S.; Fusco, G.; Fusco, J.; Balu, R.; Gangjee, S.; Brennan, C.; Feinberg, J.; Collaborations in HIV Outcomes Research/US Cohort. HIV-Associated Thrombotic Microangiopathy in the Era of Highly Active Antiretroviral Therapy: An Observational Study. Clin. Infect. Dis. 2004, 39, S267–S275. [Google Scholar] [CrossRef] [Green Version]
- del Arco, A.; Martinez, M.A.; Pena, J.M.; Gamallo, C.; Gonzalez, J.J.; Barbado, F.J.; Vazquez, J.J. Thrombotic Thrombocytopenic Purpura Associated with Human Immunodeficiency Virus Infection: Demonstration of P24 Antigen in Endothelial Cells. Clin. Infect. Dis. 1993, 17, 360–363. [Google Scholar] [CrossRef]
- Wasley, A.; Fiore, A.; Bell, B.P. Hepatitis A in the Era of Vaccination. Epidemiol. Rev. 2006, 28, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Hirai-Yuki, A.; Whitmire, J.K.; Joyce, M.; Tyrrell, D.L.; Lemon, S.M. Murine Models of Hepatitis A Virus Infection. Cold Spring Harb. Perspect. Med. 2019, 9, a031674. [Google Scholar] [CrossRef]
- Kim, S.H.; Yoon, H.E.; Kim, Y.K.; Kim, J.Y.; Choi, B.S.; Choi, Y.J.; Kim, Y.O.; Kim, Y.S.; Bang, B.K.; Yang, C.W. Acute Hepatitis A-Associated Acute Renal Failure in Adults. Nephron Clin. Pract. 2008, 109, c127–c132. [Google Scholar] [CrossRef]
- Shin, S.J.; Kim, J.H. The Characteristics of Acute Kidney Injury Complicated in Acute Hepatitis A. Scand. J. Infect. Dis. 2009, 41, 869–872. [Google Scholar] [CrossRef]
- Andrievskaya, M.; Lenhart, A.; Uduman, J. Emerging Threat: Changing Epidemiology of Hepatitis A and Acute Kidney Injury. Adv. Chronic Kidney Dis. 2019, 26, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Sarawgi, S.; Gupta, A.K.; Arora, D.S.; Jasuja, S. Acute Renal Failure Associated with Nonfulminant Acute Viral Hepatitis A. Indian J. Nephrol. 2008, 18, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Oe, S. Hepatitis A Complicated with Acute Renal Failure and High Hepatocyte Growth Factor: A Case Report. World J. Gastroenterol. 2015, 21, 9671. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.B.; Saha, P.; Das, I.; Sinha, M.K. Fulminant Hepatitis and Glomerulonephritis-a Rare Presentation of Hepatitis A Virus Infection. Acta Paediatr. 2011, 100, e132–e134. [Google Scholar] [CrossRef]
- Freeman, G.J.; Casasnovas, J.M.; Umetsu, D.T.; DeKruyff, R.H. TIM Genes: A Family of Cell Surface Phosphatidylserine Receptors That Regulate Innate and Adaptive Immunity. Immunol. Rev. 2010, 235, 172–189. [Google Scholar] [CrossRef] [Green Version]
- Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A Novel Biomarker for Human Renal Proximal Tubule Injury. Kidney Int. 2002, 62, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Cheungpasitporn, W.; Thongprayoon, C.; Ungprasert, P.; Wijarnpreecha, K.; Mao, M.A.; Aeddula, N.R.; Kaewput, W.; Bathini, T.; Kroner, P.T. Hepatitis A Hospitalizations among Kidney Transplant Recipients in the United States: Nationwide Inpatient Sample 2005-2014. Eur. J. Gastroenterol. Hepatol. 2020, 32, 650–655. [Google Scholar] [CrossRef]
- Demicheli, V.; Tiberti, D. The Effectiveness and Safety of Hepatitis A Vaccine: A Systematic Review. Vaccine 2003, 21, 2242–2245. [Google Scholar] [CrossRef]
- Prasoppokakorn, T.; Vanichanan, J.; Chaiteerakij, R.; Jutivorakool, K.; Udomkarnjananun, S.; Pongpirul, K.; Taesombat, W.; Wattanatorn, S.; Avihingsanon, Y.; Tungsanga, K.; et al. A Randomized Controlled Trial of Comparative Effectiveness between the 2 Dose and 3 Dose Regimens of Hepatitis a Vaccine in Kidney Transplant Recipients. Sci. Rep. 2021, 11, 50. [Google Scholar] [CrossRef]
- Global Progress Report on HIV, Viral Hepatitis and Sexually Transmitted Infections. 2021. Available online: https://www.who.int/publications-detail-redirect/9789240027077 (accessed on 29 July 2022).
- Liang, T.J. Hepatitis B: The Virus and Disease. Hepatol. Baltim. Md 2009, 49 (Suppl. S5), S13–S21. [Google Scholar] [CrossRef]
- Kishi, T.; Ikeda, Y.; Takashima, T.; Rikitake, S.; Miyazono, M.; Aoki, S.; Sakemi, T.; Mizuta, T.; Fujimoto, K. Acute Renal Failure Associated with Acute Non-Fulminant Hepatitis B. World J. Hepatol. 2013, 5, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.S.Y.; Covert, E.; Wilson, E.; Kottilil, S. Chronic Hepatitis B Infection: A Review. JAMA 2018, 319, 1802–1813. [Google Scholar] [CrossRef] [PubMed]
- Harnett, J.D.; Parfrey, P.S.; Kennedy, M.; Zeldis, J.B.; Steinman, T.I.; Guttmann, R.D. The Long-Term Outcome of Hepatitis B Infection in Hemodialysis Patients. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 1988, 11, 210–213. [Google Scholar] [CrossRef]
- Gupta, A.; Quigg, R.J. Glomerular Diseases Associated With Hepatitis B and C. Adv. Chronic Kidney Dis. 2015, 22, 343–351. [Google Scholar] [CrossRef]
- Lai, K.N.; Li, P.K.; Lui, S.F.; Au, T.C.; Tam, J.S.; Tong, K.L.; Lai, F.M. Membranous Nephropathy Related to Hepatitis B Virus in Adults. N. Engl. J. Med. 1991, 324, 1457–1463. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Wu, C.-Y.; Lin, C.-Y.; Lin, G.-J.; Chen, C.-H.; Huang, F.-Y. Membranous Nephropathy in 52 Hepatitis B Surface Antigen (HBsAg) Carrier Children in Taiwan. Kidney Int. 1989, 36, 1103–1107. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Li, Y.; Xue, J.; Xiong, Z.; Wang, L.; Sun, Z.; Ren, Y.; Zhu, X.; Hao, C.-M. Renal Phospholipase A2 Receptor in Hepatitis B Virus-Associated Membranous Nephropathy. Am. J. Nephrol. 2015, 41, 345–353. [Google Scholar] [CrossRef]
- Li, P.; Wei, R.; Tang, L.; Wu, J.; Zhang, X.; Chen, X. Clinical and Pathological Analysis of Hepatitis B Virus-Related Membranous Nephropathy and Idiopathic Membranous Nephropathy. Clin. Nephrol. 2012, 78, 456–464. [Google Scholar] [CrossRef]
- Iida, H.; Izumino, K.; Asaka, M.; Kameyama, T.; Takata, M.; Mizumura, Y.; Sasayama, S. Membranoproliferative Glomerulonephritis Associated with Chronic Hepatitis B in Adults: Pathogenetic Role of HBsAg. Am. J. Nephrol. 1987, 7, 319–324. [Google Scholar] [CrossRef]
- Mazzaro, C.; Dal Maso, L.; Urraro, T.; Mauro, E.; Castelnovo, L.; Casarin, P.; Monti, G.; Gattei, V.; Zignego, A.L.; Pozzato, G. Hepatitis B Virus Related Cryoglobulinemic Vasculitis: A Multicentre Open Label Study from the Gruppo Italiano Di Studio Delle Crioglobulinemie—GISC. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2016, 48, 780–784. [Google Scholar] [CrossRef]
- Guillevin, L.; Mahr, A.; Callard, P.; Godmer, P.; Pagnoux, C.; Leray, E.; Cohen, P.; French Vasculitis Study Group. Hepatitis B Virus-Associated Polyarteritis Nodosa: Clinical Characteristics, Outcome, and Impact of Treatment in 115 Patients. Medicine 2005, 84, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Sun, I.O.; Hong, Y.A.; Park, H.S.; Choi, S.R.; Chung, B.H.; Park, C.W.; Yang, C.W.; Kim, Y.S.; Choi, B.S. Clinical Characteristics and Treatment of Patients with IgA Nephropathy and Hepatitis B Surface Antigen. Ren. Fail. 2013, 35, 446–451. [Google Scholar] [CrossRef]
- Zhou, T.-B.; Jiang, Z.-P. Is There an Association of Hepatitis B Virus Infection with Minimal Change Disease of Nephrotic Syndrome? A Clinical Observational Report. Ren. Fail. 2015, 37, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Gupta, R.; Adapa, S.; Bose, S.; Garcha, A. Hepatitis B–Associated Lupus-Like Glomerulonephritis Successfully Treated With Antiretroviral Drugs and Prednisone: A Case Report and Literature Review. J. Investig. Med. High Impact Case Rep. 2022, 10, 23247096221086452. [Google Scholar] [CrossRef] [PubMed]
- Herrscher, C.; Roingeard, P.; Blanchard, E. Hepatitis B Virus Entry into Cells. Cells 2020, 9, 1486. [Google Scholar] [CrossRef]
- Mazzaro, C.; Dal Maso, L.; Visentini, M.; Gitto, S.; Andreone, P.; Toffolutti, F.; Gattei, V. Hepatitis B Virus-Related Cryogobulinemic Vasculitis. The Role of Antiviral Nucleot(s)Ide Analogues: A Review. J. Intern. Med. 2019, 286, 290–298. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the Management of Hepatitis B Virus Infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.-C. Hepatitis B Virus Infection and Renal Transplantation. World J. Gastroenterol. 2010, 16, 3878. [Google Scholar] [CrossRef]
- Yang, S.; Tian, G.; Cui, Y.; Ding, C.; Deng, M.; Yu, C.; Xu, K.; Ren, J.; Yao, J.; Li, Y.; et al. Factors Influencing Immunologic Response to Hepatitis B Vaccine in Adults. Sci. Rep. 2016, 6, 251. [Google Scholar] [CrossRef] [Green Version]
- Ayub1, M.A.; Bacci, M.R.; Fonseca, F.L.A.; Chehter, E.Z. Hemodialysis and Hepatitis B Vaccination: A Challenge to Physicians. Int. J. Gen. Med. 2014, 7, 109–114. [Google Scholar] [CrossRef]
- Michalak, T.I. HCV Lymphotropism and Its Pathogenic Significance. In Hepatitis C-From Infection to Cure; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- WHO. Hepatitis C—WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (accessed on 16 August 2022).
