Genomic Analysis of the Glutathione S-Transferase Family in Pear (Pyrus communis) and Functional Identification of PcGST57 in Anthocyanin Accumulation
Abstract
:1. Introduction
2. Results
2.1. Identification and Sequence Characterization of PcGST Family Members
2.2. Phylogenetic Analysis of the PcGST Family
2.3. Chromosomal Location and Collinearity Analysis of PcGST Genes
2.4. Structure and Motif Analysis of PcGST Genes
2.5. Cis-Element Analysis of PcGST Promoters
2.6. Expression Analysis of the PcGST Family by Glutamic Acid (Glu)-Induced Coloration
2.7. Phylogenetic Analysis and Sequence Alignment of PcGST57 and Anthocyanin-Related GST Genes
2.8. Expression Patterns of PcGST57
2.9. Function Identification of PcGST57 in Anthocyanin Accumulation
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Identification and Chromosomal Location of Pear PcGST Genes
4.3. Phylogenetic and Evolutionary Analysis of Pear PcGST Genes
4.4. Gene Structure and Cis-Element Analysis of PcGST Members
4.5. RNA Isolation and Transcript Analysis
4.6. Functional Characterization of PcGST57 by Transient Expression
4.7. Measurement of Anthocyanin and Total Phenol Content
4.8. Statistical Analysis
4.9. Accession Numbers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, H.; Wang, S.; Yao, J.L.; Zhang, X.; Yang, J.; Wang, L.; Su, Y.; Chen, L.; Zhang, H.; Li, X. The genetic locus underlying red foliage and fruit skin traits is mapped to the same location in the two pear bud mutants ‘Red Zaosu’ and ‘Max Red Bartlett’. Hereditas 2018, 155, 25. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Shi, T.; Wang, F.; Zhou, H.; Yang, J.; Wang, L.; Wang, S.; Su, Y.; Zhang, Z.; Qiao, Y.; et al. Interval mapping for red/green skin color in Asian pears using a modified QTL-seq method. Hortic. Res. 2017, 4, 17053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takos, A.M.; Jaffe, F.W.; Jacob, S.R.; Bogs, J.; Robinson, S.P.; Walker, A.R. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol. 2006, 142, 1216–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Ma, X.; Gao, X.; Wu, W.; Zhou, B. Light Induced Regulation Pathway of Anthocyanin Biosynthesis in Plants. Int. J. Mol. Sci. 2021, 22, 11116. [Google Scholar] [CrossRef]
- Ubi, B.E.; Honda, C.; Bessho, H.; Kondo, S.; Wada, M.; Kobayashi, S.; Moriguchi, T. Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Sci. 2006, 170, 571–578. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Hu, B.; Zhao, J.; Lai, B.; Qin, Y.; Wang, H.; Hu, G. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep. 2016, 35, 831–843. [Google Scholar] [CrossRef]
- Holton, T.A.; Cornish, E.C. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell 1995, 7, 1071–1083. [Google Scholar] [CrossRef]
- Gonzalez, A.; Zhao, M.; Leavitt, J.M.; Lloyd, A.M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 2008, 53, 814–827. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, L.; Xu, H.; Yang, P.; He, G.; Tang, Y.; Qi, X.; Song, M.; Ming, J. LhGST is an anthocyanin-related glutathione S-transferase gene in Asiatic hybrid lilies (Lilium spp.). Plant Cell Rep. 2021, 40, 85–95. [Google Scholar] [CrossRef]
