New Saccharin Salt of Chlordiazepoxide: Structural and Physicochemical Examination
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Diffractometric Measurements
2.2. Thermoanalytical Measurements
2.3. Infrared Spectroscopic Measurements
2.4. Preliminary Solubility Assessment
3. Materials and Methods
3.1. Materials
3.1.1. Sample Preparation
3.1.2. Solubility Assessment
3.2. Methods
3.2.1. Powder X-ray Diffraction (PXRD)
3.2.2. Single Crystal X-ray Diffraction (SCXRD)
3.2.3. Differential Scanning Calorimetry (DSC)
3.2.4. Thermogravimetric Analysis (TGA)
3.2.5. Fourier Transform Infrared (FT-IR)
3.2.6. Raman Spectroscopy
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Thayer, A.M. Custom manufacturers take on drug solubility to help pharmaceutical firms move products through development. Chem. Eng. News. 2010, 88, 13–18. [Google Scholar] [CrossRef]
- Cerreia Vioglio, P.; Chierotti, M.R.; Gobetto, R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev. 2017, 117, 86–110. [Google Scholar] [CrossRef]
- Serajuddin, A.T.M. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 2007, 59, 603–616. [Google Scholar] [CrossRef] [PubMed]
- The Office for Registration of Medicinal Products, Medical Devices and Biocidal Products. Polish Pharmacopoeia X; The Office for Registration of Medicinal Products, Medical Devices and Biocidal Products: Warsaw, Poland, 2014; Volume II. [Google Scholar]
- Shayesteh, T.H.; Radmehr, M.; Khajavi, F.; Mahjub, R. Application of chemometrics in determination of the acid dissociation constants (pKa) of several benzodiazepine derivatives as poorly soluble drugs in the presence of ionic surfactants. Eur. J. Pharm. Sci. 2015, 69, 44–50. [Google Scholar] [CrossRef]
- Girish, K.; Vikram Reddy, K.; Pandit, L.V.; Pundarikaksha, H.P.; Vijendra, R.; Vasundara, K.; Manjunatha, R.; Nagraj, M.; Shruthi, R. A randomized, open-label, standard controlled, parallel group study of efficacy and safety of baclofen, and chlordiazepoxide in uncomplicated alcohol withdrawal syndrome. Biomed. J. 2016, 39, 72–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotfy, H.M.; Fayez, Y.M.; Michael, A.M.; Nessim, C.K. Simultaneous determination of mebeverine hydrochloride and chlordiazepoxide in their binary mixture using novel univariate spectrophotometric methods via different manipulation pathways Spectrochim. Acta Part A 2016, 155, 11–20. [Google Scholar] [CrossRef]
- López-Muñoz, F.; Álamo, C.; García-García, P. The discovery of chlordiazepoxide and the clinical introduction of benzodiazepines: Half a century of anxiolytic drugs. J. Anxiety Disord. 2011, 25, 554–562. [Google Scholar] [CrossRef]
- Sudhakar, P.; Kumar, S.V.; Vishweshwar, P.; Babu, J.M.; Vyas, K. Solid state structural studies of saccharin salts with some heterocyclic bases. CrystEngComm 2008, 10, 996–1002. [Google Scholar] [CrossRef]
- Bhatt, P.M.; Ravindra, N.V.; Banerjee, R.; Desiraju, G.R. Saccharin as a salt former. Enhanced solubilities of saccharinates of active pharmaceutical ingredients. Chem. Commun. 2005, 28, 1073–1075. [Google Scholar] [CrossRef] [PubMed]