- Chen, S.L.; Morgan, T.R. The Natural History of Hepatitis C Virus (HCV) Infection. Int. J. Med. Sci. 2006, 3, 47–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santer, D.M.; Ma, M.M.; Hockman, D.; Landi, A.; Tyrrell, D.L.J.; Houghton, M. Enhanced Activation of Memory, but Not Naïve, B Cells in Chronic Hepatitis C Virus-Infected Patients with Cryoglobulinemia and Advanced Liver Fibrosis. PLoS ONE 2013, 8, e68308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacoub, P.; Si Ahmed, S.N.; Ferfar, Y.; Pol, S.; Thabut, D.; Hezode, C.; Alric, L.; Comarmond, C.; Ragab, G.; Quartuccio, L.; et al. Long-Term Efficacy of Interferon-Free Antiviral Treatment Regimens in Patients With Hepatitis C Virus–Associated Cryoglobulinemia Vasculitis. Clin. Gastroenterol. Hepatol. 2019, 17, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Lai, T.-S.; Lee, M.-H.; Yang, H.-I.; You, S.-L.; Lu, S.-N.; Wang, L.-Y.; Yuan, Y.; L’Italien, G.; Chien, K.-L.; Chen, C.-J.; et al. Hepatitis C Viral Load, Genotype, and Increased Risk of Developing End-Stage Renal Disease: REVEAL-HCV Study. Hepatol. Baltim. Md 2017, 66, 784–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colpitts, C.; Tsai, P.-L.; Zeisel, M. Hepatitis C Virus Entry: An Intriguingly Complex and Highly Regulated Process. Int. J. Mol. Sci. 2020, 21, 2091. [Google Scholar] [CrossRef] [Green Version]
- Sabry, A.; El-Agroudy, A.; Sheashaa, H.; El-husseini, A.; Taha, N.M.; Elbaz, M.; El-Shahat, F.; Sobh, M. Histological Characterization of HCV-Associated Glomerulopathy in Egyptian Patients. Int. Urol. Nephrol. 2005, 37, 355–361. [Google Scholar] [CrossRef]
- Stehman-Breen, C.; Alpers, C.E.; Fleet, W.P.; Johnson, R.J. Focal Segmental Glomerular Sclerosis among Patients Infected with Hepatitis C Virus. Nephron 1999, 81, 37–40. [Google Scholar] [CrossRef]
- Markowitz, G.S.; Cheng, J.T.; Colvin, R.B.; Trebbin, W.M.; D’Agati, V.D. Hepatitis C Viral Infection Is Associated with Fibrillary Glomerulonephritis and Immunotactoid Glomerulopathy. J. Am. Soc. Nephrol. JASN 1998, 9, 2244–2252. [Google Scholar] [CrossRef]
- Coroneos, E.; Truong, L.; Olivero, J. Fibrillary Glomerulonephritis Associated with Hepatitis C Viral Infection. Am. J. Kidney Dis. 1997, 29, 132–135. [Google Scholar] [CrossRef]
- Guerra, G.; Narayan, G.; Rennke, H.G.; Jaber, B.L. Crescentic Fibrillary Glomerulonephritis Associated with Hepatitis C Viral Infection. Clin. Nephrol. 2003, 60, 364–368. [Google Scholar] [CrossRef]
- Gonzalo, A.; Navarro, J.; Bárcena, R.; Quereda, C.; Ortuño, J. IgA Nephropathy Associated with Hepatitis C Virus Infection. Nephron 1995, 69, 354. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.M.; Fabrizi, F. Hepatitis C and Its Impact on Renal Transplantation. Nat. Rev. Nephrol. 2015, 11, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Fabrizi, F.; Martin, P.; Dixit, V.; Bunnapradist, S.; Dulai, G. Hepatitis C Virus Antibody Status and Survival after Renal Transplantation: Meta-Analysis of Observational Studies. Am. J. Transpl. 2005, 5, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
- Abbott, K.C.; Lentine, K.L.; Bucci, J.R.; Agodoa, L.Y.; Koff, J.M.; Holtzmuller, K.C.; Schnitzler, M.A. Impact of Diabetes and Hepatitis after Kidney Transplantation on Patients Who Are Affected by Hepatitis C Virus. J. Am. Soc. Nephrol. 2004, 15, 3166–3174. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.; Fabrizi, F. Hepatitis C Virus and Kidney Disease. J. Hepatol. 2008, 49, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Pawlotsky, J.-M.; Negro, F.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; Marra, F.; Puoti, M.; Wedemeyer, H. EASL Recommendations on Treatment of Hepatitis C: Final Update of the Series☆. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- Miyasaka, A.; Yoshida, Y.; Murakami, A.; Hoshino, T.; Sawara, K.; Numao, H.; Takikawa, Y. Safety and Efficacy of Glecaprevir and Pibrentasvir in North Tohoku Japanese Patients with Genotype 1/2 Hepatitis C Virus Infection. Health Sci. Rep. 2022, 5, e458. [Google Scholar] [CrossRef]
- Belperio, P.S.; Shahoumian, T.A.; Loomis, T.P.; Mole, L.A.; Backus, L.I. Real-World Effectiveness of Daclatasvir plus Sofosbuvir and Velpatasvir/Sofosbuvir in Hepatitis C Genotype 2 and 3. J. Hepatol. 2019, 70, 15–23. [Google Scholar] [CrossRef]
- Danishwar, M.; Jamil, Z.; Khan, S.; Nakhla, M.; Ahmad, I.; Ali, M.A.; Lau, D.T.Y. Persistence of Cryoglobulinemic Vasculitis after DAA Induced HCV Cure. J. Clin. Med. 2022, 11, 984. [Google Scholar] [CrossRef]
- Kamar, N.; Dalton, H.R.; Abravanel, F.; Izopet, J. Hepatitis E Virus Infection. Clin. Microbiol. Rev. 2014, 27, 116–138. [Google Scholar] [CrossRef] [Green Version]
- Pavio, N.; Meng, X.-J.; Renou, C. Zoonotic Hepatitis E: Animal Reservoirs and Emerging Risks. Vet. Res. 2010, 41, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Xiang, Z.; Zhu, C.; Yao, Y.; Bortolanza, M.; Cao, H.; Li, L. Extrahepatic Manifestations Related to Hepatitis E Virus Infection and Their Triggering Mechanisms. J. Infect. 2021, 83, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Wasuwanich, P.; Sirisreetreerux, P.; Ingviya, T.; Kraus, E.S.; Brennan, D.C.; Sue, P.K.; Jackson, A.M.; Oshima, K.; Philosophe, B.; Montgomery, R.A.; et al. Hepatitis E Virus Infection and Rejection in Kidney Transplant Recipients. Transpl. Immunol. 2022, 70, 101517. [Google Scholar] [CrossRef]
- Guinault, D.; Ribes, D.; Delas, A.; Milongo, D.; Abravanel, F.; Puissant-Lubrano, B.; Izopet, J.; Kamar, N. Hepatitis E Virus–Induced Cryoglobulinemic Glomerulonephritis in a Nonimmunocompromised Person. Am. J. Kidney Dis. 2016, 67, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Wallace, S.J.; Swann, R.; Donnelly, M.; Kemp, L.; Guaci, J.; Murray, A.; Spoor, J.; Lin, N.; Miller, M.; Dalton, H.R.; et al. Mortality and Morbidity of Locally Acquired Hepatitis E in the National Scottish Cohort: A Multicentre Retrospective Study. Aliment. Pharmacol. Ther. 2020, 51, 974–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brehm, T.T.; Mazaheri, O.; Horvatits, T.; Lütgehetmann, M.; Schulze Zur Wiesch, J.; Lohse, A.W.; Polywka, S.; Pischke, S. Lower Levels of Transaminases but Higher Levels of Serum Creatinine in Patients with Acute Hepatitis E in Comparison to Patients with Hepatitis A. Pathog. Basel Switz. 2021, 10, 60. [Google Scholar] [CrossRef]
- Kamar, N.; Marion, O.; Abravanel, F.; Izopet, J.; Dalton, H.R. Extrahepatic Manifestations of Hepatitis E Virus. Liver Int. Off. J. Int. Assoc. Study Liver 2016, 36, 467–472. [Google Scholar] [CrossRef]
- El-Mokhtar, M.A.; Seddik, M.I.; Osman, A.; Adel, S.; Abdel Aziz, E.M.; Mandour, S.A.; Mohammed, N.; Zarzour, M.A.; Abdel-Wahid, L.; Radwan, E.; et al. Hepatitis E Virus Mediates Renal Injury via the Interaction between the Immune Cells and Renal Epithelium. Vaccines 2020, 8, 454. [Google Scholar] [CrossRef]
- Shiota, T.; Li, T.-C.; Nishimura, Y.; Yoshizaki, S.; Sugiyama, R.; Shimojima, M.; Saijo, M.; Shimizu, H.; Suzuki, R.; Wakita, T.; et al. Integrin A3 Is Involved in Non-Enveloped Hepatitis E Virus Infection. Virology 2019, 536, 119–124. [Google Scholar] [CrossRef]
- Yin, X.; Feng, Z. Hepatitis E Virus Entry. Viruses 2019, 11, 883. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Zhao, C.; Huang, W.; Harrison, T.J.; Zhang, H.; Geng, K.; Wang, Y. Detection and Assessment of Infectivity of Hepatitis E Virus in Urine. J. Hepatol. 2016, 64, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Del Bello, A.; Guilbeau-Frugier, C.; Josse, A.-G.; Rostaing, L.; Izopet, J.; Kamar, N. Successful Treatment of Hepatitis E Virus-Associated Cryoglobulinemic Membranoproliferative Glomerulonephritis with Ribavirin. Transpl. Infect. Dis. 2015, 17, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Kamar, N.; Weclawiak, H.; Guilbeau-Frugier, C.; Legrand-Abravanel, F.; Cointault, O.; Ribes, D.; Esposito, L.; Cardeau-Desangles, I.; Guitard, J.; Sallusto, F.; et al. Hepatitis E Virus and the Kidney in Solid-Organ Transplant Patients. Transplantation 2012, 93, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Taton, B.; Moreau, K.; Lepreux, S.; Bachelet, T.; Trimoulet, P.; De Ledinghen, V.; Pommereau, A.; Ronco, P.; Kamar, N.; Merville, P.; et al. Hepatitis E Virus Infection as a New Probable Cause of de Novo Membranous Nephropathy after Kidney Transplantation. Transpl. Infect. Dis. 2013, 15, E211–E215. [Google Scholar] [CrossRef] [PubMed]
