Intracellular HINT1-Assisted Hydrolysis of Nucleoside 5′-O-Selenophosphate Leads to the Release of Hydrogen Selenide That Exhibits Toxic Effects in Human Cervical Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Enzymatic Assays
2.2.1. RP-HPLC Analysis of Reaction Products and Determination of dGMPSe Hydrolysis Rate Catalyzed by HINT1
2.2.2. Fluorescence Assay for the Analysis of HINT1-Catalyzed dGMPSe Hydrolysis Products
2.3. Cellular Experiments
2.3.1. Cytotoxic Effects of dGMPSe on HeLa Cells
2.3.2. The Accumulation of H2Se after Administration of dGMPSe to HeLa Cells Detected by Fluorescence
2.3.3. Fluorescent Detection of H2Se in HeLa Cells Electroporated with dGMPSe
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.1.1. General Methods
4.1.2. Synthesis of dGMPSe
4.2. Expression and Purification of HINT1 and HINT2
4.3. HPLC Enzymatic Assay
4.4. Fluorescent Enzymatic Assay
4.5. Cell Lines and MTT Assay
4.6. H2Se and H2S Cellular Assay
4.7. Invert Microscope Imaging of Living Cells
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandes, A.P.; Gandin, V. Selenium compounds as therapeutic agents in cancer. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2015, 1850, 1642–1660. [Google Scholar] [CrossRef] [PubMed]
- Weekley, C.M.; Harris, H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev. 2013, 42, 8870–8894. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Kipp, A.P.; Frombach, J.; Deubel, S.; Brigelius-Flohé, R. Selenoprotein W as Biomarker for the Efficacy of Selenium Compounds to Act as Source for Selenoprotein Biosynthesis. Methods Enzymol. 2013, 527, 87–112. [Google Scholar] [CrossRef]
- Björkhem-Bergman, L.; Jönsson, K.; Eriksson, L.C.; Olsson, J.M.; Lehmann, S.; Paul, C.; Björnstedt, M. Drug-resistant human lung cancer cells are more sensitive to selenium cytotoxicity: Effects on thioredoxin reductase and glutathione reductase. Biochem. Pharmacol. 2002, 63, 1875–1884. [Google Scholar] [CrossRef]
- Spallholz, J.E. On the nature of selenium toxicity and carcinostatic activity. Free Radic. Biol. Med. 1994, 17, 45–64. [Google Scholar] [CrossRef]
- Shen, H.-M.; Ding, W.-X.; Ong, C.N. Intracellular glutathione is a cofactor in methylseleninic acid-induced apoptotic cell death of human hepatoma HEPG2 cells. Free Radic. Biol. Med. 2002, 33, 552–561. [Google Scholar] [CrossRef]
- Pan, X.; Song, X.; Wang, C.; Cheng, T.; Luan, D.; Xu, K.; Tang, B. H2Se Induces Reductive Stress in HepG2 Cells and Activates Cell Autophagy by Regulating the Redox of HMGB1 Protein under Hypoxia. Theranostics 2019, 9, 1794–1808. [Google Scholar] [CrossRef]
- Cupp-Sutton, K.A.; Ashby, M.T. Biological Chemistry of Hydrogen Selenide. Antioxidants 2016, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Ozga, M.; Dolot, R.; Janicka, M.; Kaczmarek, R.; Krakowiak, A. Histidine triad nucleotide-binding protein 1 (HINT-1) phosphoramidase transforms nucleoside 5′-O-phosphorothioates to nucleoside 5′-O-phosphates. J. Biol. Chem. 2010, 285, 40809–40818. [Google Scholar] [CrossRef] [Green Version]
- Krakowiak, A.; Pawłowska, R.; Kocoń-Rębowska, B.; Dolot, R.; Stec, W.J. Interactions of cellular histidine triad nucleotide binding protein 1 with nucleosides 5′-O-monophosphorothioate and their derivatives—Implication for desulfuration process in the cell. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 3357–3366. [Google Scholar] [CrossRef]
- Krakowiak, A.; Piotrzkowska, D.; Kocoń-Rębowska, B.; Kaczmarek, R.; Maciaszek, A. The role of the Hint1 protein in the metabolism of phosphorothioate oligonucleotides drugs and prodrugs, and the release of H2S under cellular conditions. Biochem. Pharmacol. 2019, 163, 250–259. [Google Scholar] [CrossRef]
