Extended Prophylactic Effect of N-tert-Butyl-α-phenylnitron against Oxidative/Nitrosative Damage Caused by the DNA-Hypomethylating Drug 5-Azacytidine in the Rat Placenta
Abstract
:1. Introduction
2. Results
2.1. PBN-Pretreatment Increases the Placental Weight in 5azaC Treated Dams
2.2. Global DNA Methylation in Placentas
2.3. PBN and Cell Proliferation in Placentas of 5azaC-Treated Dams
2.4. PBN Diminishes Apoptosis in Placentas of 5azaC Treated Dams
2.5. PBN-Pretreatment Diminishes Oxidative Stress Induced by 5azaC in Placentas of Treated Dams
2.5.1. 8-Hydroxy-2′deoxyguanosine (8-OHdG)
2.5.2. Nitrotyrosine
3. Discussion
4. Materials and Methods
4.1. Animals
4.1.1. Sample Isolation and Processing
4.2. Methods
4.2.1. Bisulfite Conversion and Polymerase Chain Reaction
4.2.2. Global Methylation Analysis
4.2.3. Immunohistochemistry
4.3. Analysis
4.3.1. Quantitative Stereological Analysis
4.3.2. Apoptotic Index
4.3.3. Statistical Methods/Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dennery, P.A. Oxidative stress in development: Nature or nurture? Free. Radic. Biol. Med. 2010, 49, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Sultana, Z.; Maiti, K.; Aitken, J.; Morris, J.; Dedman, L.; Smith, R. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. Am. J. Reprod. Immunol. 2017, 77, e12653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, H. Aging of the Placenta. Arch. Dis. Child. Fetal Neonatal Ed. 1997, 77, F171–F175. [Google Scholar] [CrossRef] [Green Version]
- Mistry, H.D.; Williams, P.J. The importance of antioxidant micronutrients in pregnancy. Oxidative Med. Cell. Longev. 2011, 2011, 841749. [Google Scholar] [CrossRef] [Green Version]
- Ataei Nakhaei, A.; Mousavi Kani, K.; Hazrati, N.; Askarpour, B.; Mohsenpour, Z.; Hazrati, F.; Dehghani, N.; Ahmadinezhad, F.; Kalani-moghaddam, F. An Overview of Prophylactic Acetylsalicylic Acid for the Prevention of Intra-uterine Growth Restriction (IUGR) in Women at Risk for Preeclampsia. Int. J. Pediatrics 2019, 7, 10499–10504. [Google Scholar] [CrossRef]
- Turner, J.M.; Robertson, N.T.; Hartel, G.; Kumar, S. Impact of low-dose aspirin on adverse perinatal outcome: Meta-analysis and meta-regression. Ultrasound Obstet. Gynecol. 2020, 55, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Floyd, R.A.; Kopke, R.D.; Choi, C.H.; Foster, S.B.; Doblas, S.; Towner, R.A. Nitrones as therapeutics. Free. Radic. Biol. Med. 2008, 45, 1361–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villamena, F.A.; Das, A.; Nash, K.M. Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med. Chem. 2012, 4, 1171–1207. [Google Scholar] [CrossRef] [Green Version]
- Sawant, P.D. Potential Use of Spin Traps to Control ROS in Antipollution Cosmetics—A Review. Cosmetics 2018, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Williams, H.E.; Claybourn, M.; Green, A.R. Investigating the free radical trapping ability of NXY-059, S-PBN and PBN. Free. Radic. Res. 2007, 41, 1047–1052. [Google Scholar] [CrossRef]
- Wells, P.G.; Bhuller, Y.; Chen, C.S.; Jeng, W.; Kasapinovic, S.; Kennedy, J.C.; Kim, P.M.; Laposa, R.R.; McCallum, G.P.; Nicol, C.J.; et al. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol. Appl. Pharmacol. 2005, 207, 354–366. [Google Scholar] [CrossRef]