- Sue, P.K.; Pisanic, N.; Heaney, C.D.; Forman, M.; Valsamakis, A.; Jackson, A.M.; Ticehurst, J.R.; Montgomery, R.A.; Schwarz, K.B.; Nelson, K.E.; et al. Hepatitis E Virus Infection Among Solid Organ Transplant Recipients at a North American Transplant Center. Open Forum Infect. Dis. 2016, 3, ofw006. [Google Scholar] [CrossRef] [Green Version]
- Kamar, N.; Abravanel, F.; Selves, J.; Garrouste, C.; Esposito, L.; Lavayssière, L.; Cointault, O.; Ribes, D.; Cardeau, I.; Nogier, M.B.; et al. Influence of Immunosuppressive Therapy on the Natural History of Genotype 3 Hepatitis-E Virus Infection after Organ Transplantation. Transplantation 2010, 89, 353–360. [Google Scholar] [CrossRef]
- Caillard, S.; Anglicheau, D.; Matignon, M.; Durrbach, A.; Greze, C.; Frimat, L.; Thaunat, O.; Legris, T.; Moal, V.; Westeel, P.F.; et al. An Initial Report from the French SOT COVID Registry Suggests High Mortality Due to COVID-19 in Recipients of Kidney Transplants. Kidney Int. 2020, 2020, S0085253820309613. [Google Scholar] [CrossRef]
- Caillard, S.; Chavarot, N.; Francois, H.; Matignon, M.; Greze, C.; Kamar, N.; Gatault, P.; Thaunat, O.; Legris, T.; Frimat, L.; et al. Is COVID-19 Infection More Severe in Kidney Transplant Recipients? Am. J. Transpl. 2020, 21, 1295–1303. [Google Scholar] [CrossRef]
- Masset, C.; Kerleau, C.; Garandeau, C.; Ville, S.; Cantarovich, D.; Hourmant, M.; Kervella, D.; Meurette, A.; Guillot-Gueguen, C.; Guihard, I.; et al. A Third Injection of the BNT162b2 MRNA COVID-19 Vaccine in Kidney Transplant Recipients Improves the Humoral Immune Response. Kidney Int. 2021, S0085253821008097. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney Disease Is Associated with In-Hospital Death of Patients with COVID-19. Kidney Int. 2020, S0085253820302556. [Google Scholar] [CrossRef]
- Hirsch, J.S.; Ng, J.H.; Ross, D.W.; Sharma, P.; Shah, H.H.; Barnett, R.L.; Hazzan, A.D.; Fishbane, S.; Jhaveri, K.D.; Abate, M.; et al. Acute Kidney Injury in Patients Hospitalized with COVID-19. Kidney Int. 2020, 98, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Yang, M.; Wan, C.; Yi, L.-X.; Tang, F.; Zhu, H.-Y.; Yi, F.; Yang, H.-C.; Fogo, A.B.; Nie, X.; et al. Renal Histopathological Analysis of 26 Postmortem Findings of Patients with COVID-19 in China. Kidney Int. 2020, 98, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Santoriello, D.; Khairallah, P.; Bomback, A.S.; Xu, K.; Kudose, S.; Batal, I.; Barasch, J.; Radhakrishnan, J.; D’Agati, V.; Markowitz, G. Postmortem Kidney Pathology Findings in Patients with COVID-19. J. Am. Soc. Nephrol. 2020, 31, 2158–2167. [Google Scholar] [CrossRef]
- Ferlicot, S.; Jamme, M.; Gaillard, F.; Oniszczuk, J.; Couturier, A.; May, O.; Grünenwald, A.; Sannier, A.; Moktefi, A.; Le Monnier, O.; et al. The Spectrum of Kidney Biopsies in Hospitalized Patients with COVID-19, Acute Kidney Injury, and/or Proteinuria. Nephrol. Dial. Transpl. 2021, gfab042. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Uppal, N.N.; Wanchoo, R.; Shah, H.H.; Yang, Y.; Parikh, R.; Khanin, Y.; Madireddy, V.; Larsen, C.P.; Jhaveri, K.D.; et al. COVID-19–Associated Kidney Injury: A Case Series of Kidney Biopsy Findings. J. Am. Soc. Nephrol. 2020, 31, 1948–1958. [Google Scholar] [CrossRef]
- Ronco, C.; Reis, T. Kidney Involvement in COVID-19 and Rationale for Extracorporeal Therapies. Nat. Rev. Nephrol. 2020, 16, 308–310. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.E.; Brealey, J.K. Visualization of Putative Coronavirus in Kidney. Kidney Int. 2020, 98, 231–232. [Google Scholar] [CrossRef]
- Hassler, L.; Reyes, F.; Sparks, M.A.; Welling, P.; Batlle, D. Evidence For and Against Direct Kidney Infection by SARS-CoV-2 in Patients with COVID-19. Clin. J. Am. Soc. Nephrol. 2021, 16, 1755–1765. [Google Scholar] [CrossRef]
- Pan, X.; Xu, D.; Zhang, H.; Zhou, W.; Wang, L.; Cui, X. Identification of a Potential Mechanism of Acute Kidney Injury during the COVID-19 Outbreak: A Study Based on Single-Cell Transcriptome Analysis. Intensive Care Med. 2020, 46, 1114–1116. [Google Scholar] [CrossRef]
- Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado Del Pozo, C.; Prosper, F.; et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 2020, 181, 905–913.e7. [Google Scholar] [CrossRef]
- Diao, B.; Wang, C.; Wang, R.; Feng, Z.; Zhang, J.; Yang, H.; Tan, Y.; Wang, H.; Wang, C.; Liu, L.; et al. Human Kidney Is a Target for Novel Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Nat. Commun. 2021, 12, 2506. [Google Scholar] [CrossRef] [PubMed]
- Helms, L.; Marchiano, S.; Stanaway, I.B.; Hsiang, T.-Y.; Juliar, B.A.; Saini, S.; Zhao, Y.T.; Khanna, A.; Menon, R.; Alakwaa, F.; et al. Cross-Validation of SARS-CoV-2 Responses in Kidney Organoids and Clinical Populations. JCI Insight 2021. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.P.; Barone, S.; Zahedi, K.; Soleimani, M. Kidney Injury in COVID-19: Epidemiology, Molecular Mechanisms and Potential Therapeutic Targets. Int. J. Mol. Sci. 2022, 23, 2242. [Google Scholar] [CrossRef] [PubMed]
- Kissling, S.; Rotman, S.; Gerber, C.; Halfon, M.; Lamoth, F.; Comte, D.; Lhopitallier, L.; Sadallah, S.; Fakhouri, F. Collapsing Glomerulopathy in a COVID-19 Patient. Kidney Int. 2020, 98, 228–231. [Google Scholar] [CrossRef]
- May, R.M.; Cassol, C.; Hannoudi, A.; Larsen, C.P.; Lerma, E.V.; Haun, R.S.; Braga, J.R.; Hassen, S.I.; Wilson, J.; VanBeek, C.; et al. A Multi-Center Retrospective Cohort Study Defines the Spectrum of Kidney Pathology in Coronavirus 2019 Disease (COVID-19). Kidney Int. 2021, 100, 1303–1315. [Google Scholar] [CrossRef]
- Kudose, S.; Batal, I.; Santoriello, D.; Xu, K.; Barasch, J.; Peleg, Y.; Canetta, P.; Ratner, L.E.; Marasa, M.; Gharavi, A.G.; et al. Kidney Biopsy Findings in Patients with COVID-19. J. Am. Soc. Nephrol. 2020, 31, 1959–1968. [Google Scholar] [CrossRef]
- Rivero, J.; Merino-López, M.; Olmedo, R.; Garrido-Roldan, R.; Moguel, B.; Rojas, G.; Chavez-Morales, A.; Alvarez-Maldonado, P.; Duarte-Molina, P.; Castaño-Guerra, R.; et al. Association between Postmortem Kidney Biopsy Findings and Acute Kidney Injury from Patients with SARS-CoV-2 (COVID-19). Clin. J. Am. Soc. Nephrol. 2021, 16, 685–693. [Google Scholar] [CrossRef]
- Masset, C.; Renaudin, K.; Kervella, D.; Chapelet, A.; Deltombe, C.; Ville, S. Collapsing Glomerulopathy in a Patient with APOL1 Intermediate-Risk Genotype Triggered by Lupus Nephritis and SARS-CoV-2 Infection: Lessons for the Clinical Nephrologist. J. Nephrol. 2021. [Google Scholar] [CrossRef]
- Nasr, S.H.; Alexander, M.P.; Cornell, L.D.; Herrera, L.H.; Fidler, M.E.; Said, S.M.; Zhang, P.; Larsen, C.P.; Sethi, S. Kidney Biopsy Findings in Patients With COVID-19, Kidney Injury, and Proteinuria. Am. J. Kidney Dis. 2021, 77, 465–468. [Google Scholar] [CrossRef]
- Shetty, A.A.; Tawhari, I.; Safar-Boueri, L.; Seif, N.; Alahmadi, A.; Gargiulo, R.; Aggarwal, V.; Usman, I.; Kisselev, S.; Gharavi, A.G.; et al. COVID-19–Associated Glomerular Disease. J. Am. Soc. Nephrol. 2021, 32, 33–40. [Google Scholar] [CrossRef]
- Wu, H.; Larsen, C.P.; Hernandez-Arroyo, C.F.; Mohamed, M.M.B.; Caza, T.; Sharshir, M.; Chughtai, A.; Xie, L.; Gimenez, J.M.; Sandow, T.A.; et al. AKI and Collapsing Glomerulopathy Associated with COVID-19 and APOL 1 High-Risk Genotype. J. Am. Soc. Nephrol. 2020, 31, 1688–1695. [Google Scholar] [CrossRef] [PubMed]
- Storrar, J.; Kudose, S.; Woywodt, A. Acute Interstitial Nephritis in SARS-CoV-2 Infection and Vaccination. BMJ Case Rep. 2022, 15, e246841. [Google Scholar]
- Akilesh, S.; Nast, C.C.; Yamashita, M.; Henriksen, K.; Charu, V.; Troxell, M.L.; Kambham, N.; Bracamonte, E.; Houghton, D.; Ahmed, N.I.; et al. Multicenter Clinicopathologic Correlation of Kidney Biopsies Performed in COVID-19 Patients Presenting With Acute Kidney Injury or Proteinuria. Am. J. Kidney Dis. 2020, S0272638620310143. [Google Scholar] [CrossRef] [PubMed]
- Ville, S.; Le Bot, S.; Chapelet-Debout, A.; Blancho, G.; Fremeaux-Bacchi, V.; Deltombe, C.; Fakhouri, F. Atypical HUS Relapse Triggered by COVID-19. Kidney Int. 2021, 99, 267–268. [Google Scholar] [CrossRef] [PubMed]
- Daniel, E.; Sekulic, M.; Kudose, S.; Kubin, C.; Ye, X.; Shayan, K.; Patel, A.; Cohen, D.J.; Ratner, L.; Santoriello, D.; et al. Kidney Allograft Biopsy Findings after COVID-19. Am. J. Transpl. 2021, 21, 4032–4042. [Google Scholar] [CrossRef] [PubMed]
- Meena, P.; Crew, R.J. Understanding the Risks of Immunosuppression Reduction for Active COVID-19 Infection. Kidney Int. Rep. 2022, 7, 937–938. [Google Scholar] [CrossRef]
- Sood, M.M.; Rigatto, C.; Zarychanski, R.; Komenda, P.; Sood, A.R.; Bueti, J.; Reslerova, M.; Roberts, D.; Mojica, J.; Kumar, A. Acute Kidney Injury in Critically Ill Patients Infected With 2009 Pandemic Influenza A(H1N1): Report From a Canadian Province. Am. J. Kidney Dis. 2010, 55, 848–855. [Google Scholar] [CrossRef]