- Zhao, J. Flavonoid transport mechanisms: How to go, and with whom. Trends Plant Sci. 2015, 20, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Dixon, R.A. The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci. 2010, 15, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wang, L.; Deroles, S.; Bennett, R.; Davies, K. New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals. BMC Plant Biol. 2006, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poustka, F.; Irani, N.G.; Feller, A.; Lu, Y.; Pourcel, L.; Frame, K.; Grotewold, E. A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol. 2007, 145, 1323–1335. [Google Scholar] [CrossRef] [Green Version]
- Baxter, I.R.; Young, J.C.; Armstrong, G.; Foster, N.; Bogenschutz, N.; Cordova, T.; Peer, W.A.; Hazen, S.P.; Murphy, A.S.; Harper, J.F. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2005, 102, 2649–2654. [Google Scholar] [CrossRef] [Green Version]
- Goodman, C.D.; Casati, P.; Walbot, V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell 2004, 16, 1812–1826. [Google Scholar] [CrossRef] [Green Version]
- Gomez, C.; Terrier, N.; Torregrosa, L.; Vialet, S.; Fournier-Level, A.; Verries, C.; Souquet, J.M.; Mazauric, J.P.; Klein, M.; Cheynier, V.; et al. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol. 2009, 150, 402–415. [Google Scholar] [CrossRef] [Green Version]
- Shao, D.; Li, Y.; Zhu, Q.; Zhang, X.; Liu, F.; Xue, F.; Sun, J. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). Plant Sci. 2021, 305, 110827. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, W.; Zhu, Y.; Allan, A.C.; Lin-Wang, K.; Xu, C. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnol. J. 2020, 18, 1284–1295. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Zhang, L.; Zhang, J.; Zhang, Y.; Wang, Y.; Chen, Q.; Luo, Y.; Zhang, Y.; Li, M.; Wang, X.; et al. Identification of Anthocyanins-Related Glutathione S-Transferase (GST) Genes in the Genome of Cultivated Strawberry (Fragaria × ananassa). Int. J. Mol. Sci. 2020, 21, 8708. [Google Scholar] [CrossRef]
- Gao, J.; Chen, B.; Lin, H.; Liu, Y.; Wei, Y.; Chen, F.; Li, W. Identification and characterization of the glutathione S-Transferase (GST) family in radish reveals a likely role in anthocyanin biosynthesis and heavy metal stress tolerance. Gene 2020, 743, 144484. [Google Scholar] [CrossRef]
- Mueller, L.A.; Goodman, C.D.; Silady, R.A.; Walbot, V. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol. 2000, 123, 1561–1570. [Google Scholar] [CrossRef] [Green Version]
- Dixon, D.P.; Lapthorn, A.; Edwards, R. Plant glutathione transferases. Genome Biol. 2002, 3, reviews3004.1. [Google Scholar] [CrossRef] [Green Version]
- Vaish, S.; Gupta, D.; Mehrotra, R.; Mehrotra, S.; Basantani, M.K. Glutathione S-transferase: A versatile protein family. 3 Biotech 2020, 10, 321. [Google Scholar] [CrossRef] [PubMed]
- Andrews, C.J.; Cummins, I.; Skipsey, M.; Grundy, N.M.; Jepson, I.; Townson, J.; Edwards, R. Purification and characterisation of a family of glutathione transferases with roles in herbicide detoxification in soybean (Glycine max L.); selective enhancement by herbicides and herbicide safeners. Pestic. Biochem. Physiol. 2005, 82, 205–219. [Google Scholar] [CrossRef]
- Dixon, D.P.; Cummins, L.; Cole, D.J.; Edwards, R. Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 1998, 1, 258–266. [Google Scholar] [CrossRef]
- Islam, S.; Rahman, I.A.; Islam, T.; Ghosh, A. Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: Gaining an insight to their physiological and stress-specific roles. PLoS ONE 2017, 12, e0187504. [Google Scholar] [CrossRef] [Green Version]
