Where Are We with RPE Replacement Therapy? A Translational Review from the Ophthalmologist Perspective
Abstract
:1. Introduction
1.1. RPE and BRB’s Anatomy and Physiology
1.2. RPE and Age-Related Macular Degeneration
1.3. RPE and Stargardt Disease
1.4. Cell Therapies of the RPE
2. Results
2.1. Dry AMD
2.2. Wet AMD
2.3. Stargardt Disease
3. Discussion
3.1. Cellular Source of RPE Cells
3.1.1. Induced Pluripotent Stem Cells
3.1.2. Embryonic Stem Cells
3.1.3. Transplant Type
3.2. Cellular Suspensions
3.3. Patch Transplantation
3.4. Delivery Options
3.5. Current Drawbacks
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nguyen-Legros, J.; Hicks, D. Renewal of photoreceptor outer segments and their phagocytosis by the retinal pigment epithelium. Int. Rev. Cytol. 2000, 196, 245–313. [Google Scholar]
- Strauß, O. Pharmacology of the retinal pigment epithelium, the interface between retina and body system. Eur. J. Pharmacol. 2016, 787, 84–93. [Google Scholar] [CrossRef]
- Sparrow, J.R.; Hicks, D.; Hamel, C.P. The retinal pigment epithelium in health and disease. Curr. Mol. Med. 2010, 10, 802–823. [Google Scholar] [CrossRef]
- Anderson, D.H.; Radeke, M.J.; Gallo, N.B.; Chapin, E.A.; Johnson, P.T.; Curletti, C.R.; Hancox, L.S.; Hu, J.; Ebright, J.N.; Malek, G.; et al. The pivotal role of the complement system in aging and age-related macular degeneration: Hypothesis re-visited. Prog. Retin. Eye Res. 2010, 29, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.H.; Mullins, R.F.; Hageman, G.S.; Johnson, L.V. A role for local inflammation in the formation of drusen in the aging eye. Am. J. Ophthalmol. 2002, 134, 411–431. [Google Scholar] [CrossRef]
- Ida, H.; Tobe, T.; Nambu, H.; Matsumura, M.; Uyama, M.; Campochiaro, P.A. RPE cells modulate subretinal neovascularization, but do not cause regression in mice with sustained expression of VEGF. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5430–5437. [Google Scholar] [CrossRef] [Green Version]
- Ao, J.; Wood, J.P.; Chidlow, G.; Gillies, M.C.; Casson, R.J. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin. Exp. Ophthalmol. 2018, 46, 670–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanus, J.; Anderson, C.; Wang, S. RPE necroptosis in response to oxidative stress and in AMD. Ageing Res. Rev. 2015, 24 Pt B, 286–298. [Google Scholar] [CrossRef] [Green Version]
- Datta, S.; Cano, M.; Ebrahimi, K.; Wang, L.; Handa, J.T. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog. Retin. Eye Res. 2017, 60, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Van Lookeren Campagne, M.; LeCouter, J.; Yaspan, B.L.; Ye, W. Mechanisms of age-related macular degeneration and therapeutic opportunities. J. Pathol. 2014, 232, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Bhutto, I.; Lutty, G. Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol. Asp. Med. 2012, 33, 295–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bracha, P.; Moore, N.A.; Ciulla, T.A. Induced pluripotent stem cell-based therapy for age-related macular degeneration. Expert Opin. Biol. Ther. 2017, 17, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Mitter, S.K.; Song, C.; Qi, X.; Mao, H.; Rao, H.; Akin, D.; Lewin, A.; Grant, M.; Dunn, W., Jr.; Ding, J.; et al. Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 2014, 10, 1989–2005. [Google Scholar] [CrossRef] [Green Version]