- Nin, N.; Lorente, J.A.; Sánchez-Rodríguez, C.; Granados, R.; Ver, L.S.; Soto, L.; Hidalgo, J.; Fernández-Segoviano, P.; Ortín, J.; Esteban, A. Kidney Histopathological Findings in Fatal Pandemic 2009 Influenza A (H1N1). Intensive Care Med. 2011, 37, 880–881. [Google Scholar] [CrossRef]
- Carmona, F.; Carlotti, A.P.C.P.; Ramalho, L.N.Z.; Costa, R.S.; Ramalho, F.S. Evidence of Renal Infection in Fatal Cases of 2009 Pandemic Influenza A (H1N1). Am. J. Clin. Pathol. 2011, 136, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Sevignani, G.; Soares, M.F.; Marques, G.L.; Freitas, A.K.E.d.; Gentili, A.; Chula, D.C.; Nascimento, M.M.d. Acute Kidney Injury in Patients Infected by H1N1—Clinical Histological Correlation in a Series of Cases. J. Bras. Nefrol. 2013, 35, 185–190. [Google Scholar] [CrossRef]
- Casas-Aparicio, G.A.; León-Rodríguez, I.; Hernández-Zenteno, R. de J.; Castillejos-López, M.; Alvarado-de la Barrera, C.; Ormsby, C.E.; Reyes-Terán, G. Aggressive Fluid Accumulation Is Associated with Acute Kidney Injury and Mortality in a Cohort of Patients with Severe Pneumonia Caused by Influenza A H1N1 Virus. PLoS ONE 2018, 13, e0192592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.-C.; Wang, C.-Y.; Lin, H.-I. Rhabdomyolysis and Acute Kidney Injury Associated With 2009 Pandemic Influenza A(H1N1). Am. J. Kidney Dis. 2010, 55, 615. [Google Scholar] [CrossRef] [PubMed]
- Ishibuchi, K.; Fukasawa, H.; Kaneko, M.; Yasuda, H.; Furuya, R. Elevation of Creatine Kinase Is Associated with Acute Kidney Injury in Hospitalized Patients Infected with Seasonal Influenza Virus. Clin. Exp. Nephrol. 2021, 25, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Bodard, Q.; Rullier, P.; Perrochia, H.; Le Quintrec, M.; Alamé, M.; Hermine, O.; Guilpain, P.; Maria, A. Glomérulonéphrite Membrano-Proliférative Post-Grippale Chez Un Patient Atteint de Mastocytose Systémique Agressive: Observation Commentée et Revue de La Littérature. Néphrologie Thérapeutique 2022, 18, 140–143. [Google Scholar] [CrossRef]
- Kute, V.; Vanikar, A.; Shah, P.; Gumber, M.; Patel, H.; Trivedi, H. Mesangial Proliferative Glomerulonephritis with Acute Tubule Interstitial Nephritis Leading to Acute Kidney Injury in Influenza A (H1N1) Infection. Indian J. Nephrol. 2014, 24, 114. [Google Scholar] [CrossRef]
- Sturdivant, R.L.; Self, S.; Bilic, M. Membranoproliferative Glomerulonephritis Associated with Influenza A Infection. Am. J. Med. Sci. 2012, 344, 234–236. [Google Scholar] [CrossRef]
- Silecchia, V.; D’Onofrio, G.; Valerio, E.; Rubin, G.; Vidal, E.; Murer, L. Influenza-Associated Hemolytic Uremic Syndrome: The Pathogenic Role of the Virus. Clin. Nephrol.—Case Stud. 2021, 9, 45–48. [Google Scholar] [CrossRef]
- Edinger, T.O.; Pohl, M.O.; Stertz, S. Entry of Influenza A Virus: Host Factors and Antiviral Targets. J. Gen. Virol. 2014, 95 Pt 2, 263–277. [Google Scholar] [CrossRef]
- Ibricevic, A.; Pekosz, A.; Walter, M.J.; Newby, C.; Battaile, J.T.; Brown, E.G.; Holtzman, M.J.; Brody, S.L. Influenza Virus Receptor Specificity and Cell Tropism in Mouse and Human Airway Epithelial Cells. J. Virol. 2006, 80, 7469–7480. [Google Scholar] [CrossRef] [Green Version]
- Connolly, S.A.; Jardetzky, T.S.; Longnecker, R. The Structural Basis of Herpesvirus Entry. Nat. Rev. Microbiol. 2021, 19, 110–121. [Google Scholar] [CrossRef]
- Spruance, S.L.; Overall, J.C.; Kern, E.R.; Krueger, G.G.; Pliam, V.; Miller, W. The Natural History of Recurrent Herpes Simplex Labialis. N. Engl. J. Med. 1977, 297, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, R.J.; Krummenacher, C.; Cohen, G.H.; Eisenberg, R.J.; Spear, P.G. Entry of Alphaherpesviruses Mediated by Poliovirus Receptor-Related Protein 1 and Poliovirus Receptor. Science 1998, 280, 1618–1620. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R.I.; Warner, M.S.; Lum, B.J.; Spear, P.G. Herpes Simplex Virus-1 Entry into Cells Mediated by a Novel Member of the TNF/NGF Receptor Family. Cell 1996, 87, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Arditi, M.; Shulman, S.T.; Langman, C.B.; Christensen, M.; Unti, S. Probable Herpes Simplex Virus Type 1-Related Acute Parotitis, Nephritis and Erythema Multiforme. Pediatr. Infect. Dis. J. 1988, 7, 427–429. [Google Scholar] [PubMed]
- Silbert, P.L.; Matz, L.R.; Christiansen, K.; Saker, B.M.; Richardson, M. Herpes Simplex Virus Interstitial Nephritis in a Renal Allograft. Clin. Nephrol. 1990, 33, 264–268. [Google Scholar]
- Hemmersbach-Miller, M.; Duronville, J.; Sethi, S.; Miller, S.E.; Howell, D.N.; Henshaw, N.; Alexander, B.D.; Roberts, J.K. Hemorrhagic Herpes Simplex Virus Type 1 Nephritis: An Unusual Cause of Acute Allograft Dysfunction. Am. J. Transpl. 2017, 17, 287–291. [Google Scholar] [CrossRef] [Green Version]
- White, W.; Tran, D.; Garovic, V.; Brost, B. Acute Interstitial Nephritis Proteinuria and Herpes Simplex Virus Hepatitis in Pregnancy Mimic HELLP Syndrome (Hemolysis, Elevated Liver Enzymes, Low Platelets). Am. J. Perinatol. Rep. 2011, 1, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Filimonova, R.G.; Nevraeva, E.G.; Posevaia, T.A. Herpes simplex virus and glomerulonephritis. Ter. Arkh. 1988, 60, 88–91. [Google Scholar]
- Ma, K.W.; Golbus, S.M.; Kaufman, R.; Staley, N.; Londer, H.; Brown, D.C. Glomerulonephritis with Hodgkin’s Disease and Herpes Zoster. Arch. Pathol. Lab. Med. 1978, 102, 527–529. [Google Scholar]
- Cole, N.L.; Grose, C. Membrane Fusion Mediated by Herpesvirus Glycoproteins: The Paradigm of Varicella-Zoster Virus. Rev. Med. Virol. 2003, 13, 207–222. [Google Scholar] [CrossRef]
- Dass, R.; Singh, S.; Kumar, V.; Vaiphei, K.; Agrawal, S.; Saeed, T.; Minz, R.W. Varicella Glomerulonephritis Mimicking Microscopic Polyangiitis. Rheumatol. Int. 2004, 24, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Os, I.; Ström, E.H.; Stenehjem, A.; Gudmun, H. Varicella Infection in a Renal Transplant Recipient Associated with Abdominal Pain, Hepatitis, and Glomerulonephritis. Scand. J. Urol. Nephrol. 2001, 35, 330–333. [Google Scholar] [CrossRef]
- Majumdar, A.; Atam, V.; Mishra, M. Rare Case of Post-Varicella Membranoproliferative Glomerulonephritis Presenting with Massive Proteinuria. BMJ Case Rep. 2020, 13, e233084. [Google Scholar] [CrossRef] [PubMed]
- Minkowitz, S.; Wenk, R.; Friedman, E.; Yuceoglu, A.; Berkovich, S. Acute Glomerulonephritis Associated with Varicella Infection. Am. J. Med. 1968, 44, 489–492. [Google Scholar] [CrossRef]
- Krebs, R.A.; Burvant, M.U. Nephrotic Syndrome in Association with Varicella. JAMA 1972, 222, 325–326. [Google Scholar] [CrossRef]
- Lin, C.Y.; Hsu, H.C.; Hung, H.Y. Nephrotic Syndrome Associated with Varicella Infection. Pediatrics 1985, 75, 1127–1131. [Google Scholar] [CrossRef]
- Condom, P.; Mansuy, J.-M.; Decramer, S.; Izopet, J.; Mengelle, C. Atypical Hemolytic Uremic Syndrome Triggered by Varicella Infection. IDCases 2017, 9, 89–90. [Google Scholar] [CrossRef]
- Babcock, G.J.; Decker, L.L.; Volk, M.; Thorley-Lawson, D.A. EBV Persistence in Memory B Cells In Vivo. Immunity 1998, 9, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Sathiyamoorthy, K.; Zhang, X.; Schaller, S.; Perez White, B.E.; Jardetzky, T.S.; Longnecker, R. Ephrin Receptor A2 Is a Functional Entry Receptor for Epstein-Barr Virus. Nat. Microbiol. 2018, 3, 172–180. [Google Scholar] [CrossRef]
- Sathiyamoorthy, K.; Hu, Y.X.; Möhl, B.S.; Chen, J.; Longnecker, R.; Jardetzky, T.S. Structural Basis for Epstein-Barr Virus Host Cell Tropism Mediated by Gp42 and GHgL Entry Glycoproteins. Nat. Commun. 2016, 7, 13557. [Google Scholar] [CrossRef] [Green Version]
- Mikhalkova, D.; Khanna, S.; Vaidya, R.; Sethi, S.; Hogan, M.C. Epstein-Barr Virus-Associated Nephrotic Syndrome. Clin. Kidney J. 2012, 5, 50–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dossier, C.; Sellier-Leclerc, A.-L.; Rousseau, A.; Michel, Y.; Gautheret-Dejean, A.; Englender, M.; Madhi, F.; Charbit, M.; Ulinski, T.; Simon, T.; et al. Prevalence of Herpesviruses at Onset of Idiopathic Nephrotic Syndrome. Pediatr. Nephrol. 2014, 29, 2325–2331. [Google Scholar] [CrossRef] [PubMed]
- Dossier, C.; Jamin, A.; Deschênes, G. Idiopathic Nephrotic Syndrome: The EBV Hypothesis. Pediatr. Res. 2017, 81, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Bagga, A. Rituximab Therapy in Nephrotic Syndrome: Implications for Patients’ Management. Nat. Rev. Nephrol. 2013, 9, 154–169. [Google Scholar] [CrossRef] [PubMed]