- Miller-Pinsler, L.; Wells, P.G. Deficient DNA repair exacerbates ethanol-initiated DNA oxidation and embryopathies in ogg1 knockout mice: Gender risk and protection by a free radical spin trapping agent. Arch. Toxicol. 2016, 90, 415–425. [Google Scholar] [CrossRef]
- Liu, L.; Wells, P.G. In vivo phenytoin-initiated oxidative damage to proteins and lipids in murine maternal hepatic and embryonic tissue organelles: Potential molecular targets of chemical teratogenesis. Toxicol. Appl. Pharmacol. 1994, 125, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Sinčić, N.; Vlahović, M.; Bulić-Jakuš, F.; Šerman, L.; Šerman, D. Acetylsalicylic acid protects rat embryos from teratogenic effects of 5-azacytidine. Period. Biol. 2002, 104, 441–444. [Google Scholar]
- Vlahović, M.; Sinčić, N.; Bulić-Jakuš, F.; Šerman, L.; Šerman, D. Acetylsalicylic acid seems to diminish teratogenic effects of 5-azacytidine. Period. Biol. 2001, 103, 343–346. [Google Scholar]
- Voso, M.T.; Lo-Coco, F.; Fianchi, L. Epigenetic therapy of myelodysplastic syndromes and acute myeloid leukemia. Curr. Opin. Oncol. 2015, 27, 532–539. [Google Scholar] [CrossRef]
- Jones, P.A.; Issa, J.P.; Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 2016, 17, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Blecua, P.; Martinez-Verbo, L.; Esteller, M. The DNA methylation landscape of hematological malignancies: An update. Mol. Oncol. 2020, 14, 1616–1639. [Google Scholar] [CrossRef]
- Roulois, D.; Loo Yau, H.; Singhania, R.; Wang, Y.; Danesh, A.; Shen, S.Y.; Han, H.; Liang, G.; Jones, P.A.; Pugh, T.J.; et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell 2015, 162, 961–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, M.V.C.; Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 2019, 20, 590–607. [Google Scholar] [CrossRef]
- Vlahović, M.; Bulić-Jakus, F.; Jurić-Lekić, G.; Fučić, A.; Marić, S.; Šerman, D. Changes in the placenta and in the rat embryo caused by the demethylating agent 5-azacytidine. Int. J. Dev. Biol. 2002, 43, 843–846. [Google Scholar]
- Serman, L.; Vlahović, M.; Sijan, M.; Bulić-Jakus, F.; Serman, A.; Sincić, N.; Matijević, R.; Jurić-Lekić, G.; Katusić, A. The impact of 5-azacytidine on placental weight, glycoprotein pattern and proliferating cell nuclear antigen expression in rat placenta. Placenta 2007, 28, 803–811. [Google Scholar] [CrossRef] [Green Version]
- Šerman, L.; Šijan, M.; Kuzmić, R.; Sinčić, N.; Šerman, A.; Bulić-Jakuš, F.; Vlahović, M.; Jurić-Lekić, G.; Katušić, A. Änderungen der Expressionen von Membranproteinen in der Plazenta von Ratten behandelt mit 5-Azacytidine. (Changes of Membrane Proteins Expression in Rat Placenta Treated with 5-Azacytidine). Tierärztliche Umschau 2008, 63, 4. [Google Scholar]
- Branco, M.R.; King, M.; Perez-Garcia, V.; Bogutz, A.B.; Caley, M.; Fineberg, E.; Lefebvre, L.; Cook, S.J.; Dean, W.; Hemberger, M.; et al. Maternal DNA Methylation Regulates Early Trophoblast Development. Dev. Cell 2016, 36, 152–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, D.I.; Blair, J.D.; Lott, P.; Yu, H.O.K.; Hong, D.; Crary, F.; Ashwood, P.; Walker, C.; Korf, I.; Robinson, W.P.; et al. The human placenta methylome. Proc. Natl. Acad. Sci. USA 2013, 110, 6037–6042. [Google Scholar] [CrossRef] [Green Version]
- Gamage, T.K.J.B.; Schierding, W.; Hurley, D.; Tsai, P.; Ludgate, J.L.; Bhoothpur, C.; Chamley, L.W.; Weeks, R.J.; Macaulay, E.C.; James, J.L. The role of DNA methylation in human trophoblast differentiation. Epigenetics 2018, 13, 1154–1173. [Google Scholar] [CrossRef] [PubMed]