- Ciulla, T.A.; Harris, A.; Kagemann, L.; Danis, R.P.; Pratt, L.M.; Chung, H.S.; Weinberger, D.; Garzozi, H.J. Choroidal perfusion perturbations in non-neovascular age related macular degeneration. Br. J. Ophthalmol. 2002, 86, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Tsang, S.H.; Sharma, T. Stargardt Disease. Adv. Exp. Med. Biol. 2018, 1085, 139–151. [Google Scholar]
- Tanna, P.; Strauss, R.W.; Fujinami, K.; Michaelides, M. Stargardt disease: Clinical features, molecular genetics, animal models and therapeutic options. Br. J. Ophthalmol. 2017, 101, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Idelson, M.; Alper, R.; Obolensky, A.; Yachimovich-Cohen, N.; Rachmilewitz, J.; Ejzenberg, A.; Beider, E.; Banin, E.; Reubinoff, B. Immunological Properties of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Stem Cell Rep. 2018, 11, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Kramer, J.; Chirco, K.R.; Lamba, D.A. Immunological Considerations for Retinal Stem Cell Therapy. Adv. Exp. Med. Biol. 2019, 1186, 99–119. [Google Scholar]
- Safety and Efficacy of Intravitreal Injection of Human Retinal Progenitor Cells in Adults with Retinitis Pigmentosa [Internet]. ClinicalTrials.gov Identifier: NCT03073733. Available online: https://clinicaltrials.gov/ct2/show/NCT03073733 (accessed on 8 December 2021).
- Singh, R.K.; Occelli, L.M.; Binette, F.; Petersen-Jones, S.M.; Nasonkin, I.O. Transplantation of Human Embryonic Stem Cell-Derived Retinal Tissue in the Subretinal Space of the Cat Eye. Stem Cells Dev. 2019, 28, 1151–1166. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.D.; Hubschman, J.-P.; Heilwell, G.; Franco-Cardenas, V.; Pan, C.K.; Ostrick, R.M.; Mickunas, E.; Gay, R.; Klimanskaya, I.; Lanza, R. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet 2012, 379, 713–720. [Google Scholar] [CrossRef]
- Schwartz, S.D.; Tan, G.; Hosseini, H.; Nagiel, A. Subretinal Transplantation of Embryonic Stem Cell-Derived Retinal Pigment Epithelium for the Treatment of Macular Degeneration: An Assessment at 4 Years. Invest. Ophthalmol. Vis. Sci. 2016, 57, ORSFc1-9. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.D.; Regillo, C.D.; Lam, B.L.; Eliott, D.; Rosenfeld, P.J.; Gregori, N.Z.; Hubschman, J.P.; Davis, J.L.; Heilwell, G.; Spirn, M.; et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 2015, 385, 509–516. [Google Scholar] [CrossRef]
- Tezel, T.H.; Del Priore, L.V.; Berger, A.S.; Kaplan, H.J. Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am. J. Ophthalmol. 2007, 143, 584–595. [Google Scholar] [CrossRef]
- Sharma, A.; Jaganathan, B.G. Stem Cell Therapy for Retinal Degeneration: The Evidence to Date. Biol. Targets Ther. 2021, 15, 299–306. [Google Scholar] [CrossRef]
- Sugita, S.; Mandai, M.; Hirami, Y.; Takagi, S.; Maeda, T.; Fujihara, M.; Matsuzaki, M.; Yamamoto, M.; Iseki, K.; Hayashi, N.; et al. HLA-Matched Allogeneic iPS Cells-Derived RPE Transplantation for Macular Degeneration. J. Clin. Med. 2020, 9, 2217. [Google Scholar] [CrossRef]
- Mehat, M.S.; Sundaram, V.; Ripamonti, C.; Robson, A.G.; Smith, A.J.; Borooah, S.; Robinson, M.; Rosenthal, A.N.; Innes, W.; Weleber, R.G.; et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology 2018, 125, 1765–1775. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-Y.; Liu, Y.; Wang, L.; Wang, F.; Zhao, T.-T.; Li, Q.-Y.; Xu, H.W.; Meng, X.H.; Hao, J.; Zhou, Q.; et al. A phase I clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt macular degeneration: 5-years’ follow-up. Cell Prolif. 2021, 54, e13100. [Google Scholar] [CrossRef]
