Surfactant Effect on the Physicochemical Characteristics of Solid Lipid Nanoparticles Based on Pillar[5]arenes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Monosubstituted Pillar[5]arenes Containing Amide and Carboxyl Groups
2.2. Synthesis of SLN Based on Monosubstituted Pillar[5]arenes Containing Amide and Carboxyl Groups
2.3. Surfactant Effect on the Synthesis of Mixed SLN
2.4. Synthesis of Mixed SLN Based on Monosubstituted Pillar[5]arenes and DTAC
3. Materials and Methods
3.1. General
3.2. SLN Preparation
3.3. Dynamic Light Scattering (DLS)
3.3.1. Particles’ Size
3.3.2. Zeta Potentials
3.4. Transmission Electron Microscopy (TEM)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Lin, E.; Peng, Y.-L.; Chen, Y.; Cheng, P.; Zhang, Z. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coordin. Chem. Rev. 2020, 423, 213485. [Google Scholar] [CrossRef]
- Xu, Z.; Jia, S.; Wang, W.; Yuan, Z.; Ravoo, B.J.; Guo, D.-S. Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation. Nat. Chem. 2019, 11, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Thallapally, P.K.; McGrail, B.P. Porous organic molecular materials. CrystEngComm 2012, 14, 1909–1919. [Google Scholar] [CrossRef]
- Iskierko, Z.; Noworyta, K.; Sharma, P.S. Molecular recognition by synthetic receptors: Application in field-effect transistor based chemosensing. Biosens. Bioelectron. 2018, 109, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Kubik, S. Anion recognition in aqueous media by cyclopeptides and other synthetic receptors. Acc. Chem. Res. 2017, 50, 2870–2878. [Google Scholar] [CrossRef]
- Nazarova, A.; Shurpik, D.; Padnya, P.; Mukhametzyanov, T.; Cragg, P.; Stoikov, I. Self-assembly of supramolecular architectures by the effect of amino acid residues of quaternary ammonium pillar[5]arenes. Int. J. Mol. Sci. 2020, 21, 7206. [Google Scholar] [CrossRef]
- Yakimova, L.S.; Padnya, P.L.; Kunafina, A.F.; Nugmanova, A.R.; Stoikov, I.I. Sulfobetaine derivatives of thiacalix[4]arene: Synthesis and supramolecular self-assembly of submicron aggregates with Ag I cations. Mendeleev Commun. 2019, 29, 86–88. [Google Scholar] [CrossRef]
- He, Q.; Vargas-Zuniga, G.I.; Kim, S.H.; Kim, S.K.; Sessler, J.L. Macrocycles as ion pair receptors. Chem. Rev. 2019, 119, 9753–9835. [Google Scholar] [CrossRef]
- Tromans, R.A.; Carter, T.S.; Chabanne, L.; Crump, M.P.; Li, H.; Matlock, J.V.; Orchard, M.G.; Davis, A.P. A biomimetic receptor for glucose. Nat. Chem. 2019, 11, 52–56. [Google Scholar] [CrossRef]
- Lou, X.-Y.; Li, Y.-P.; Yang, Y.-W. Gated materials: Installing macrocyclic arenes-based supramolecular nanovalves on porous nanomaterials for controlled cargo release. Biotechnol. J. 2019, 14, 1800354. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.-W.; Liu, Y.-C.; Guo, D.-S. Assembling features of calixarene-based amphiphiles and supra-amphiphiles. Mater. Chem. Front. 2020, 4, 46–98. [Google Scholar] [CrossRef]
- Ogoshi, T.; Kakuta, T.; Yamagishi, T.-A. Applications of pillar[n]arene-based supramolecular assemblies. Angew. Chem. Int. Edit. 2019, 58, 2197–2206. [Google Scholar] [CrossRef]
- Song, N.; Kakuta, T.; Yamagishi, T.-A.; Yang, Y.-W.; Ogoshi, T. Molecular-scale porous materials based on pillar[n]arenes. Chem 2018, 4, 2029–2053. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-H.; Lou, X.-Y.; Yang, Y.-W. Pillararene-based molecular-scale porous materials. Chem. Commun. 2021, 57, 13429–13447. [Google Scholar] [CrossRef] [PubMed]
- Sanna, E.; Escudero-Adan, E.C.; Lopez, C.; Ballester, P.; Rotger, C.; Costa, A. Macrocyclic tetraimines: Synthesis and reversible uptake of diethyl phthalate by a porous macrocycle. J. Org. Chem. 2016, 81, 5173–5180. [Google Scholar] [CrossRef]