- Martin, J.; St-Pierre, M.V.; Dufour, J.-F. Hit proteins, mitochondria and cancer. Biochim. Biophys. Acta (BBA)—Bioenerg. 2011, 1807, 626–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.N.; Nechushtan, H.; Figov, N.; Razin, E. The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FcεRI-activated mast cells. Immunity 2004, 20, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Bieganowski, P.; Garrison, P.N.; Hodawadekar, S.C.; Faye, G.; Barnes, L.D.; Brenner, C. Adenosine Monophosphoramidase Activity of Hint and Hnt1 Supports Function of Kin28, Ccl1, and Tfb3. J. Biol. Chem. 2002, 277, 10852–10860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, T.F.; Wagner, C.R. Lysyl-tRNA synthetase-generated lysyl-adenylate is a substrate for histidine triad nucleotide binding proteins. J. Biol. Chem. 2007, 282, 4719–4727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guranowski, A.; Wojdyła, A.M.; Zimny, J.; Wypijewska, A.; Kowalska, J.; Łukaszewicz, M.; Jemielity, J.; Darzynkiewicz, E.; Jagiełło, A.; Bieganowski, P. Recognition of different nucleotidyl-derivatives as substrates of reactions catalyzed by various HIT-proteins. New J. Chem. 2010, 34, 888–893. [Google Scholar] [CrossRef]
- Stec, W.J.; Grajkowski, A.; Koziolkiewicz, M.; Uznanski, B. Nucleic Acids Res. Novel route to oligo(deoxyribonucleoside phosphorothioates). Stereocontrolled synthesis of P-chiral oligo(deoxyribonucleoside phosphorothioates). Nucleic Acids Res. 1991, 19, 5883–5888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guga, P.; Maciaszek, A.; Stec, W.J. Oxathiaphospholane Approach to the Synthesis of Oligodeoxyribonucleotides Containing Stereodefined Internucleotide Phosphoroselenoate Function. Org. Lett. 2005, 7, 3901–3904. [Google Scholar] [CrossRef] [PubMed]
- Krakowiak, A.; Kaczmarek, R.; Baraniak, J.; Wieczorek, M.; Stec, W.J. Stereochemistry of rHint1 hydrolase assisted cleavage of P–N bond in nucleoside 5′-O-phosphoramidothioates. Chem. Commun. 2007, 15, 2163–2165. [Google Scholar] [CrossRef]
- Dolot, R.; Krakowiak, A.; Kaczmarek, R.; Włodarczyk, A.; Pichlak, M.; Nawrot, B. Biochemical, crystallographic and biophysical characterization of histidine triad nucleotide-binding protein 2 with different ligands including a non-hydrolyzable analog of Ap4A. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129968. [Google Scholar] [CrossRef]
- Zhou, X.; Chou, T.F.; Aubol, B.E.; Park, C.J.; Wolfenden, R.; Adams, J.; Wagner, C.R. Kinetic mechanism of human histidine triad nucleotide binding protein 1. Biochemistry 2013, 52, 3588–3600. [Google Scholar] [CrossRef]
- Lin, V.S.; Lippert, A.R.; Chang, C.J. Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production. Proc. Natl. Acad. Sci. USA 2013, 110, 7131–7135. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 1989, 119, 203–210. [Google Scholar] [CrossRef]
- Ganyc, D.; Self, W.T. High affinity selenium uptake in a keratinocyte model. FEBS Lett. 2008, 582, 299–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyjek-Składanowska, M.; Vickers, T.A.; Napiórkowska-Gromadzka, A.; Anderson, B.A.; Tanowitz, M.; Crooke, S.T.; Liang, X.-H.; Seth, P.P.; Nowotny, M. Origins of the Increased Affinity of Phosphorothioate-Modified Therapeutic Nucleic Acids for Proteins. J. Am. Chem. Soc. 2020, 142, 7456–7468. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Seki, M.; Nashimoto, M. A naked antisense oligonucleotide with phosphorothioate linkages is taken up intracellularly more efficiently but functions less effectively. Biochem. Biophys. Res. Commun. 2021, 573, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Bełtowski, J.; Guranowski, A.; Jamroz-Wiśniewska, A.; Korolczuk, A.; Wojtak, A. Nucleoside monophosphorothio-ates as the new hydrogen sulfide precursors with unique properties. Pharmacol. Res. 2014, 81, 34–43. [Google Scholar] [CrossRef]