- Sung, Y.; Lee, M.J.; Choi, J.; Jung, S.Y.; Chong, S.Y.; Sung, J.H.; Shim, S.H.; Song, W.K. Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in Asian Stargardt disease patients. Br. J. Ophthalmol. 2021, 105, 829–837. [Google Scholar] [CrossRef]
- Da Cruz, L.; Fynes, K.; Georgiadis, O.; Kerby, J.; Luo, Y.H.; Ahmado, A.; Vernon, A.; Daniels, J.T.; Nommiste, B.; Hasan, S.M.; et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 2018, 36, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Nakamura, M.; Sutou, K.; Osafune, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, M.; Koyanagi, M.; Tanabe, K.; Takahashi, K.; Ichisaka, T.; Aoi, T.; Okita, K.; Mochiduki, Y.; Takizawa, N.; Yamanaka, S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 2008, 26, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Leach, L.L.; Croze, R.H.; Hu, Q.; Nadar, V.P.; Clevenger, T.N.; Pennington, B.O.; Gamm, D.M.; Clegg, D.O. Induced Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium: A Comparative Study Between Cell Lines and Differentiation Methods. J. Ocul. Pharmacol. Ther. 2016, 32, 317–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idelson, M.; Alper, R.; Obolensky, A.; Ben-Shushan, E.; Hemo, I.; Yachimovich-Cohen, N.; Khaner, H.; Smith, Y.; Wiser, O.; Gropp, M.; et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009, 5, 396–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osakada, F.; Ikeda, H.; Sasai, Y.; Takahashi, M. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat. Protoc. 2009, 4, 811–824. [Google Scholar] [CrossRef]
- Plaza Reyes, A.; Petrus-Reurer, S.; Padrell Sánchez, S.; Kumar, P.; Douagi, I.; Bartuma, H.; Aronsson, M.; Westman, S.; Lardner, E.; André, H.; et al. Identification of cell surface markers and establishment of monolayer differentiation to retinal pigment epithelial cells. Nat. Commun. 2020, 11, 1609. [Google Scholar] [CrossRef] [Green Version]
- Michelet, F.; Balasankar, A.; Teo, N.; Stanton, L.W.; Singhal, S. Rapid generation of purified human RPE from pluripotent stem cells using 2D cultures and lipoprotein uptake-based sorting. Stem Cell Res. Ther. 2020, 11, 47. [Google Scholar] [CrossRef]
- Leach, L.L.; Buchholz, D.E.; Nadar, V.P.; Lowenstein, S.E.; Clegg, D.O. Canonical/-Catenin Wnt Pathway Activation Improves Retinal Pigmented Epithelium Derivation From Human Embryonic Stem Cells. Invest. Ophthalmol. Vis Sci. 2015, 56, 1002–1013. [Google Scholar] [CrossRef]
- Buchholz, D.E.; Pennington, B.O.; Croze, R.H.; Hinman, C.R.; Coffey, P.J.; Clegg, D.O. Rapid and Efficient Directed Differentiation of Human Pluripotent Stem Cells into Retinal Pigmented Epithelium. Stem Cells Transl. Med. 2013, 2, 384–393. [Google Scholar] [CrossRef]
- Sharma, R.; Khristov, V.; Rising, A.; Jha, B.S.; Dejene, R.; Hotaling, N.; Li, Y.; Stoddard, J.; Stankewicz, C.; Wan, Q.; et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci. Transl. Med. 2019, 11, eaat5580. [Google Scholar] [CrossRef]
- Limnios, I.J.; Chau, Y.-Q.; Skabo, S.J.; Surrao, D.C.; O’Neill, H.C. Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem Cell Res. Ther. 2021, 12, 248. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Zheng, X.; Hu, G.; Cui, K.; Zhang, J.; Zhang, A.; Jiang, H.; Lu, B.; Yates, J., III; Liu, C.; et al. Regulation of pluripotency and self- renewal of ESCs through epigenetic-threshold modulation and mRNA pruning. Cell 2012, 151, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Shenfield, F. Semantics and ethics of human embryonic stem-cell research. Lancet 2005, 365, 2071–2073. [Google Scholar] [CrossRef]