- Chronopoulou, E.; Madesis, P.; Tsaftaris, A.; Labrou, N.E. Cloning and characterization of a biotic-stress-inducible glutathione transferase from Phaseolus vulgaris. Appl. Biochem. Biotechnol. 2014, 172, 595–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrs, K.A.; Alfenito, M.R.; Lloyd, A.M.; Walbot, V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 1995, 375, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Alfenito, M.R.; Souer, E.; Goodman, C.D.; Buell, R.; Mol, J.; Koes, R.; Walbot, V. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 1998, 10, 1135–1149. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, S.; Shikazono, N.; Tanaka, A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J. 2004, 37, 104–114. [Google Scholar] [CrossRef]
- Kitamura, S.; Akita, Y.; Ishizaka, H.; Narumi, I.; Tanaka, A. Molecular characterization of an anthocyanin-related glutathione S-transferase gene in cyclamen. J. Plant Physiol. 2012, 169, 636–642. [Google Scholar] [CrossRef]
- Perez-Diaz, R.; Madrid-Espinoza, J.; Salinas-Cornejo, J.; Gonzalez-Villanueva, E.; Ruiz-Lara, S. Differential Roles for VviGST1, VviGST3, and VviGST4 in Proanthocyanidin and Anthocyanin Transport in Vitis vinifera. Front. Plant Sci. 2016, 7, 1166. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Dai, C.; Li, Y.; Feng, J.; Liu, Z.; Kang, C. Reduced Anthocyanins in Petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. J. Exp. Bot. 2018, 69, 2595–2608. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Chen, M.; He, N.; Chen, X.; Wang, N.; Sun, Q.; Zhang, T.; Xu, H.; Fang, H.; Wang, Y.; et al. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Hortic. Res. 2019, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, L.; Guérif, P.; Djulbic, M.; Durel, C.-E.; Chevreau, E.; Lespinasse, Y. Chromosome doubling of pear haploid plants and homozygosity assessment using isozyme and microsatellite markers. Euphytica 2002, 123, 255–262. [Google Scholar] [CrossRef]
- Liu, C.; Hao, J.; Qiu, M.; Pan, J.; He, Y. Genome-wide identification and expression analysis of the MYB transcription factor in Japanese plum (Prunus salicina). Genomics 2020, 112, 4875–4886. [Google Scholar] [CrossRef]
- Conn, S.; Curtin, C.; Bezier, A.; Franco, C.; Zhang, W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J. Exp. Bot. 2008, 59, 3621–3634. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Shi, Y.; Ma, Y.; Yang, X.; Yin, X.; Zhang, Y.; Xiao, Y.; Liu, W.; Li, Y.; Li, S.; et al. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. Plant Biotechnol. J. 2020, 18, 2267–2279. [Google Scholar] [CrossRef] [Green Version]
- Wilce, M.C.; Parker, M.W. Structure and function of glutathione S-transferases. Biochim. Biophys. Acta 1994, 1205, 1–18. [Google Scholar] [CrossRef]
- Frear, D.S.; Swanson, H.R. Biosynthesis of S-(4-ethylamino-6-isopropylamino-2-s-triazino) glutathione: Partial purification and properties of a glutathione S-transferase from corn. Phytochemistry 1970, 9, 2123–2132. [Google Scholar] [CrossRef]
- Droog, F. Plant glutathione S-transferases, a tale of theta and tau. J. Plant Growth Regul. 1997, 16, 95–107. [Google Scholar] [CrossRef]
- McGonigle, B.; Keeler, S.J.; Lau, S.M.; Koeppe, M.K.; O’Keefe, D.P. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol. 2000, 124, 1105–1120. [Google Scholar] [CrossRef] [Green Version]