- Lanznaster, D.; Massari, C.M.; Marková, V.; Šimková, T.; Duroux, R.; Jacobson, K.A.; Fernández-Dueñas, V.; Tasca, C.I.; Ciruela, F. Adenosine A 1-A 2A Receptor-Receptor Interaction: Contribution to Guanosine-Mediated Effects. Cells 2019, 8, 1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, Q.; Martinent, R.; Moreau, D.; Winssinger, N.; Sakai, N.; Matile, S. Oligonucleotide Phosphorothioates Enter Cells by Thiol-Mediated Uptake. Angew. Chem. Int. Ed. 2021, 60, 19102–19106. [Google Scholar] [CrossRef]
- Li, H.; O’Connor, P.B. Electron Capture Dissociation of Disulfide, Sulfur–Selenium, and Diselenide Bound Peptides. J. Am. Soc. Mass Spectrom. 2012, 23, 2001–2010. [Google Scholar] [CrossRef]
- Koziolkiewicz, M.; Gendaszewska, E.; Maszewska, M.; Stein, C.A.; Stec, W.J. The mononucleotide-dependent, nonantisense mechanism of action of phosphodiester and phosphorothioate oligonucleotides depends upon the ac-tivity of an ecto-5′-nucleotidase. Blood 2001, 98, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Gendaszewska-Darmach, E.; Szustak, M. Thymidine 5′-O-monophosphorothioate induces HeLa cell migration by activation of the P2Y6 receptor. Purinergic Signal. 2016, 12, 199–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, H.-M.; Yang, C.-F.; Ong, C.N. Sodium selenite-induced oxidative stress and apoptosis in human hepatoma HepG2 cells. Int. J. Cancer 1999, 81, 820–828. [Google Scholar] [CrossRef]
Substrate | Hydrolysis Rate [pmol × min−1 × µg−1] | |
---|---|---|
HINT1 | HINT2 | |
dGMPSe | 13.284 ± 1.095 | 1.55 ± 0.03 |
dGMPS | 13.422 ± 1.558 | 1.65 ± 0.15 |
GMPS * | 274 ± 9 | 271 ± 40 |
AMPS * | 197 ± 23 | 136 ± 6 |
Substrate | Km [µM] | kcat [s−1] | kcat/Km [M−1 s−1] |
---|---|---|---|
dGMPSe | 398.1 ± 63.5 | 0.021 ± 0.002 | 47.6 |
dGMPS | 352.5 ± 103.6 | 0.023 ± 0.003 | 65.3 |
AMPS * | 271.8 ± 36.1 | 0.022 ± 0.012 | 81.0 |
Time [h] | IC50 [μM] |
---|---|
12 | 19 |
24 | 8 |
48 | 6.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krakowiak, A.; Czernek, L.; Pichlak, M.; Kaczmarek, R. Intracellular HINT1-Assisted Hydrolysis of Nucleoside 5′-O-Selenophosphate Leads to the Release of Hydrogen Selenide That Exhibits Toxic Effects in Human Cervical Cancer Cells. Int. J. Mol. Sci. 2022, 23, 607. https://doi.org/10.3390/ijms23020607
Krakowiak A, Czernek L, Pichlak M, Kaczmarek R. Intracellular HINT1-Assisted Hydrolysis of Nucleoside 5′-O-Selenophosphate Leads to the Release of Hydrogen Selenide That Exhibits Toxic Effects in Human Cervical Cancer Cells. International Journal of Molecular Sciences. 2022; 23(2):607. https://doi.org/10.3390/ijms23020607
Chicago/Turabian StyleKrakowiak, Agnieszka, Liliana Czernek, Marta Pichlak, and Renata Kaczmarek. 2022. "Intracellular HINT1-Assisted Hydrolysis of Nucleoside 5′-O-Selenophosphate Leads to the Release of Hydrogen Selenide That Exhibits Toxic Effects in Human Cervical Cancer Cells" International Journal of Molecular Sciences 23, no. 2: 607. https://doi.org/10.3390/ijms23020607
APA StyleKrakowiak, A., Czernek, L., Pichlak, M., & Kaczmarek, R. (2022). Intracellular HINT1-Assisted Hydrolysis of Nucleoside 5′-O-Selenophosphate Leads to the Release of Hydrogen Selenide That Exhibits Toxic Effects in Human Cervical Cancer Cells. International Journal of Molecular Sciences, 23(2), 607. https://doi.org/10.3390/ijms23020607