- Opelz, G.; Döhler, B. Lymphomas After Solid Organ Transplantation: A Collaborative Transplant Study Report: Lymphomas After Solid Organ Transplantation. Am. J. Transpl. 2004, 4, 222–230. [Google Scholar] [CrossRef]
- Cosio, F.G.; Nuovo, M.; Delgado, L.; Yearsley, M.; Porcu, P.; Caligiuri, M.; Pelletier, R.P.; Nuovo, G.J. EBV Kidney Allograft Infection: Possible Relationship with a Peri-Graft Localization of PTLD. Am. J. Transpl. 2004, 4, 116–123. [Google Scholar] [CrossRef]
- Mayer, H.B.; Wanke, C.A.; Williams, M.; Crosson, A.W.; Federman, M.; Hammer, S.M. Epstein-Barr Virus-Induced Infectious Mononucleosis Complicated by Acute Renal Failure: Case Report and Review. Clin. Infect. Dis. 1996, 22, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Moretti, M.; Lava, S.A.G.; Zgraggen, L.; Simonetti, G.D.; Kottanattu, L.; Bianchetti, M.G.; Milani, G.P. Acute Kidney Injury in Symptomatic Primary Epstein-Barr Virus Infectious Mononucleosis: Systematic Review. J. Clin. Virol. 2017, 91, 12–17. [Google Scholar] [CrossRef]
- Romiopoulos, I.; Pyrpasopoulou, A.; Onoufriadis, I.; Massa, E.; Mouloudi, E.; Kydona, C.; Giasnetsova, T.; Gerogianni, N.; Myserlis, G.; Solonaki, F.; et al. Fulminant Epstein-Barr Virus-Associated Hemophagocytic Syndrome in a Renal Transplant Patient and Review of the Literature. Transpl. Infect. Dis. 2016, 18, 795–800. [Google Scholar] [CrossRef]
- Nagayama, Y.; Yoshimura, A.; Iwasaki, S. Cytokine Nephropathy in a Patient with Fatal Epstein–Barr Virus-Associated Hemophagocytic Syndrome. Ren. Fail. 2013, 35, 1445–1448. [Google Scholar] [CrossRef]
- Karamadoukis, L.; Toth, T.; Tomson, C. Membranoproliferative Glomerulonephritis Associated with an Epstein-Barr Virus Infection. Clin. Kidney J. 2008, 1, 319–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, P.; Lin, S.; Wei, L.; Shang, W. Antineutrophil Cytoplasmic Antibody-Associated Vasculitis Associated with Epstein–Barr Virus Infection: A Case Report and Review of the Literature. Infection 2014, 42, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the Worldwide Seroprevalence of Cytomegalovirus: A Systematic Review and Meta-Analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef] [PubMed]
- Ciferri, C.; Chandramouli, S.; Donnarumma, D.; Nikitin, P.A.; Cianfrocco, M.A.; Gerrein, R.; Feire, A.L.; Barnett, S.W.; Lilja, A.E.; Rappuoli, R.; et al. Structural and Biochemical Studies of HCMV GH/GL/GO and Pentamer Reveal Mutually Exclusive Cell Entry Complexes. Proc. Natl. Acad. Sci. USA 2015, 112, 1767–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabanova, A.; Marcandalli, J.; Zhou, T.; Bianchi, S.; Baxa, U.; Tsybovsky, Y.; Lilleri, D.; Silacci-Fregni, C.; Foglierini, M.; Fernandez-Rodriguez, B.M.; et al. Platelet-Derived Growth Factor-α Receptor Is the Cellular Receptor for Human Cytomegalovirus GHgLgO Trimer. Nat. Microbiol. 2016, 1, 16082. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Martin, N.; Marcandalli, J.; Huang, C.S.; Arthur, C.P.; Perotti, M.; Foglierini, M.; Ho, H.; Dosey, A.M.; Shriver, S.; Payandeh, J.; et al. An Unbiased Screen for Human Cytomegalovirus Identifies Neuropilin-2 as a Central Viral Receptor. Cell 2018, 174, 1158–1171.e19. [Google Scholar] [CrossRef] [Green Version]
- Gregory, M.C.; Hammond, M.E.; Brewer, E.D. Renal deposition of cytomegalovirus antigen in immunoglobulin—A nephropathy. Lancet 1988, 331, 11–14. [Google Scholar] [CrossRef]
- Bryson Waldo, F.; Tomana, M.; Britt, W.; Julian, B.; Mestecky, J. Non-specific mesangial staining with antibodies against cytomegalovirus in immunoglobulin—A nephropathy. Lancet 1989, 333, 129–131. [Google Scholar] [CrossRef]
- Lai, M.-M.; Tam, J.S.; Lo, S.T.H.; Lai, K.N. Cytomegalovirus Antigens in IgA Nephropathy: Fact or Artefacts? Nephron 1990, 55, 87–88. [Google Scholar] [CrossRef]
- Béné, M.C.; Tang, J.; Faure, G.C. Absence of Cytomegalovirus DNA in Kidneys in IgA Nephropathy. Lancet 1990, 335, 868. [Google Scholar] [CrossRef]
- Dodd, S.; Khan, T.N.; Sinniah, R. An in Situ Cytomegalovirus DNA Hybridisation Study in IgA Nephritis. Nephron 1991, 59, 527. [Google Scholar] [CrossRef] [PubMed]
- Kanahara, K.; Taniguchi, Y.; Yorioka, N.; Yamakido, M. In Situ Hybridization Analysis of Cytomegalovirus and Adenovirus DNA in Immunoglobulin A Nephropathy. Nephron 1992, 62, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Hong, D. Is Not Specifically Associated With A Nephropathy1′2. J. Am. Soc. Nephrol. 1994, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Kotton, C.N.; Kumar, D.; Caliendo, A.M.; Huprikar, S.; Chou, S.; Danziger-Isakov, L.; Humar, A. The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-Organ Transplantation. Transplantation 2018, 102, 900–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posadas Salas, M.A.; Thompson, J.; Kadian, M.; Ngo, T.; Bruner, E.; Self, S. Cytomegalovirus Renal Infection: Rare Manifestation of a Common Post-transplant Viral Infection—A Case Series. Transpl. Infect. Dis. 2019, 21, e13169. [Google Scholar] [CrossRef]
- Platt, J.L.; Sibley, R.K.; Michael, A.F. Interstitial Nephritis Associated with Cytomegalovirus Infection. Kidney Int. 1985, 28, 550–552. [Google Scholar] [CrossRef] [Green Version]
- Morgantetti, G.F.; Balancin, M.L.; de Medeiros, G.A.; Dantas, M.; Silva, G.E.B. Cytomegalovirus Infection in Kidney Allografts: A Review of Literature. Transl. Androl. Urol. 2019, 8, S192–S197. [Google Scholar] [CrossRef] [PubMed]
- Twite, N.; Andrei, G.; Kummert, C.; Donner, C.; Perez-Morga, D.; De Vos, R.; Snoeck, R.; Marchant, A. Sequestration of Human Cytomegalovirus by Human Renal and Mammary Epithelial Cells. Virology 2014, 460–461, 55–65. [Google Scholar] [CrossRef]
- Rane, S.; Nada, R.; Minz, M.; Sakhuja, V.; Joshi, K. Spectrum of Cytomegalovirus-Induced Renal Pathology in Renal Allograft Recipients. Transpl. Proc. 2012, 44, 713–716. [Google Scholar] [CrossRef]
- Swanson, K.J.; Djamali, A.; Jorgenson, M.R.; Misch, E.A.; Ghaffar, A.; Zhong, W.; Aziz, F.; Garg, N.; Mohamed, M.; Mandelbrot, D.; et al. Cytomegalovirus Nephritis in Kidney Transplant Recipients: Epidemiology and Outcomes of an Uncommon Diagnosis. Transpl. Infect. Dis. 2021, 23, e13702. [Google Scholar] [CrossRef]
- Birk, P.E.; Chavers, B.M. Does cytomegalovirus cause glomerular injury in renal allograft recipients? J. Am. Soc. Nephrol. 1997, 8, 1801–1808. [Google Scholar]
- Detwiler, R.; Singh, H.; Bolin, P.; Jennette, J. Cytomegalovirus-Induced Necrotizing and Crescentic Glomerulonephritis in a Renal Transplant Patient. Am. J. Kidney Dis. 1998, 32, 820–824. [Google Scholar] [CrossRef]
- Browne, G.; Whitworth, C.; Bellamy, C.; Ogilvie, M.M. Acute Allograft Glomerulopathy Associated with CMV Viraemia. Nephrol. Dial. Transpl. 2001, 16, 861–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battegay, E.J.; Mihatsch, M.J.; Mazzucchelli, L.; Zollinger, H.U.; Gudat, F.; Thiel, G.; Heitz, P.U. Cytomegalovirus and Kidney. Clin. Nephrol. 1988, 30, 239–247. [Google Scholar] [PubMed]
- Richardson, W.P.; Colvin, R.B.; Cheeseman, S.H.; Tolkoff-Rubin, N.E.; Herrin, J.T.; Cosimi, A.B.; Collins, A.B.; Hirsch, M.S.; McCluskey, R.T.; Russell, P.S.; et al. Glomerulopathy Associated with Cytomegalovirus Viremia in Renal Allografts. N. Engl. J. Med. 1981, 305, 57–63. [Google Scholar] [CrossRef]
- Smith, R.D.; Wehner, R.W. Acute Cytomegalovirus Glomerulonephritis: An Experimental Model. Lab. Investig. J. Tech. Methods Pathol. 1980, 43, 278–286. [Google Scholar]
- Herrera, G.A.; Alexander, R.W.; Cooley, C.F.; Luke, R.G.; Kelly, D.R.; Curtis, J.J.; Gockerman, J.P. Cytomegalovirus Glomerulopathy: A Controversial Lesion. Kidney Int. 1986, 29, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Grèze, C.; Garrouste, C.; Kemeny, J.-L.; Philipponnet, C.; Aniort, J.; Heng, A.-É. Hyalinose segmentaire et focale collapsante secondaire au cytomégalovirus: À propos d’un cas. Néphrologie Thérapeutique 2018, 14, 50–53. [Google Scholar] [CrossRef]
- Georgaki-Angelaki, H.; Lycopoulou, L.; Stergiou, N.; Lazopoulou, D.; Paraskevakou, H.; Giannaki-Psinaki, M.; Mentis, A. Membranous Nephritis Associated with Acquired Cytomegalovirus Infection in a 19-Month-Old Baby. Pediatr. Nephrol. 2009, 24, 203–206. [Google Scholar] [CrossRef]
- Caserta, M.T.; Mock, D.J.; Dewhurst, S. Human Herpesvirus 6. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2001, 33, 829–833. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.A. Human Herpesvirus 6. Rev. Med. Virol. 2000, 10, 155–173. [Google Scholar] [CrossRef]