- Buljubašić, R.; Buljubašić, M.; BojanacKatušić, A.; Ulamec, M.; Vlahović, M.; Ježek, D.; Bulić-Jakuš, F.; Sinčić, N. Epigenetics and testicular germ cell tumors. Gene 2018, 661, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Vlahos, A.; Mansell, T.; Saffery, R.; Novakovic, B. Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome. PLoS Genet. 2019, 15, e1008236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qihan, W.; Xiaohua, N. ROS-Mediated DNA Methylation Pattern Alterations in Carcinogenesis. Curr. Drug Targets 2015, 16, 13–19. [Google Scholar]
- Sobočan, N.; Katušić Bojanac, A.; Sinčić, N.; Himelreich-Perić, M.; Krasić, J.; Majić, Ž.; Jurić-Lekić, G.; Šerman, L.; Vlahović, M.; Ježek, D.; et al. A Free Radical Scavenger Ameliorates Teratogenic Activity of a DNA Hypomethylating Hematological Therapeutic. Stem Cells Dev. 2019, 28, 717–733. [Google Scholar] [CrossRef] [Green Version]
- Khajuria, R.; Sharma, M. Histopathology of placenta in intrauterine growth restriction (IUGR). Int. J. Res. Med. Sci. 2019, 7, 889–892. [Google Scholar] [CrossRef]
- Furukawa, S.; Tsuji, N.; Sugiyama, A. Morphology and physiology of rat placenta for toxicological evaluation. J. Toxicol. Pathol. 2019, 32, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, S.; Hayashi, S.; Usuda, K.; Abe, M.; Ogawa, I. The relationship between fetal growth restriction and small placenta in 6-mercaptopurine exposed rat. Exp. Toxicol. Pathol. Off. J. Ges. Fur Toxikol. Pathol. 2011, 63, 89–95. [Google Scholar] [CrossRef]
- Serman, L.; Zunic, I.; Vrsaljko, N.; Grbesa, D.; Gjurcevic, E.; Matasin, Z.; Nikuseva Martic, T.; Bulic Jakus, F.; Tlak Gajger, I.; Serman, A. Structural changes in the rat placenta during the last third of gestation discovered by stereology. Bosn. J. Basic Med. Sci. 2015, 15, 21–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyajima, T.; Kotake, Y. Optimal Time and Dosage of Phenyl N-Tert-Butyl Nitrone (PBN) for the Inhibition of Nitric Oxide Synthase Induction in Mice. Free. Radic. Biol. Med. 1997, 22, 463–470. [Google Scholar] [CrossRef]
- Muñoz, M.D.; Della Vedova, M.C.; Bushel, P.R.; Ganini da Silva, D.; Mason, R.P.; Zhai, Z.; Gomez Mejiba, S.E.; Ramirez, D.C. The nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide dampens lipopolysaccharide-induced transcriptomic changes in macrophages. Inflamm. Res. 2018, 67, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Myatt, L.; Cui, X. Oxidative stress in the placenta. Histochem. Cell Biol. 2004, 122, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Lipton, S.A. Nitrosative Stress in the Nervous System: Guidelines for Designing Experimental Strategies to Study Protein S-Nitrosylation. Neurochem. Res. 2016, 41, 510–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengel, A.; Chaki, M.; Shekariesfahlan, A.; Lindermayr, C. Effect of nitric oxide on gene transcription—S-nitrosylation of nuclear proteins. Front. Plant Sci. 2013, 4, 293. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H.; Pellny, T.K.; Locato, V.; Hull, J.; De Gara, L. Analysis of Redox Relationships in the Plant Cell Cycle: Determination of Ascorbate, Glutathione, and Poly(ADPribose)polymerase (PARP) in Plant Cell Cultures. In Redox-Mediated Signal Transduction: Methods and Protocols; Hancock, J.T., Conway, M.E., Eds.; Springer: New York, NY, USA, 2019; pp. 165–181. [Google Scholar]