- Wagner, U.; Edwards, R.; Dixon, D.P.; Mauch, F. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol. Biol. 2002, 49, 515–532. [Google Scholar] [CrossRef]
- Licciardello, C.; D’Agostino, N.; Traini, A.; Recupero, G.R.; Frusciante, L.; Chiusano, M.L. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of Citrus sinensis (L.) Osbeck. BMC Plant Biol. 2014, 14, 39. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Qi, Y.; Zhang, A.; Wu, H.; Liu, Z.; Ren, X. Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis). Plant Mol. Biol. 2019, 100, 451–465. [Google Scholar] [CrossRef]
- Hao, Y.; Xu, S.; Lyu, Z.; Wang, H.; Kong, L.; Sun, S. Comparative Analysis of the Glutathione S-Transferase Gene Family of Four Triticeae Species and Transcriptome Analysis of GST Genes in Common Wheat Responding to Salt Stress. Int. J. Genom. 2021, 2021, 6289174. [Google Scholar] [CrossRef]
- Islam, S.; Sajib, S.D.; Jui, Z.S.; Arabia, S.; Islam, T.; Ghosh, A. Genome-wide identification of glutathione S-transferase gene family in pepper, its classification, and expression profiling under different anatomical and environmental conditions. Sci. Rep. 2019, 9, 9101. [Google Scholar] [CrossRef]
- Rensing, S.A. Gene duplication as a driver of plant morphogenetic evolution. Curr. Opin. Plant Biol. 2014, 17, 43–48. [Google Scholar] [CrossRef]
- Fang, X.; An, Y.; Zheng, J.; Shangguan, L.; Wang, L. Genome-wide identification and comparative analysis of GST gene family in apple (Malus domestica) and their expressions under ALA treatment. 3 Biotech 2020, 10, 307. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; LI, Z.; Zhu, Y. Promotion of L-Glutamic acid on anthocyanin accumulation of Fuji apples. J. Fruit Sci. 2006, 23, 157–160. [Google Scholar] [CrossRef]
- Han, J.; Shang, G.; Zhang, B.; Weng, M.; Xie, Z.; Jiang, W. Effects of foliar spraying of L-glutamic acid and rhamnose solution on changes of pigment content and physiological properties in leaves of red-leaf peach in summer. J. Nanjing Agric. Univ. 2013, 35, 19–24. [Google Scholar] [CrossRef]
- Zeng, L.; Liao, J.; Chen, H. Effects of glutamic acid and TDZ (Thidiazuron) on the fruit coloration and quality of Litchi Chinensis Sonn. J. Trop. Subtrop. Bot. 2012, 20, 382–387. [Google Scholar] [CrossRef]
- Thom, R.; Cummins, I.; Dixon, D.P.; Edwards, R.; Cole, D.J.; Lapthorn, A.J. Structure of a tau class glutathione S-transferase from wheat active in herbicide detoxification. Biochemistry 2002, 41, 7008–7020. [Google Scholar] [CrossRef]
- Li, X.; Gao, P.; Cui, D.; Wu, L.; Parkin, I.; Saberianfar, R.; Menassa, R.; Pan, H.; Westcott, N.; Gruber, M.Y. The Arabidopsis tt19-4 mutant differentially accumulates proanthocyanidin and anthocyanin through a 3′ amino acid substitution in glutathione S-transferase. Plant Cell Environ. 2011, 34, 374–388. [Google Scholar] [CrossRef]
- Saure, M.C. External control of anthocyanin formation in apple. Sci. Hortic. 1990, 42, 181–218. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, J.R.; Hong, S.T.; Yoo, Y.K.; An, G.; Kim, S.R. Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin. Plant Sci. 2003, 165, 403–413. [Google Scholar] [CrossRef]
- Martinoia, E.; Grill, E.; Tommasini, R.; Kreuz, K.; Amrhein, N. ATP-dependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 1993, 364, 247–249. [Google Scholar] [CrossRef]