- Lu, B.; Malcuit, C.; Wang, S.; Girman, S.; Francis, P.; Lemieux, L.; Lanza, R.; Lund, R. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 2009, 27, 2126–2135. [Google Scholar] [CrossRef]
- Sugino, I.K.; Sun, Q.; Cheewatrakoolpong, N.; Malcuit, C.; Zarbin, M.A. Biochemical restoration of aged human Bruch’s membrane: Experimental studies to improve retinal pigment epithelium transplant survival and differentiation. Dev. Ophthalmol. 2014, 53, 133–142. [Google Scholar]
- Delplace, V.; Payne, S.; Shoichet, M. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions. J. Control. Release Off. J. Control Release Soc. 2015, 219, 652–668. [Google Scholar] [CrossRef]
- Xiang, P.; Wu, K.-C.; Zhu, Y.; Xiang, L.; Li, C.; Chen, D.-L.; Chen, F.; Xu, G.; Wang, A.; Li, M.; et al. A novel Bruch’s membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials 2014, 35, 9777–9788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, H.C.; Limnios, I.J.; Barnett, N.L. Advancing a Stem Cell Therapy for Age-Related Macular Degeneration. Curr. Stem Cell Res. Ther. 2020, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- De Smet, M.D.; Lynch, J.L.; Dejneka, N.S.; Keane, M.; Khan, I.J. A Subretinal Cell Delivery Method via Suprachoroidal Access in Minipigs: Safety and Surgical Outcomes. Invest. Ophthalmol. Vis. Sci. 2018, 59, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Bose, D.; Maminishkis, A.; Bharti, K. Retinal Pigment Epithelium Replacement Therapy for Age-Related Macular Degeneration: Are We There Yet? Annu. Rev. Pharmacol. Toxicol. 2020, 60, 553–572. [Google Scholar] [CrossRef] [PubMed]
Authors | N= | Transplant Type | Scaffold | Delivery Technique | Adverse Events | BCVA Improvement (ETDRS) | ||
---|---|---|---|---|---|---|---|---|
DRY AMD | Schwartz et al. | 9 | hESC-derived suspension | n/a | Subretinal injection (38G) after vitrectomy | 1 vitreous inflammation 1 mild ERM 1 cataract | 15 letters in 4 eyes 11–14 letters in 3 eyes <10 letters in 3 eyes | |
Riemann et al. (poster) | 16 (4 different cohorts) | hESC-derived RPE cells suspension | n/a | -PPV retinotomy -Orbit subretinal delivery system (SDS) | PPV group 2 severe ERM SDS group eyelid edema and subconjunctival hemorrhage | 10–22 letters (cohort 4 n = 4) | ||
Kashani et al. | 5 | hESC-derived RPE monolayers 3.5 mm × 6.25 mm | Parylene C | PPV and retinotomy | 17 letters in 1 patient, none in the other 3 | |||
WET AMD | Tezel et al. | 12 | adult human allogeneic RPE cells | n/a | PPV and subfoveal membranectomy with transplantation | 6 graft fibrosis, 3 retinal detachments with PVR, 2 ERM, 1 graft migration | No change | |
Binder et al. | 53 (39 transplanted, 14 controls) | Autologous RPE cellular suspension | n/a | PPV and subretinal injection | None | Better reading acuity and higher mfERG-response density than control subjects | ||
Mandai et al. | 1 | autologous (iPSC) from skin fibroblasts 1.3 mm × 3 mm | no | PPV, membranectomy and patch implant | No change | |||
Da Cruz et al. | 2 with subretinal hemorrhage | hESC 6 mm × 3 mm | PET | 1 retinal detachment | 29 and 21 letters | |||
Sugita et al. | 5 | HLA homozygote iPS cellular suspension | Subretinal injection (38G) after vitrectomy | 2 mild rejections 1 ERM | No change | |||
STGD1 | Schwartz et al. | 9 | hESC-derived RPE cells suspension | Subretinal injection after vitrectomy | 3 cataracts 1 vitreous inflammation | At 6 months: At least 15 letters in 3 eyes, stable in 4 eyes and 1 eye lost 11 letters. At 12 months: At least 15 letters in 3 patients, stable in 3 patients, and 1 had a decrease of more than 10 letters. | ||