- Hoshino, K.; Nishi, T.; Adachi, H.; Ito, H.; Fukuda, Y.; Dohi, K.; Kurata, T. Human Herpesvirus-6 Infection in Renal Allografts: Retrospective Immunohistochemical Study in Japanese Recipients. Transpl. Int. Off. J. Eur. Soc. Organ Transpl. 1995, 8, 169–173. [Google Scholar] [CrossRef]
- Petit, V.; Bonnafous, P.; Fages, V.; Gautheret-Dejean, A.; Engelmann, I.; Baras, A.; Hober, D.; Gérard, R.; Gibier, J.; Leteurtre, E.; et al. Donor-to-recipient Transmission and Reactivation in a Kidney Transplant Recipient of an Inherited Chromosomally Integrated HHV-6A: Evidence and Outcomes. Am. J. Transpl. 2020, 20, 3667–3672. [Google Scholar] [CrossRef] [PubMed]
- Benito, N.; Ricart, M.J.; Pumarola, T.; Marcos, M.A.; Oppenheimer, F.; Camacho, A.M. Infection with Human Herpesvirus 6 after Kidney-Pancreas Transplant. Am. J. Transpl. 2004, 4, 1197–1199. [Google Scholar] [CrossRef] [PubMed]
- DesJardin, J.A.; Gibbons, L.; Cho, E.; Supran, S.E.; Falagas, M.E.; Werner, B.G.; Snydman, D.R. Human Herpesvirus 6 Reactivation Is Associated with Cytomegalovirus Infection and Syndromes in Kidney Transplant Recipients at Risk for Primary Cytomegalovirus Infection. J. Infect. Dis. 1998, 178, 1783–1786. [Google Scholar] [CrossRef]
- Deborska-Materkowska, D.; Lewandowski, Z.; Sadowska, A.; Nowacka-Cieciura, E.; Chudziński, W.; Czerwiński, J.; Paczek, L.; Durlik, M. Fever, Human Herpesvirus-6 (HHV-6) Seroconversion, and Acute Rejection Episodes as a Function of the Initial Seroprevalence for HHV-6 in Renal Transplant Recipients. Transpl. Proc. 2006, 38, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.S. The Emergence of Kaposi’s Sarcoma–Associated Herpesvirus (Human Herpesvirus 8). N. Engl. J. Med. 2000, 343, 1411–1413. [Google Scholar] [CrossRef]
- Bergallo, M.; Costa, C.; Margio, S.; Sidoti, F.; Re, D.; Segoloni, G.P.; Cavallo, R. Human Herpes Virus 8 Infection in Kidney Transplant Patients from an Area of Northwestern Italy (Piemonte Region). Nephrol. Dial. Transpl. 2007, 22, 1757–1761. [Google Scholar] [CrossRef] [Green Version]
- Hahn, A.S.; Kaufmann, J.K.; Wies, E.; Naschberger, E.; Panteleev-Ivlev, J.; Schmidt, K.; Holzer, A.; Schmidt, M.; Chen, J.; König, S.; et al. The Ephrin Receptor Tyrosine Kinase A2 Is a Cellular Receptor for Kaposi’s Sarcoma–Associated Herpesvirus. Nat. Med. 2012, 18, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Luppi, M.; Barozzi, P.; Santagostino, G.; Trovato, R.; Schulz, T.F.; Marasca, R.; Bottalico, D.; Bignardi, L.; Torelli, G. Molecular Evidence of Organ-Related Transmission of Kaposi Sarcoma-Associated Herpesvirus or Human Herpesvirus-8 in Transplant Patients. Blood 2000, 96, 3279–3281. [Google Scholar] [CrossRef]
- Regamey, N.; Tamm, M.; Wernli, M.; Witschi, A.; Thiel, G.; Cathomas, G.; Erb, P. Transmission of Human Herpesvirus 8 Infection from Renal-Transplant Donors to Recipients. N. Engl. J. Med. 1998, 339, 1358–1363. [Google Scholar] [CrossRef]
- Chiereghin, A.; Barozzi, P.; Petrisli, E.; Piccirilli, G.; Gabrielli, L.; Riva, G.; Potenza, L.; Cappelli, G.; De Ruvo, N.; Libri, I.; et al. Multicenter Prospective Study for Laboratory Diagnosis of HHV8 Infection in Solid Organ Donors and Transplant Recipients and Evaluation of the Clinical Impact After Transplantation. Transplantation 2017, 101, 1935–1944. [Google Scholar] [CrossRef]
- Thaunat, O.; Mamzer-Bruneel, M.-F.; Agbalika, F.; Valensi, F.; Venditto, M.; Lebbe, C.; Frances, C.; Kania, R.; Chatenoud, L.; Antoine, C.; et al. Severe Human Herpesvirus-8 Primary Infection in a Renal Transplant Patient Successfully Treated with Anti-CD20 Monoclonal Antibody. Blood 2006, 107, 3009–3010. [Google Scholar] [CrossRef] [Green Version]
- Re, A.; Facchetti, F.; Borlenghi, E.; Cattaneo, C.; Capucci, M.A.; Ungari, M.; Barozzi, P.; Vallerini, D.; Potenza, L.; Torelli, G.; et al. Fatal Hemophagocytic Syndrome Related to Active Human Herpesvirus-8/Kaposi Sarcoma-Associated Herpesvirus Infection in Human Immunodeficiency Virus-Negative, Non-Transplant Patients without Related Malignancies. Eur. J. Haematol. 2007, 78, 361–364. [Google Scholar] [CrossRef]
- Knowles, W.A.; Pipkin, P.; Andrews, N.; Vyse, A.; Minor, P.; Brown, D.W.G.; Miller, E. Population-Based Study of Antibody to the Human Polyomaviruses BKV and JCV and the Simian Polyomavirus SV40. J. Med. Virol. 2003, 71, 115–123. [Google Scholar] [CrossRef]
- Moriyama, T.; Marquez, J.P.; Wakatsuki, T.; Sorokin, A. Caveolar Endocytosis Is Critical for BK Virus Infection of Human Renal Proximal Tubular Epithelial Cells. J. Virol. 2007, 81, 8552–8562. [Google Scholar] [CrossRef] [Green Version]
- Gardner, S.D.; Field, A.M.; Coleman, D.V.; Hulme, B. New human papovavirus (B.K.) isolated from urine after renal transplantation. Orig. Publ. 1971, 297, 1253–1257. [Google Scholar] [CrossRef]
- Bohl, D.L.; Brennan, D.C. BK Virus Nephropathy and Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2007, 2 (Suppl. S1), S36–S46. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.; Kumar, V.; Palmer, M.B.; Trofe-Clark, J.; Laskin, B.; Sawinski, D.; Hogan, J.J. Native Kidney BK Virus Nephropathy, a Systematic Review. Transpl. Infect. Dis. 2019, 21, e13083. [Google Scholar] [CrossRef]
- Babel, N.; Volk, H.-D.; Reinke, P. BK Polyomavirus Infection and Nephropathy: The Virus–Immune System Interplay. Nat. Rev. Nephrol. 2011, 7, 399–406. [Google Scholar] [CrossRef]
- Drachenberg, R.C.; Drachenberg, C.B.; Papadimitriou, J.C.; Ramos, E.; Fink, J.C.; Wali, R.; Weir, M.R.; Cangro, C.B.; Klassen, D.K.; Khaled, A.; et al. Morphological Spectrum of Polyoma Virus Disease in Renal Allografts: Diagnostic Accuracy of Urine Cytology. Am. J. Transpl. 2002, 1, 373–381. [Google Scholar] [CrossRef]
- Drachenberg, C.B.; Papadimitriou, J.C.; Hirsch, H.H.; Wali, R.; Crowder, C.; Nogueira, J.; Cangro, C.B.; Mendley, S.; Mian, A.; Ramos, E. Histological Patterns of Polyomavirus Nephropathy: Correlation with Graft Outcome and Viral Load. Am. J. Transpl. 2004, 4, 2082–2092. [Google Scholar] [CrossRef]
- Nickeleit, V.; Singh, H.K.; Randhawa, P.; Drachenberg, C.B.; Bhatnagar, R.; Bracamonte, E.; Chang, A.; Chon, W.J.; Dadhania, D.; Davis, V.G.; et al. The Banff Working Group Classification of Definitive Polyomavirus Nephropathy: Morphologic Definitions and Clinical Correlations. J. Am. Soc. Nephrol. JASN 2018, 29, 680–693. [Google Scholar] [CrossRef] [Green Version]
- Drachenberg, C.B.; Papadimitriou, J.C.; Chaudhry, M.R.; Ugarte, R.; Mavanur, M.; Thomas, B.; Cangro, C.; Costa, N.; Ramos, E.; Weir, M.R.; et al. Histological Evolution of BK Virus-Associated Nephropathy: Importance of Integrating Clinical and Pathological Findings. Am. J. Transpl. 2017, 17, 2078–2091. [Google Scholar] [CrossRef] [Green Version]
- Cheungpasitporn, W.; Kremers, W.K.; Lorenz, E.; Amer, H.; Cosio, F.G.; Stegall, M.D.; Gandhi, M.J.; Schinstock, C.A. De Novo Donor-Specific Antibody Following BK Nephropathy: The Incidence and Association with Antibody-Mediated Rejection. Clin. Transpl. 2018, 32, e13194. [Google Scholar] [CrossRef]
- Hirsch, H.H.; Randhawa, P.S.; AST Infectious Diseases Community of Practice. BK Polyomavirus in Solid Organ Transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transpl. 2019, 33, e13528. [Google Scholar] [CrossRef]
- Celik, B.; Randhawa, P.S. Glomerular Changes in BK Virus Nephropathy. Hum. Pathol. 2004, 35, 367–370. [Google Scholar] [CrossRef]
- Padgett, B.L.; Zurhein, G.M.; Walker, D.L.; Eckroade, R.J.; Dessel, B.H. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Orig. Publ. 1971, 297, 1257–1260. [Google Scholar] [CrossRef]
- Andrews, C.A.; Shah, K.V.; Daniel, R.W.; Hirsch, M.S.; Rubin, R.H. A Serological Investigation of UK Virus and JC Virus Infections in Recipients of Renal Allografts. J. Infect. Dis. 1988, 158, 176–181. [Google Scholar] [CrossRef]
- Randhawa, P.; Baksh, F.; Aoki, N.; Tschirhart, D.; Finkelstein, S. JC Virus Infection in Allograft Kidneys: Analysis by Polymerase Chain Reaction and Immunohistochemistry. Transplantation 2001, 71, 1300–1303. [Google Scholar] [CrossRef]
- Elphick, G.F.; Querbes, W.; Jordan, J.A.; Gee, G.V.; Eash, S.; Manley, K.; Dugan, A.; Stanifer, M.; Bhatnagar, A.; Kroeze, W.K.; et al. The Human Polyomavirus, JCV, Uses Serotonin Receptors to Infect Cells. Science 2004, 306, 1380–1383. [Google Scholar] [CrossRef] [Green Version]
- Neu, U.; Maginnis, M.S.; Palma, A.S.; Ströh, L.J.; Nelson, C.D.S.; Feizi, T.; Atwood, W.J.; Stehle, T. Structure-Function Analysis of the Human JC Polyomavirus Establishes the LSTc Pentasaccharide as a Functional Receptor Motif. Cell Host Microbe 2010, 8, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Haley, S.A.; O’Hara, B.A.; Nelson, C.D.S.; Brittingham, F.L.P.; Henriksen, K.J.; Stopa, E.G.; Atwood, W.J. Human Polyomavirus Receptor Distribution in Brain Parenchyma Contrasts with Receptor Distribution in Kidney and Choroid Plexus. Am. J. Pathol. 2015, 185, 2246–2258. [Google Scholar] [CrossRef] [Green Version]