- Tohge, T.; Nishiyama, Y.; Hirai, M.Y.; Yano, M.; Nakajima, J.; Awazuhara, M.; Inoue, E.; Takahashi, H.; Goodenowe, D.B.; Kitayama, M.; et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 2005, 42, 218–235. [Google Scholar] [CrossRef]
- Bai, S.; Tao, R.; Tang, Y.; Yin, L.; Ma, Y.; Ni, J.; Yan, X.; Yang, Q.; Wu, Z.; Zeng, Y.; et al. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnol. J. 2019, 17, 1985–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT methods. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Dong, S.; Xu, Q.; Liu, S. Control of brown heart in Huangguan pears with 1-methylcyclopropene microbubbles treatment. Sci. Hortic. 2020, 259, 108820. [Google Scholar] [CrossRef]
Gene Name | Gene ID | Chromosome Location | CDS Length (bp) | Amino Acid Length (aa) | Isoelectric Point (pI) | Molecular Weight (kDa) |
---|---|---|---|---|---|---|
PcGST1 | pycom01g14390 | Chr1:14570338-14572677 | 912 | 303 | 8.73 | 34.14 |
PcGST2 | pycom02g16660 | Chr2:13905061-13906109 | 375 | 124 | 6.04 | 13.86 |
PcGST3 | pycom02g20280 | Chr2:18414352-18415328 | 660 | 219 | 5.21 | 25.23 |
PcGST4 | pycom02g20290 | Chr2:18422356-18423333 | 660 | 219 | 5.19 | 25.04 |
PcGST5 | pycom02g20300 | Chr2:18435026-18436003 | 660 | 219 | 5.45 | 25.27 |
PcGST6 | pycom03g22330 | Chr3:22462862-22464001 | 573 | 190 | 6.66 | 21.33 |
PcGST7 | pycom03g22340 | Chr3:22484661-22486019 | 792 | 263 | 8.48 | 29.48 |
PcGST8 | pycom03g22350 | Chr3:22495188-22496419 | 741 | 246 | 9.38 | 27.94 |
PcGST9 | pycom03g22370 | Chr3:22518852-22520127 | 732 | 243 | 9.11 | 27.34 |
PcGST10 | pycom04g10330 | Chr4:13096341-13097762 | 588 | 195 | 5.82 | 22.40 |
PcGST11 | pycom04g10340 | Chr4:13102770-13103977 | 366 | 121 | 9.46 | 13.75 |
PcGST12 | pycom04g12760 | Chr4:15730309-15730661 | 303 | 100 | 9.10 | 11.60 |
PcGST13 | pycom05g16920 | Chr5:20182936-20183765 | 666 | 221 | 5.27 | 25.34 |
PcGST14 | pycom05g16930 | Chr5:20184941-20190656 | 1365 | 454 | 6.12 | 51.96 |
PcGST15 | pycom05g16940 | Chr5:20190776-20194179 | 690 | 229 | 5.96 | 26.86 |
PcGST16 | pycom05g19570 | Chr5:22475360-22476224 | 663 | 220 | 6.14 | 25.58 |
PcGST17 | pycom05g19590 | Chr5:22500115-22501077 | 660 | 219 | 5.28 | 25.27 |
PcGST18 | pycom05g19600 | Chr5:22511832-22512833 | 660 | 219 | 5.27 | 25.39 |
PcGST19 | pycom05g19620 | Chr5:22528365-22529724 | 798 | 265 | 5.68 | 30.74 |
PcGST20 | pycom05g19630 | Chr5:22532945-22534113 | 660 | 219 | 5.64 | 25.50 |
PcGST21 | pycom05g22990 | Chr5:25074385-25076708 | 1266 | 421 | 8.27 | 48.07 |
PcGST22 | pycom05g23030 | Chr5:25095525-25099112 | 2361 | 786 | 9.04 | 91.22 |
PcGST23 | pycom06g01020 | Chr6:1015178-1016874 | 654 | 217 | 6.36 | 24.45 |
PcGST24 | pycom06g07800 | Chr6:12765956-12769705 | 792 | 263 | 9.45 | 29.96 |
PcGST25 | pycom06g17080 | Chr6:21128796-21129570 | 687 | 228 | 5.86 | 26.05 |
PcGST26 | pycom06g20360 | Chr6:23436022-23438824 | 1167 | 388 | 8.90 | 42.74 |
PcGST27 | pycom07g06270 | Chr7:5539987-5540718 | 522 | 173 | 4.92 | 19.68 |
PcGST28 | pycom08g00510 | Chr8:453769-454646 | 657 | 218 | 6.34 | 24.67 |
PcGST29 | pycom08g00850 | Chr8:661714-663672 | 975 | 324 | 8.94 | 36.30 |
PcGST30 | pycom08g21180 | Chr8:20733707-20736680 | 1437 | 478 | 8.27 | 54.21 |
PcGST31 | pycom08g21730 | Chr8:21146282-21151390 | 609 | 202 | 6.10 | 22.84 |
PcGST32 | pycom09g06760 | Chr9:4995997-4997377 | 678 | 225 | 5.62 | 26.02 |
PcGST33 | pycom09g17830 | Chr9:18321111-18324240 | 798 | 265 | 8.78 | 29.32 |