- Budavari, S. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; Merck: Whitehouse Station, NJ, USA, 1996; p. 347. [Google Scholar]
- Bertolasi, V.; Sacerdoti, M.; Gilli, G.; Borea, P.A. Structure of 7-chloro-2-methylamino-5-phenyl-3H-1,4-benzodiazepine 4-oxide (chlordiazepoxide). Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 1982, 38, 1768–1772. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Raychaudhuri, U.; Chakraborty, R. Artificial sweeteners—A review. J. Food Sci. Technol. 2014, 51, 611–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayis, B.; Bekiroglu, S. Structural analysis of saccharin in aqueous solution by NMR and supramolecular interactions with α-, β-, γ-cyclodextrins. J. Mol. Struct. 2020, 1202, 127304. [Google Scholar] [CrossRef]
- Gong, W.; Mondal, P.K.; Ahmadi, S.; Wu, Y.; Rohani, S. Cocrystals, salts, and salt-solvates of olanzapine; selection of coformers and improved solubility. Int. J. Pharm. 2021, 608, 121063. [Google Scholar] [CrossRef] [PubMed]
- Varughese, S.; Azim, Y.; Desiraju, G.R. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring. J. Pharm. Sci. 2010, 99, 3743–3753. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Bhatt, P.M.; Ravindra, N.V.; Desiraju, G.R. Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities. Cryst. Growth Des. 2005, 5, 2299–2309. [Google Scholar] [CrossRef]
- Fu, X.; Li, J.; Wang, L.; Wu, B.; Xu, X.; Deng, Z.; Zhang, H. Pharmaceutical crystalline complexes of sulfamethazine with saccharin: Same interaction site but different ionization states. RSC Adv. 2016, 6, 26474–26478. [Google Scholar] [CrossRef]
- Kong, M.; Fu, X.; Li, J.; Li, J.; Chen, M.; Deng, Z.; Zhang, H. Sweet pharmaceutical salts of stanozolol with enhanced solubility and physical stability. CrystEngComm 2016, 18, 8739–8746. [Google Scholar] [CrossRef]
- Galcera, J.; Molins, E. Effect of the counterion on the solubility of isostructural pharmaceutical lamotrigine salts. Cryst. Growth Des. 2009, 9, 327–334. [Google Scholar] [CrossRef]
- Rohlicek, J.; Skorepova, E.; Babor, M.; Cejka, J. CrystalCMP: An easy-to-use tool for fast comparison of molecular packing. J. Appl. Cryst. 2016, 49, 2172–2218. [Google Scholar] [CrossRef]
- Chenguang, W.; Shubhajit, P.; Kunlin, W.; Shenye, H.; Changquan, C.S. Relationships among crystal structures, mechanical properties, and tableting performance probed using four salts of diphenhydramine. Cryst. Growth Des. 2017, 11, 6030–6040. [Google Scholar]
- Romanuk, C.B.; Linck, Y.G.; Chattah, A.K.; Monti, G.A.; Cuffini, S.L.; Garland, M.T.; Baggio, R.; Manzo, R.H.; Olivera, M.E. Crystallographic, thermal and spectroscopic characterization of a ciprofloxacin saccharinate polymorph. Int. J. Pharm. 2010, 391, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Chang, L.; Ji, Y.; Liu, L.; Feng, Y.; Wu, L.; Zhang, L.; Zhang, Y.; Zou, D.; et al. Crystalline palmatine saccharinate pharmaceutical salt without reducing solubility and improving its hygroscopic stability with regard to palmatine chloride. J. Mol. Struct. 2021, 1230, 129631. [Google Scholar] [CrossRef]
- Herrnstadt, C.; Mootz, D.; Wunderlich, H.; Mohrle, H. Protonation sites of organic bases with several nitrogen functions: Crystal structures of salts of chlordiazepoxide, dihydralazine, and phenformin. J. Chem. Soc. Perkin Trans. 1979, 2, 735–740. [Google Scholar] [CrossRef]