- Lopez, V.; Gutierrez, C.; Sola, E.; Garcia, I.; Burgos, D.; Cabello, M.; Leon, M.; Molina, M.G.; Hernandez, D. Does JC Polyomavirus Cause Nephropathy in Renal Transplant Patients? Transpl. Proc. 2010, 42, 2889–2891. [Google Scholar] [CrossRef]
- Cheng, X.S.; Bohl, D.L.; Storch, G.A.; Ryschkewitsch, C.; Gaudreault-Keener, M.; Major, E.O.; Randhawa, P.; Hardinger, K.L.; Brennan, D.C. Inhibitory Interactions between BK and JC Virus among Kidney Transplant Recipients. J. Am. Soc. Nephrol. 2011, 22, 825–831. [Google Scholar] [CrossRef]
- Wiegley, N.; Walavalkar, V.; Aujla, H.; Chen, L.-X.; Huang, Y.; Lee, B.K.; Jen, K.-Y. Clinicopathologic Characteristics of JC Virus Nephropathy in Kidney Transplant Recipients. Transplantation 2021, 105, 1069–1076. [Google Scholar] [CrossRef]
- Aguilar, J.; Chang, D.H.; Lin, M.; Hou, J.; Huang, E.; Kittleson, M.; Patel, J.; Kobashigawa, J. JC Virus-associated Nephropathy in a Post-heart and -kidney Transplantation Patient. Transpl. Infect. Dis. 2020, 22. [Google Scholar] [CrossRef]
- Yang, D.; Keys, B.J.; Conti, D.; Foulke, L.; Stellrecht, K.; Cook, L.; Lopez-Soler, R.I. JC Polyomavirus Nephropathy, a Rare Cause of Transplant Dysfunction: Case Report and Review of Literature. Transpl. Infect. Dis. 2017, 19, e12654. [Google Scholar] [CrossRef]
- Freedman, B.I.; Kistler, A.L.; Skewes-Cox, P.; Ganem, D.; Spainhour, M.; Turner, J.; Divers, J.; Langefeld, C.D.; Murea, M.; Hicks, P.J.; et al. JC Polyoma Viruria Associates with Protection from Chronic Kidney Disease Independently from Apolipoprotein L1 Genotype in African Americans. Nephrol. Dial. Transpl. 2018, 33, 1960–1967. [Google Scholar] [CrossRef]
- Divers, J.; Núñez, M.; High, K.P.; Murea, M.; Rocco, M.V.; Ma, L.; Bowden, D.W.; Hicks, P.J.; Spainhour, M.; Ornelles, D.A.; et al. JC Polyoma Virus Interacts with APOL1 in African Americans with Nondiabetic Nephropathy. Kidney Int. 2013, 84, 1207–1213. [Google Scholar] [CrossRef] [Green Version]
- Nqebelele, N.U.; Dickens, C.; Dix-Peek, T.; Duarte, R.; Naicker, S. JC Virus and APOL1 Risk Alleles in Black South Africans With Hypertension-Attributed CKD. Kidney Int. Rep. 2019, 4, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Kaptein, S.J.F.; Goethals, O.; Kiemel, D.; Marchand, A.; Kesteleyn, B.; Bonfanti, J.-F.; Bardiot, D.; Stoops, B.; Jonckers, T.H.M.; Dallmeier, K.; et al. A Pan-Serotype Dengue Virus Inhibitor Targeting the NS3-NS4B Interaction. Nature 2021, 598, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Mallhi, T.H.; Sarriff, A.; Adnan, A.S.; Khan, Y.H.; Hamzah, A.A.; Jummaat, F.; Khan, A.H. Dengue-Induced Acute Kidney Injury (DAKI): A Neglected and Fatal Complication of Dengue Viral Infection--A Systematic Review. J. Coll. Physicians Surg.—Pak. JCPSP 2015, 25, 828–834. [Google Scholar]
- Oliveira, J.F.P.; Burdmann, E.A. Dengue-Associated Acute Kidney Injury. Clin. Kidney J. 2015, 8, 681–685. [Google Scholar] [CrossRef]
- Póvoa, T.F.; Alves, A.M.B.; Oliveira, C.A.B.; Nuovo, G.J.; Chagas, V.L.A.; Paes, M.V. The Pathology of Severe Dengue in Multiple Organs of Human Fatal Cases: Histopathology, Ultrastructure and Virus Replication. PLoS ONE 2014, 9, e83386. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Singh, V.K.; Nanda, S. Rhabdomyolysis and Acute Kidney Injury in Dengue Fever. BMJ Case Rep. 2015, 2015, bcr2014209074. [Google Scholar] [CrossRef]
- Acharya, S.; Shukla, S.; Mahajan, S.N.; Diwan, S.K. Acute Dengue Myositis with Rhabdomyolysis and Acute Renal Failure. Ann. Indian Acad. Neurol. 2010, 13, 221–222. [Google Scholar] [CrossRef]
- Wijesinghe, A.; Gnanapragash, N.; Ranasinghe, G.; Ragunathan, M.K. Acute Renal Failure Due to Rhabdomyolysis Following Dengue Viral Infection: A Case Report. J. Med. Case Reports 2013, 7, 195. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Oliveira, C.; Freire, J.M.; Conceição, T.M.; Higa, L.M.; Castanho, M.A.R.B.; Da Poian, A.T. Receptors and Routes of Dengue Virus Entry into the Host Cells. FEMS Microbiol. Rev. 2015, 39, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Jessie, K.; Fong, M.Y.; Devi, S.; Lam, S.K.; Wong, K.T. Localization of Dengue Virus in Naturally Infected Human Tissues, by Immunohistochemistry and in Situ Hybridization. J. Infect. Dis. 2004, 189, 1411–1418. [Google Scholar] [CrossRef]
- Noisakran, S.; Onlamoon, N.; Songprakhon, P.; Hsiao, H.-M.; Chokephaibulkit, K.; Perng, G.C. Cells in Dengue Virus Infection in Vivo. Adv. Virol. 2010, 2010, 164878. [Google Scholar] [CrossRef] [Green Version]
- Jácome, F.C.; Caldas, G.C.; Rasinhas, A.d.C.; de Almeida, A.L.T.; de Souza, D.D.C.; Paulino, A.C.; da Silva, M.A.N.; Barth, O.M.; dos Santos, F.B.; Barreto-Vieira, D.F. Brazilian Dengue Virus Type 2-Associated Renal Involvement in a Murine Model: Outcomes after Infection by Two Lineages of the Asian/American Genotype. Pathogens 2021, 10, 1084. [Google Scholar] [CrossRef] [PubMed]
- Pagliari, C.; Simões Quaresma, J.A.; Kanashiro-Galo, L.; de Carvalho, L.V.; Vitoria, W.O.; da Silva, W.L.F.; Penny, R.; Vasconcelos, B.C.B.; da Costa Vasconcelos, P.F.; Duarte, M.I.S. Human Kidney Damage in Fatal Dengue Hemorrhagic Fever Results of Glomeruli Injury Mainly Induced by IL17. J. Clin. Virol. 2016, 75, 16–20. [Google Scholar] [CrossRef] [PubMed]
- De Araújo, S.A.; Cordeiro, T.M.E.; Belisário, A.R.; de Araújo, R.F.; Marinho, P.E.S.; Kroon, E.G.; de Oliveira, D.B.; Teixeira, M.M.; Simões, E.; Silva, A.C. First Report of Collapsing Variant of Focal Segmental Glomerulosclerosis Triggered by Arbovirus: Dengue and Zika Virus Infection. Clin. Kidney J. 2019, 12, 355–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, P.C.; Jorge, A.E.S.; Mourão, P.H.V.; Penido, M.G.M.G. Collapsing Focal Segmental Glomerulosclerosis Probably Triggered by Dengue Virus Infection—Two Case Reports. J. Bras. Nefrol. Orgao Of. Soc. Bras. E Lat.-Am. Nefrol. 2020, 42, 489–493. [Google Scholar] [CrossRef] [Green Version]
- Alobaidi, S.; Bali, H.; Tungekar, M.F.; Akl, A. Dengue Virus Infection Presenting as Membranoproliferative Glomerulonephritis Type 1. Cureus 2021, 13, e14294. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Scheepstra, C.G.; Kasanardjo, J.S.; de Vries, P.J.; Zaaijer, H.; Geerlings, S.E. Dengue Fever-Induced Hemolytic Uremic Syndrome. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2006, 43, 800–801. [Google Scholar] [CrossRef]
- Aroor, S.; Kumar, S.; Mundkur, S.; Kumar, M. Hemolytic Uremic Syndrome Associated with Dengue Fever in an Adolescent Girl. Indian J. Pediatr. 2014, 81, 1397–1398. [Google Scholar] [CrossRef]
- Coelho Júnior, J.L.; Israel, K.C.P.; Machado, C.E.E.; Muniz, M.P.R.; Gatto, G.C.; Barros, F.H.S.; Cunha, K.d.A.; de Lacerda, M.V.G.; Neves, P.D.M.d.M.; Silva, G.E.B. Thrombotic Microangiopathy Associated with Arboviral Infection: Report of 3 Cases. PLoS Negl. Trop. Dis. 2021, 15, e0009790. [Google Scholar] [CrossRef]
- Lopes, R.L.; Pinto, J.R.; Silva Junior, G.B.d.; Santos, A.K.T.; Souza, M.T.O.; Daher, E.D.F. Kidney Involvement in Yellow Fever: A Review. Rev. Inst. Med. Trop. São Paulo 2019, 61, e35. [Google Scholar] [CrossRef] [Green Version]
- Avšič-Županc, T.; Saksida, A.; Korva, M. Hantavirus Infections. Clin. Microbiol. Infect. 2019, 21, e6–e16. [Google Scholar] [CrossRef] [Green Version]
- Mir, S. Hantavirus Induced Kidney Disease. Front. Med. 2022, 8, 795340. [Google Scholar] [CrossRef] [PubMed]
- Settergren, B. Clinical Aspects of Nephropathia Epidemica (Puumala Virus Infection) in Europe: A Review. Scand. J. Infect. Dis. 2000, 32, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Mittler, E.; Dieterle, M.E.; Kleinfelter, L.M.; Slough, M.M.; Chandran, K.; Jangra, R.K. Hantavirus Entry: Perspectives and Recent Advances. Adv. Virus Res. 2019, 104, 185–224. [Google Scholar] [CrossRef] [PubMed]
- Munir, N.; Jahangeer, M.; Hussain, S.; Mahmood, Z.; Ashiq, M.; Ehsan, F.; Akram, M.; Ali Shah, S.M.; Riaz, M.; Sana, A. Hantavirus Diseases Pathophysiology, Their Diagnostic Strategies and Therapeutic Approaches: A Review. Clin. Exp. Pharmacol. Physiol. 2021, 48, 20–34. [Google Scholar] [CrossRef]
- Bren, A.F.; Pavlovcic, S.K.; Koselj, M.; Kovac, J.; Kandus, A.; Kveder, R. Acute Renal Failure Due to Hemorrhagic Fever with Renal Syndrome. Ren. Fail. 1996, 18, 635–638. [Google Scholar] [CrossRef]