- Williams, E.; Whiteman, M.; Wood, M.E.; Wilson, I.D.; Ladomery, M.R.; Allainguillaume, J.; Teklic, T.; Lisjak, M.; Hancock, J.T. Investigating ROS, RNS, and H2S-Sensitive Signaling Proteins. In Redox-Mediated Signal Transduction: Methods and Protocols; Hancock, J.T., Conway, M.E., Eds.; Springer: New York, NY, USA, 2019; pp. 27–42. [Google Scholar]
- Edwards, J.R.; Yarychkivska, O.; Boulard, M.; Bestor, T.H. DNA methylation and DNA methyltransferases. Epigenetics Chromatin 2017, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Pfeifer, G.P. Aging and DNA methylation. BMC Biol. 2015, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.P.; Al-Hasan, Y. Impact of oxidative stress in fetal programming. J. Pregnancy 2012, 2012, 582748. [Google Scholar] [CrossRef]
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.H.; Park, J.H.; Jeong, K.S.; Lee, S. Determining the global DNA methylation status of rat according to the identifier repetitive elements. Electrophoresis 2007, 28, 3854–3861. [Google Scholar] [CrossRef]
- Shen, M.R.; Brosius, J.; Deininger, P.L. BC1 RNA, the Transcript from A Master Gene for ID Element Amplification, Is Able to Prime Its Own Reverse Transcription. Nucleic Acids Res. 1997, 25, 1641–1648. [Google Scholar] [CrossRef] [Green Version]
- Jeong, K.S.; Lee, S. Estimating the total mouse DNA methylation according to the B1 repetitive elements. Biochem. Biophys. Res. Commun. 2005, 335, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Rondinone, O.; Murgia, A.; Costanza, J.; Tabano, S.; Camanni, M.; Corsaro, L.; Fontana, L.; Colapietro, P.; Calzari, L.; Motta, S.; et al. Extensive Placental Methylation Profiling in Normal Pregnancies. Int. J. Mol. Sci. 2021, 22, 2136. [Google Scholar] [CrossRef] [PubMed]
- Ohno, M.; Oka, S.; Nakabeppu, Y. Quantitative Analysis of Oxidized Guanine, 8-Oxoguanine, in Mitochondrial DNA by Immunofluorescence Method. In Mitochondrial DNA: Methods and Protocols; Stuart, J.A., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 199–212. [Google Scholar]
- Conlon, K.A.; Zharkov, D.O.; Berrios, M. Immunofluorescent localization of the murine 8-oxoguanine DNA glycosylase (mOGG1) in cells growing under normal and nutrient deprivation conditions. DNA Repair 2003, 2, 1337–1352. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, S.; Kajiya, H.; Okabe, K.; Ikebe, T. Effects of oxidative stress on the expression of 8-oxoguanine and its eliminating enzymes in human keratinocytes and squamous carcinoma cells. Oral Sci. Int. 2011, 8, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Z.; Oka, S.; Tsuchimoto, D.; Abolhassani, N.; Nomaru, H.; Sakumi, K.; Yamada, H.; Nakabeppu, Y. 8-Oxoguanine causes neurodegeneration during MUTYH-mediated DNA base excision repair. J. Clin. Investig. 2012, 122, 4344–4361. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, S.; Hayashi, S.; Usuda, K.; Abe, M.; Hagio, S.; Ogawa, I. Toxicological Pathology in the Rat Placenta. J. Toxicol. Pathol. 2011, 24, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Antunes, B.; Velo-Antón, G.; Buckley, D.; Pereira, R.J.; Martínez-Solano, I. Free Radicals and Antioxidants Status in Pregnancy: Need for Pre- and Early Pregnancy Assessment. Am. J. Med. Med. Sci. 2014, 4, 5. [Google Scholar] [CrossRef]