- Diesen, V.; Lousada, C.; Fischer, A. A hydrogen sulfate salt of chlordiazepoxide. Acta Crystallogr. E Struct. Rep. 2012, 68, o2091–o2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, A. Chlordiazepoxide dichloro-methane monosolvate. Acta Crystallogr. E Struct. Rep. 2012, 68, o1011. [Google Scholar] [CrossRef] [PubMed]
- Manin, A.N.; Voronim, A.P.; Drozd, K.V.; Manin, N.G.; Bauer-Brandl, A.; Perlovich, G.L. Cocrystal screening of hydroxybenzamides with benzoic acid derivatives: A comparative study of thermal and solution-based methods. Eur. J. Pharm. Sci. 2014, 65, 56–64. [Google Scholar] [CrossRef]
- Saganowska, P.; Wesolowski, M. DSC as a screening tool for rapid co-crystal detection in binary mixtures of benzodiazepines with co-formers. J. Therm. Anal. Calorim. 2018, 133, 785–795. [Google Scholar] [CrossRef] [Green Version]
- Garbacz, P.; Paukszta, D.; Sikorski, A.; Wesolowski, M. Structural characterization of co-crystals of chlordiazepoxide with p-aminobenzoic acid and lorazepam with nicotinamide by DSC, X-ray diffraction, FTIR and Raman spectroscopy. Pharmaceutics 2020, 12, 648. [Google Scholar] [CrossRef] [PubMed]
- Pawar, N.; Saha, A.; Nandan, N.; Parambil, J.V. Solution cocrystallization: A scalable approach for cocrystal production. Crystals 2021, 11, 303. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Segato, M.P.; Nunes, R.S.; Novak, C.; Cavalheiro, E.T.G. Thermoanalytical studies of some sweeteners. J. Therm. Anal. Calorim. 2009, 97, 359–365. [Google Scholar] [CrossRef]
- Ferreira, P.O.; Moura, A.; Almeida, A.C.; Santos, E.C.; Kogawa, A.C.; Caires, F.J. Mechanochemical synthesis, thermoanalytical study and characterization of new multicomponent solid forms of norfloxacin with saccharin. J. Therm. Anal. Calorim. 2020, 147, 1985–1997. [Google Scholar] [CrossRef]
- Muthu, S.; Prasath, M.; Paulraj, E.I.; Balaji, R.A. FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 7-chloro-5-(2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one. Spectrochim. Acta Part A 2014, 120, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.C.; Lin, H.L.; Lin, S.Y. Thermal analysis and FTIR spectral curve-fitting investigation of formation mechanism and stability of indomethacin-saccharin cocrystals via solid-state grinding process. J. Pharm. Biomed. Anal. 2012, 66, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Black, S.N.; Collier, A.E.; Davey, R.J.; Roberts, R.J. Structure, solubility, screening, and synthesis of molecular salts. J. Pharm. Sci. 2007, 96, 1053–1068. [Google Scholar] [CrossRef] [PubMed]
- Oxford Diffraction. CrysAlis CCD and CrysAlis RED; Version 1.171.36.24; Oxford Diffraction: Yarnton, UK, 2012. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. D 2009, 65, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.K. ORTEP II, Report ORNL-513; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1976. [Google Scholar]
- Motherwell, S.; Clegg, S. PLUTO-78, Program for Drawing and Molecular Structure; University of Cambridge: Cambridge, UK, 1978. [Google Scholar]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