- Matthaeus, T.; Fries, J.; Weber, M.; Schulze-Lohoff, E. [Glomerular-type proteinuria in hantavirus nephritis]. Med. Klin. Munich Ger. 1983 2004, 99, 223–227. [Google Scholar] [CrossRef]
- Meier, M.; Helmchen, U.; Fricke, L.; Ulrich, R.; Schütt, M. Acute Hantavirus Infection or Renal Transplant Rejection. Transpl. Infect. Dis. Off. J. Transpl. Soc. 2007, 9, 225–228. [Google Scholar] [CrossRef]
- Mayor, J.; Engler, O.; Rothenberger, S. Antiviral Efficacy of Ribavirin and Favipiravir against Hantaan Virus. Microorganisms 2021, 9, 1306. [Google Scholar] [CrossRef]
- Kruger, D.H.; Figueiredo, L.T.M.; Song, J.-W.; Klempa, B. Hantaviruses—Globally Emerging Pathogens. J. Clin. Virol. 2015, 64, 128–136. [Google Scholar] [CrossRef]
- Adamson-Small, L.A.; Ignatovich, I.V.; Laemmerhirt, M.G.; Hobbs, J.A. Persistent Parvovirus B19 Infection in Non-Erythroid Tissues: Possible Role in the Inflammatory and Disease Process. Virus Res. 2014, 190, 8–16. [Google Scholar] [CrossRef]
- Luo, Y.; Qiu, J. Human Parvovirus B19: A Mechanistic Overview of Infection and DNA Replication. Future Virol. 2015, 10, 155–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quattrocchi, S.; Ruprecht, N.; Bönsch, C.; Bieli, S.; Zürcher, C.; Boller, K.; Kempf, C.; Ros, C. Characterization of the Early Steps of Human Parvovirus B19 Infection. J. Virol. 2012, 86, 9274–9284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Servey, J.T.; Reamy, B.V.; Hodge, J. Clinical Presentations of Parvovirus B19 Infection. Am. Fam. Physician 2007, 75, 373–376. [Google Scholar]
- Waldman, M.; Kopp, J.B. Parvovirus B19 and the Kidney: Table 1. Clin. J. Am. Soc. Nephrol. 2007, 2 (Suppl. S1), S47–S56. [Google Scholar] [CrossRef] [Green Version]
- Bobot, M.; Kauffman, M.; Daniel, L.; Knefati, Y.; Moranne, O.; Burtey, S.; Zandotti, C.; Jourde-Chiche, N. Infection à Parvovirus B19 et atteintes rénales: Description de 4 cas, et étude du statut sérologique et virémique de 100 patients adultes ayant bénéficié d’une ponction biopsie rénale. Néphrologie Thérapeutique 2019, 15, 337–338. [Google Scholar] [CrossRef]
- Dollat, M.; Mouthon, L. Manifestations systémiques de l’infection à parvovirus B19 chez l’adulte: Une étude rétrospective de 25 cas. Rev. Médecine Interne 2016, 37, A218. [Google Scholar] [CrossRef]
- Marchand, S.; Tchernia, G.; Hiesse, C.; Tertian, G.; Cartron, J.; Kriaa, F.; Boubenider, S.; Goupy, C.; Lecointe, D.; Charpentier, B. Human Parvovirus B19 Infection in Organ Transplant Recipients. Clin. Transpl. 1999, 13 Pt 1, 17–24. [Google Scholar] [CrossRef]
- Liefeldt, L.; Buhl, M.; Schweickert, B.; Engelmann, E.; Sezer, O.; Laschinski, P.; Preuschof, L.; Neumayer, H.-H. Eradication of Parvovirus B19 Infection after Renal Transplantation Requires Reduction of Immunosuppression and High-Dose Immunoglobulin Therapy. Nephrol. Dial. Transpl. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2002, 17, 1840–1842. [Google Scholar] [CrossRef] [Green Version]
- Lion, T. Adenovirus Infections in Immunocompetent and Immunocompromised Patients. Clin. Microbiol. Rev. 2014, 27, 441–462. [Google Scholar] [CrossRef] [Green Version]
- Stasiak, A.C.; Stehle, T. Human Adenovirus Binding to Host Cell Receptors: A Structural View. Med. Microbiol. Immunol. 2020, 209, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bergelson, J.M. Adenovirus Receptors. J. Virol. 2005, 79, 12125–12131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, J.P.; Kajon, A.E. Adenovirus: Epidemiology, Global Spread of Novel Serotypes, and Advances in Treatment and Prevention. Semin. Respir. Crit. Care Med. 2016, 37, 586–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lusco, M.A.; Fogo, A.B.; Najafian, B.; Alpers, C.E. AJKD Atlas of Renal Pathology: Adenovirus Infection. Am. J. Kidney Dis. 2018, 71, e1–e2. [Google Scholar] [CrossRef] [PubMed]
- Al-Heeti, O.M.; Cathro, H.P.; Ison, M.G. Adenovirus Infection and Transplantation. Transplantation 2022, 106, 920–927. [Google Scholar] [CrossRef]
- Moreira, C.L.; Rocha, J.; Silva, M.; Silva, J.; Almeida, M.; Pedroso, S.; Vizcaíno, R.; Martins, L.S.; Dias, L.; Henriques, A.C.; et al. Adenovirus Infection—A Rare Cause of Interstitial Nephritis in Kidney Transplant. Nefrol. Engl. Ed. 2019, 39, 106–107. [Google Scholar] [CrossRef]
- Sujeet, K.; Vasudev, B.; Desai, P.; Bellizzi, J.; Novoa-Takara, L.; He, C.; El-Meanawy, A. Acute Kidney Injury Requiring Dialysis Secondary to Adenovirus Nephritis in Renal Transplant Recipient. Transpl. Infect. Dis. Off. J. Transpl. Soc. 2011, 13, 174–177. [Google Scholar] [CrossRef]
- Parasuraman, R.; Zhang, P.L.; Samarapungavan, D.; Rocher, L.; Koffron, A. Severe Necrotizing Adenovirus Tubulointerstitial Nephritis in a Kidney Transplant Recipient. Case Rep. Transpl. 2013, 2013, 1–5. [Google Scholar] [CrossRef]
- Sudhindra, P.; Knoll, B.; Nog, R.; Singh, N.; Dhand, A. Brincidofovir (CMX001) for the Treatment of Severe Adenoviral Pneumonia in Kidney Transplant Recipient. Cureus 2019, 11, e5296. [Google Scholar] [CrossRef] [Green Version]
- Plemper, R.K.; Brindley, M.A.; Iorio, R.M. Structural and Mechanistic Studies of Measles Virus Illuminate Paramyxovirus Entry. PLOS Pathog. 2011, 7, e1002058. [Google Scholar] [CrossRef] [Green Version]
- Guerra, F.M.; Bolotin, S.; Lim, G.; Heffernan, J.; Deeks, S.L.; Li, Y.; Crowcroft, N.S. The Basic Reproduction Number (R 0) of Measles: A Systematic Review. Lancet Infect. Dis. 2017, 17, e420–e428. [Google Scholar] [CrossRef]
- Portnoy, A.; Jit, M.; Ferrari, M.; Hanson, M.; Brenzel, L.; Verguet, S. Estimates of Case-Fatality Ratios of Measles in Low-Income and Middle-Income Countries: A Systematic Review and Modelling Analysis. Lancet Glob. Health 2019, 7, e472–e481. [Google Scholar] [CrossRef] [Green Version]
- Pike, J.; Leidner, A.J.; Gastañaduy, P.A. A Review of Measles Outbreak Cost Estimates From the United States in the Postelimination Era (2004–2017): Estimates by Perspective and Cost Type. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 71, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, T.; Maenaka, K.; Yanagi, Y. Measles Virus Hemagglutinin: Structural Insights into Cell Entry and Measles Vaccine. Front. Microbiol. 2011, 2, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hübschen, J.M.; Gouandjika-Vasilache, I.; Dina, J. Measles. Lancet 2022, 399, 678–690. [Google Scholar] [CrossRef]
- Chassort, A.; Coutherut, J.; Moreau-Klein, A.; Gras-Le Guen, C.; Trewick, D.; Raffi, F.; Biron, C. Renal Dysfunction in Adults during Measles. Med. Mal. Infect. 2015, 45, 165–168. [Google Scholar] [CrossRef]
- Zucker, J.R.; Rosen, J.B.; Iwamoto, M.; Arciuolo, R.J.; Langdon-Embry, M.; Vora, N.M.; Rakeman, J.L.; Isaac, B.M.; Jean, A.; Asfaw, M.; et al. Consequences of Undervaccination—Measles Outbreak, New York City, 2018–2019. N. Engl. J. Med. 2020, 382, 1009–1017. [Google Scholar] [CrossRef]
Tubulo-Interstitial | Vascular | Glomerular | ||||||
---|---|---|---|---|---|---|---|---|
ATIN | ATN | Myoglobin tubulopathy | TMA | MPGN | MN | MCD | cFSGS | |
HIV | + | +/− | ++ | ++ | ||||
HAV | +/− | + | +/− | |||||
HBV | +/− | ++ | ++ | +/− | ||||
HCV | ++ | + | ||||||
HEV | + | + | ||||||
SARS-CoV-2 | +/− | ++ | +/− | +/− | ++ | |||
Influenza virus | ++ | + | +/− | +/− | ||||
HSV | +/− | +/− | ||||||
VZV | +/− | +/− | +/− | |||||
EBV | + | + | +/− | +/− | ++ | |||
CMV | + | ++ | +/− | |||||
HHV6 | ||||||||
HHV8 | ||||||||
BKV | ++ | +/− | ||||||
JCV | +/− | |||||||
DENV | ++ | + | +/− | +/− | +/− | |||
Hantavirus | ++ | |||||||
B19V | +/− | +/− | ||||||
HAdV | + | |||||||
MeV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masset, C.; Le Turnier, P.; Bressollette-Bodin, C.; Renaudin, K.; Raffi, F.; Dantal, J. Virus-Associated Nephropathies: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 12014. https://doi.org/10.3390/ijms231912014
Masset C, Le Turnier P, Bressollette-Bodin C, Renaudin K, Raffi F, Dantal J. Virus-Associated Nephropathies: A Narrative Review. International Journal of Molecular Sciences. 2022; 23(19):12014. https://doi.org/10.3390/ijms231912014
Chicago/Turabian StyleMasset, Christophe, Paul Le Turnier, Céline Bressollette-Bodin, Karine Renaudin, François Raffi, and Jacques Dantal. 2022. "Virus-Associated Nephropathies: A Narrative Review" International Journal of Molecular Sciences 23, no. 19: 12014. https://doi.org/10.3390/ijms231912014
APA StyleMasset, C., Le Turnier, P., Bressollette-Bodin, C., Renaudin, K., Raffi, F., & Dantal, J. (2022). Virus-Associated Nephropathies: A Narrative Review. International Journal of Molecular Sciences, 23(19), 12014. https://doi.org/10.3390/ijms231912014