- Day, K.; Waite, L.L.; Thalacker-Mercer, A.; West, A.; Bamman, M.M.; Brooks, J.D.; Myers, R.M.; Absher, D. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 2013, 14, R102. [Google Scholar] [CrossRef] [Green Version]
- Turkan, I. ROS and RNS: Key signalling molecules in plants. J. Exp. Bot. 2018, 69, 3313–3315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarkovic, N. Roles and Functions of ROS and RNS in Cellular Physiology and Pathology. Cells 2020, 9, 767. [Google Scholar] [CrossRef] [Green Version]
- Manna, S.; McCarthy, C.; McCarthy, F.P. Placental Ageing in Adverse Pregnancy Outcomes: Telomere Shortening, Cell Senescence, and Mitochondrial Dysfunction. Oxidative Med. Cell. Longev. 2019, 2019, 3095383. [Google Scholar] [CrossRef] [PubMed]
- Chung, F.F.-L.; Herceg, Z. The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. Environ. Health Perspect. 2020, 128, 015001. [Google Scholar] [CrossRef] [Green Version]
- Babenko, O.; Kovalchuk, I.; Metz, G.A. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci. Biobehav. Rev. 2015, 48, 70–91. [Google Scholar] [CrossRef] [PubMed]
- Weibel, E.R. Stereological methods. In Practical Methods for Biological Morphometry; Weibel, E.R., Ed.; Academic Press: London, UK, 1979; Volume 1. [Google Scholar]
- Kališnik, M. Basics of Stereology; Stereološka sekcija Zveze Društev Anatomov Jugoslavije: Ljubljana, Slovenia, 1985. (In Croatian) [Google Scholar]
- Losa, M.; Barzaghi, R.L.A.; Mortini, P.; Franzin, A.; Mangili, F.; Terreni, M.R.; Giovanelli, M. Determination of the Proliferation and Apoptotic Index in Adrenocorticotropin-Secreting Pituitary Tumors: Comparison between Micro- and Macroadenomas. Am. J. Pathol. 2000, 156, 245–251. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobočan, N.; Himelreich-Perić, M.; Katušić-Bojanac, A.; Krasić, J.; Sinčić, N.; Majić, Ž.; Jurić-Lekić, G.; Šerman, L.; Marić, A.; Ježek, D.; et al. Extended Prophylactic Effect of N-tert-Butyl-α-phenylnitron against Oxidative/Nitrosative Damage Caused by the DNA-Hypomethylating Drug 5-Azacytidine in the Rat Placenta. Int. J. Mol. Sci. 2022, 23, 603. https://doi.org/10.3390/ijms23020603
Sobočan N, Himelreich-Perić M, Katušić-Bojanac A, Krasić J, Sinčić N, Majić Ž, Jurić-Lekić G, Šerman L, Marić A, Ježek D, et al. Extended Prophylactic Effect of N-tert-Butyl-α-phenylnitron against Oxidative/Nitrosative Damage Caused by the DNA-Hypomethylating Drug 5-Azacytidine in the Rat Placenta. International Journal of Molecular Sciences. 2022; 23(2):603. https://doi.org/10.3390/ijms23020603
Chicago/Turabian StyleSobočan, Nikola, Marta Himelreich-Perić, Ana Katušić-Bojanac, Jure Krasić, Nino Sinčić, Željka Majić, Gordana Jurić-Lekić, Ljiljana Šerman, Andreja Marić, Davor Ježek, and et al. 2022. "Extended Prophylactic Effect of N-tert-Butyl-α-phenylnitron against Oxidative/Nitrosative Damage Caused by the DNA-Hypomethylating Drug 5-Azacytidine in the Rat Placenta" International Journal of Molecular Sciences 23, no. 2: 603. https://doi.org/10.3390/ijms23020603
APA StyleSobočan, N., Himelreich-Perić, M., Katušić-Bojanac, A., Krasić, J., Sinčić, N., Majić, Ž., Jurić-Lekić, G., Šerman, L., Marić, A., Ježek, D., & Bulić-Jakuš, F. (2022). Extended Prophylactic Effect of N-tert-Butyl-α-phenylnitron against Oxidative/Nitrosative Damage Caused by the DNA-Hypomethylating Drug 5-Azacytidine in the Rat Placenta. International Journal of Molecular Sciences, 23(2), 603. https://doi.org/10.3390/ijms23020603