Samples | Diffraction Angle 2θ (°) | d-Spacing (Å) | Relative Intensity (%) |
---|---|---|---|
Chlordiazepoxide | 5.75, 11.49, 13.91, 14.80, 16.41, 17.26, 20.72, 21.95, 23.52, 27.20 | 15.36, 7.70, 6.36, 5.98, 5.40, 5.13, 4.28, 4.05, 3.78, 3.28 | 49.27, 100.00, 18.87, 27.06, 25.68, 49.94, 22.45, 52.74, 56.73, 51.75 |
Saccharin | 9.49, 14.99, 16.03, 19.07, 20.13, 25.13, 25.70 | 9.31, 5.91, 5.53, 4.65, 4.41, 3.54, 3.46 | 10.35, 31.96, 61.01, 23.50, 26.27, 100.00, 47.32 |
Binary physical mixture | 5.69, 9.46, 11.46, 14.93, 15.90, 19.06, 20.05, 21.94, 23.76, 25.04, 25.68 | 15.51, 9.34, 7.72, 5.93, 5.57, 4.65, 4.43, 4.05, 3.74, 3.55, 3.47 | 12.25, 14.66, 21.05, 24.01, 38.79, 100.00, 29.75, 17.33, 23.71, 49.09, 90.51 |
Salt prepared by liquid-assisted grinding | 6.05, 13.56, 16.78, 18.31, 19.79, 20.70, 22.43, 23.11, 24.38, 25.35 | 14.60, 6.52, 5.27, 4.84, 4.48, 4.28, 3.96, 3.84, 3.65, 3.51 | 100.00, 76.46, 34.68, 30.36, 77.96, 41.42, 56.35, 76.20, 22.94, 36.77 |
Salt prepared by crystallization from ACN | 6.09, 13.56, 16.80, 18.30, 19.80, 20.71, 22.44, 23.13, 24.40, 25.34 | 14.50, 6.52,5.27, 4.84, 4.48, 4.29, 3.96, 3.84, 3.64, 3.51 | 100.00, 47.70, 20.68, 18.81, 44.31, 22.46, 38.56, 46.19, 28.87, 24.01 |
Salt prepared by crystallization from MeOH/ClMe | 6.09,13.59, 16.79, 18.31, 19.73, 20.66, 22.37, 23.12, 24.39, 25.38 | 14.49, 6.51, 5.28, 4.84, 4.50, 4.30, 3.97, 3.84, 3.65, 3.51 | 100.00, 17.74, 4.70, 5.53, 26.29, 4.96, 9.06, 12.35, 29.34, 17.01 |
Crystal Data | Saccharin Salt of Chlordiazepoxide |
---|---|
Chemical formula | C16H15ClN3O·C7H4NSO3 |
Formula weight/g·mol−1 | 482.93 |
Crystal system | orthorhombic |
Space group | Pbca |
a/Å | 8.9526(2) |
b/Å | 17.5658(4) |
c/Å | 29.1681(6) |
α/° | 90 |
β/° | 90 |
γ/° | 90 |
V/Å3 | 4586.98(17) |
Z | 8 |
T/K | 295(2) |
λMo/Å | 0.71073 |
ρcalc/g·cm−3 | 1.399 |
F(000) | 2000 |
µ/mm−1 | 0.297 |
θ range/° | 3.30–25.00 |
Completeness θ/% | 99.7 |
Reflections collected | 32231 |
Reflections unique | 4036 [Rint = 0.0305] |
Data/restraints/parameters | 4036/0/305 |
Goodness of fit on F2 | 1.119 |
Final R1 value (I > 2σ(I)) | 0.0429 |
Final wR2 value (I > 2σ(I)) | 0.0947 |
Final R1 value (all data) | 0.0477 |
Final wR2 value (all data) | 0.0973 |
CCDC number | 2205773 |
D–H···A | d(D–H) (Å) | d(H···A) (Å) | d(D···A) (Å) | ∠D–H⋯A (°) |
---|---|---|---|---|
N1–H1···O42i | 0.82(2) | 2.10(3) | 2.869(2) | 157(2) |
N12–H12···O40 | 0.82(2) | 1.99(2) | 2.734(3) | 151(2) |
C3–H3A···O41ii | 0.97 | 2.39 | 3.340(3) | 166 |
C3–H3B···O14ii | 0.97 | 2.36 | 3.274(3) | 156 |
C13–H13B···N32i | 0.96 | 2.62 | 3.518(3) | 155 |
C13–H13C···O41iii | 0.96 | 2.40 | 3.219(3) | 142 |
C16–H16A···O14* | 0.93 | 2.57 | 2.924(3) | 103 |
C16–H16A···O40ii | 0.93 | 2.53 | 3.359(3) | 149 |
C–X···Cg | d(X···Cg) (Å) | d(C···Cg) (Å) | ∠C–X···Cg (°) |
---|---|---|---|
C8–H8A···Cg1iii | 3.17 | 3.970(3) | 145 |
Samples | Ton (°C) | Tp (°C) | ΔH (J/g) |
---|---|---|---|
Chlordiazepoxide | 240.8 | 241.8 | 103.6 endo |
274.6 | 284.2 | 435.7 exo | |
Saccharin | 225.9 | 226.8 | 156.4 endo |
Binary physical mixture | 154.0 | 158.9 | 8.5 endo |