PcGST34 | pycom10g14850 | Chr10:18226369-18227186 | 660 | 219 | 5.70 | 25.29 |
PcGST35 | pycom10g14860 | Chr10:18230656-18231515 | 678 | 225 | 6.11 | 25.86 |
PcGST36 | pycom10g14870 | Chr10:18235274-18236268 | 738 | 245 | 6.42 | 28.46 |
PcGST37 | pycom10g16980 | Chr10:20171035-20172247 | 660 | 219 | 5.55 | 25.42 |
PcGST38 | pycom10g19580 | Chr10:22635105-22637576 | 1167 | 388 | 6.38 | 44.02 |
PcGST39 | pycom11g26520 | Chr11:29074954-29075658 | 483 | 160 | 5.31 | 18.21 |
PcGST40 | pycom12g12570 | Chr12:15027339-15028517 | 366 | 121 | 9.45 | 13.74 |
PcGST41 | pycom13g07080 | Chr13:4692196-4693096 | 702 | 233 | 5.88 | 25.66 |
PcGST42 | pycom13g21680 | Chr13:18606904-18610817 | 954 | 317 | 5.27 | 35.80 |
PcGST43 | pycom14g19350 | Chr14:20703306-20703940 | 429 | 142 | 7.73 | 16.56 |
PcGST44 | pycom14g19760 | Chr14:21009613-21012410 | 999 | 332 | 8.28 | 36.49 |
PcGST45 | pycom15g00440 | Chr15:265642-266270 | 366 | 121 | 7.69 | 13.54 |
PcGST46 | pycom15g12040 | Chr15:8191500-8192547 | 804 | 267 | 9.75 | 31.35 |
PcGST47 | pycom15g35830 | Chr15:35918255-35922360 | 1224 | 407 | 6.62 | 45.24 |
PcGST48 | pycom15g36060 | Chr15:36157385-36159383 | 942 | 313 | 9.06 | 34.82 |
PcGST49 | pycom15g38640 | Chr15:38398976-38402501 | 1635 | 544 | 9.30 | 61.98 |
PcGST50 | pycom15g39250 | Chr15:39135295-39139029 | 696 | 231 | 5.48 | 26.15 |
PcGST51 | pycom16g07010 | Chr16:4552487-4554499 | 624 | 207 | 5.15 | 22.69 |
PcGST52 | pycom16g19480 | Chr16:16579477-16580474 | 666 | 221 | 6.39 | 25.74 |
PcGST53 | pycom16g21400 | Chr16:19849382-19855412 | 951 | 316 | 5.62 | 36.15 |
PcGST54 | pycom17g12850 | Chr17:10560141-10562650 | 630 | 209 | 5.98 | 24.26 |
PcGST55 | pycom17g26130 | Chr17:24436789-24440104 | 798 | 265 | 8.94 | 29.30 |
PcGST56 | pycom17g26990 | Chr17:25250001-25251072 | 663 | 220 | 5.60 | 25.03 |
PcGST57 | pycom17g27080 | Chr17:25355973-25357297 | 648 | 215 | 5.50 | 24.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Zhang, X.; Duan, R.; Han, C.; Yang, J.; Wang, L.; Wang, S.; Su, Y.; Wang, L.; Dong, Y.; et al. Genomic Analysis of the Glutathione S-Transferase Family in Pear (Pyrus communis) and Functional Identification of PcGST57 in Anthocyanin Accumulation. Int. J. Mol. Sci. 2022, 23, 746. https://doi.org/10.3390/ijms23020746
Li B, Zhang X, Duan R, Han C, Yang J, Wang L, Wang S, Su Y, Wang L, Dong Y, et al. Genomic Analysis of the Glutathione S-Transferase Family in Pear (Pyrus communis) and Functional Identification of PcGST57 in Anthocyanin Accumulation. International Journal of Molecular Sciences. 2022; 23(2):746. https://doi.org/10.3390/ijms23020746
Chicago/Turabian StyleLi, Bo, Xiangzhan Zhang, Ruiwei Duan, Chunhong Han, Jian Yang, Long Wang, Suke Wang, Yanli Su, Lei Wang, Yongfei Dong, and et al. 2022. "Genomic Analysis of the Glutathione S-Transferase Family in Pear (Pyrus communis) and Functional Identification of PcGST57 in Anthocyanin Accumulation" International Journal of Molecular Sciences 23, no. 2: 746. https://doi.org/10.3390/ijms23020746
APA StyleLi, B., Zhang, X., Duan, R., Han, C., Yang, J., Wang, L., Wang, S., Su, Y., Wang, L., Dong, Y., & Xue, H. (2022). Genomic Analysis of the Glutathione S-Transferase Family in Pear (Pyrus communis) and Functional Identification of PcGST57 in Anthocyanin Accumulation. International Journal of Molecular Sciences, 23(2), 746. https://doi.org/10.3390/ijms23020746