Mehat et al. | 12 | hESC line MA09-derived RPE cellular suspension | Subretinal injection (38G) after vitrectomy | 5 immunosuppression related events. 1nonpigmented and noncontractile epiretinal membrane. 2 visual floaters. | No change | |||
Li et al. | 7 | hESC-derived RPE cells suspension | -PPV -injection of saline solution (41G) to detach the temporal retina. -cellular into the macular sub-retinal space. | 2 transient increases in intraocular pressure (26–32 mmHg). | At 1–4 months: 7 eyes had transiently increased or stable visual function At the last follow-up visit: visual function loss in 2 eyes (1 of them stable when compared to the fellow eye). | |||
Sung et al. | 3 | hESC-derived RPE cells suspension | Subretinal injection after vitrectomy | 1 eye showed improvement, 1 eye showed stability |
Induced Pluripotent Stem Cells | Embryonic Stem Cells | ||
---|---|---|---|
Advantages | Disadvantages | Advantages | Disadvantages |
Possibility to obtain multiple retinal cell populations | Genomic instability | Genomic stability | Forbidden in several countries |
Easy and affordable collection and scale-up of production | Inconstant ability to differentiate into the desired cell linage | High self-renewal potential | High costs and lower availability |
Possibility to perform both autologous and allogenic transplants | Rejection in allogenic transplants | Reduced rejection in allogenic transplants | Ethical issues related to their collection and use |
No ethical issues |
Cellular Suspensions | Patch Transplantation | ||
---|---|---|---|
Advantages | Disadvantages | Advantages | Disadvantages |
Easy and safe delivery | Limited efficiency and regenerative potential | Satisfactory efficiency and regenerative potential | More complex and invasive delivery |
Self-exhaustion of the cell population | Prolonged survival of the graft | Possible foreign body reaction to matrices | |
Lack of polarization of the derived RPE | Polarization of RPE cells |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raimondi, R.; Zollet, P.; De Rosa, F.P.; Tsoutsanis, P.; Stravalaci, M.; Paulis, M.; Inforzato, A.; Romano, M.R. Where Are We with RPE Replacement Therapy? A Translational Review from the Ophthalmologist Perspective. Int. J. Mol. Sci. 2022, 23, 682. https://doi.org/10.3390/ijms23020682
Raimondi R, Zollet P, De Rosa FP, Tsoutsanis P, Stravalaci M, Paulis M, Inforzato A, Romano MR. Where Are We with RPE Replacement Therapy? A Translational Review from the Ophthalmologist Perspective. International Journal of Molecular Sciences. 2022; 23(2):682. https://doi.org/10.3390/ijms23020682
Chicago/Turabian StyleRaimondi, Raffaele, Piero Zollet, Francesco Paolo De Rosa, Panagiotis Tsoutsanis, Matteo Stravalaci, Marianna Paulis, Antonio Inforzato, and Mario R. Romano. 2022. "Where Are We with RPE Replacement Therapy? A Translational Review from the Ophthalmologist Perspective" International Journal of Molecular Sciences 23, no. 2: 682. https://doi.org/10.3390/ijms23020682
APA StyleRaimondi, R., Zollet, P., De Rosa, F. P., Tsoutsanis, P., Stravalaci, M., Paulis, M., Inforzato, A., & Romano, M. R. (2022). Where Are We with RPE Replacement Therapy? A Translational Review from the Ophthalmologist Perspective. International Journal of Molecular Sciences, 23(2), 682. https://doi.org/10.3390/ijms23020682