165.1 | 172.8 | 15.8 exo | |
182.7 | 189.7 | 11.4 endo | |
196.1 | 201.4 | 300.6 exo | |
Salt prepared by liquid-assisted grinding | 118.9 | 126.8 | 3.7 endo |
131.2 | 135.8 | 3.4 exo | |
197.4 | 200.8 | 17.4 endo | |
202.3 | 205.6 | 295.6 exo | |
Salt prepared by crystallization from ACN | 201.2 | 203.7 | 30.3 endo |
204.9 | 208.1 | 324.1 exo | |
Salt prepared by crystallization from MeOH/ClMe | 194.6 | 200.9 | 12.3 endo |
203.3 | 210.6 | 309.7 exo |
Assignment of Absorption Bands | Band Numbers | Samples | |||||
---|---|---|---|---|---|---|---|
Chlordiazepoxide | Saccharin | Binary Physical Mixture | Salt Prepared by Liquid- Assisted Grinding | Salt Crystallized from ACN | Salt Crystallized from MeOH/ ClMe | ||
–NH stretching | 1 | 3426.4 | 3094.1 | 3427.5 | 3427.4 | 3428.0 | 3427.6 |
C=O stretching | 2 | – | 1716.9 | 1719.4 | – | – | – |
C=N stretching of ring | 3 | 1624.8 | – | 1624.7 | 1616.5 | 1635.1 | 1635.3 |
C–N symmetric | 4 | 1170.5 | – | 1177.3 | – | – | – |
–SO2 asymmetric stretching | 5 | – | 1139.9 | 1141.6 | 1142.0 | 1139.7 | 1139.2 |
–SO2 symmetric stretching | 6 | – | 1121.4 | 1121.7 | – | – | – |
C–N asymmetric stretching | 7 | 1029.4 | – | 1029.8 | 1030.9 | 1030.4 | 1031.5 |
Assignment of Absorption Bands | Samples | |||||
---|---|---|---|---|---|---|
Chlordiazepoxide | Saccharin | Binary Physical Mixture | Salt Prepared by Liquid- Assisted Grinding | Salt Crystallized from ACN | Salt Crystallized from MeOH/ ClMe | |
–CH stretching | 3064.6 | – | 3064.2 | 3073.0 | 3073.9 | 3063.6 |
C=O stretching | – | 1700.7 | 1696.6 | – | – | – |
C=N stretching | 1621.4 | – | 1620.7 | – | – | – |
C–C stretching | – | 1596.7 | – | 1600.8 | 1601.2 | 1591.1 |
aromatic ring | 1589.8 | – | 1589.9 | – | – | – |
–SO2 stretching | – | 1178.7 | – | – | – | – |
Samples | Solubility in Water (mg/mL ± SD) |
---|---|
Chlordiazepoxide | 0.12 ± 0.02 |
Saccharin | 2.93 ± 0.04 |
Salt prepared by liquid-assisted grinding | 7.70 ± 0.01 |
Salt prepared by crystallization from ACN | 7.52 ± 0.22 |
Salt prepared by crystallization from MeOH/ClMe | 6.65 ± 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lech, A.; Garbacz, P.; Sikorski, A.; Gazda, M.; Wesolowski, M. New Saccharin Salt of Chlordiazepoxide: Structural and Physicochemical Examination. Int. J. Mol. Sci. 2022, 23, 12050. https://doi.org/10.3390/ijms231912050
Lech A, Garbacz P, Sikorski A, Gazda M, Wesolowski M. New Saccharin Salt of Chlordiazepoxide: Structural and Physicochemical Examination. International Journal of Molecular Sciences. 2022; 23(19):12050. https://doi.org/10.3390/ijms231912050
Chicago/Turabian StyleLech, Anna, Patrycja Garbacz, Artur Sikorski, Maria Gazda, and Marek Wesolowski. 2022. "New Saccharin Salt of Chlordiazepoxide: Structural and Physicochemical Examination" International Journal of Molecular Sciences 23, no. 19: 12050. https://doi.org/10.3390/ijms231912050
APA StyleLech, A., Garbacz, P., Sikorski, A., Gazda, M., & Wesolowski, M. (2022). New Saccharin Salt of Chlordiazepoxide: Structural and Physicochemical Examination. International Journal of Molecular Sciences, 23(19), 12050. https://doi.org/10.3390/ijms231912050