- Chen, W.; Chen, P.; Zhang, G.; Xing, G.; Feng, Y.; Yang, Y.-W.; Chen, L. Macrocycle-derived hierarchical porous organic polymers: Synthesis and applications. Chem. Soc. Rev. 2021, 50, 11684–11714. [Google Scholar] [CrossRef] [PubMed]
- Gorbatchuk, V.V.; Savelyeva, L.S.; Ziganshin, M.A.; Antipin, I.S.; Sidorov, V.A. Molecular recognition of organic guest vapor by solid adamantylcalix[4] arene. Russ. Chem. Bull. 2004, 53, 60–65. [Google Scholar] [CrossRef]
- Pan, Y.-C.; Hu, X.-Y.; Guo, D.-S. Biomedical applications of calixarenes: State of the art and perspectives. Angew. Chem. Int. Edit. 2021, 60, 2768–2794. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Zhang, Y.-M.; Yu, H.-J.; Liu, Y. Cucurbituril-based biomacromolecular assemblies. Angew. Chem. Int. Edit. 2021, 60, 3870–3880. [Google Scholar] [CrossRef]
- Deng, C.-L.; Murkli, S.L.; Isaacs, L.D. Supramolecular hosts as: In vivo sequestration agents for pharmaceuticals and toxins. Chem. Soc. Rev. 2020, 49, 7516–7532. [Google Scholar] [CrossRef]
- Ren, X.; Zheng, J.; Cheng, M.; Wang, Q.; Jiang, J.; Wang, L. Supramolecular systems constructed by crown ether-based cryptands. Tetrahedron Lett. 2018, 59, 2197–2204. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Xu, F.; Liang, T.; Wen, H.; Tian, W. Pillararene-based supramolecular polymers. Chem. Commun. 2019, 55, 271–285. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.; Shan, X.; Zhao, M.; Zhao, Q.; Liao, X.; Xie, M. Pillararene-containing polymers with tunable conductivity based on host-guest complexations. ACS Macro Lett. 2019, 8, 1588–1593. [Google Scholar] [CrossRef]
- Dong, S.; Han, C.; Zheng, B.; Zhang, M.; Huang, F. Preparation of two new [2]rotaxanes based on the pillar[5]arene/alkane recognition motif. Tetrahedron Lett. 2012, 53, 3668–3671. [Google Scholar] [CrossRef]
- Wang, S.; Shao, X.; Cai, W. Solvent and structure effects on the shuttling in pillar[5]arene/triazole rotaxanes. J. Phys. Chem. C 2017, 121, 25547–25553. [Google Scholar] [CrossRef]
- Fathalla, M.; Strutt, N.L.; Sampath, S.; Katsiev, K.; Hartlieb, K.; Bakr, O.M.; Stoddart, J.F. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene–viologen host–guest interactions. Chem. Commun. 2015, 51, 10455–10458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakimova, L.S.; Guralnik, E.G.; Shurpik, D.N.; Evtugyn, V.G.; Osin, Y.N.; Subakaeva, E.V.; Sokolova, E.A.; Zelenikhin, P.V.; Stoikov, I.I. Morphology, structure and cytotoxicity of dye-loaded lipid nanoparticles based on monoamine pillar[5]arenes. Mater. Chem. Front. 2020, 4, 2962–2970. [Google Scholar] [CrossRef]
- Yakimova, L.S.; Shurpik, D.N.; Guralnik, E.G.; Evtugyn, V.G.; Osin, Y.N.; Stoikov, I.I. Fluorescein-loaded solid lipid nanoparticles based on monoamine pillar[5]arene: Synthesis and interaction with DNA. ChemNanoMat 2018, 4, 919–923. [Google Scholar] [CrossRef]
- Bayon-Cordero, L.; Alkorta, I.; Arana, L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials 2019, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Helttunen, K.; Galan, A.; Ballester, P.; Bergenholtz, J.; Nissinen, M. Solid lipid nanoparticles from amphiphilic calixpyrroles. J. Colloid. Interf. Sci. 2014, 426, 256–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar, L.; Ballester, P. Molecular recognition in water using macrocyclic synthetic receptors. Chem. Rev. 2021, 121, 2445–2514. [Google Scholar] [CrossRef]
- Pinalli, R.; Pedrini, A.; Dalcanale, E. Biochemical sensing with macrocyclic receptors. Chem. Soc. Rev. 2018, 47, 7006–7026. [Google Scholar] [CrossRef]
- Martins, J.N.; Lima, J.C.; Basislio, N. Selective recognition of amino acids and peptides by small supramolecular receptors. Molecules 2021, 26, 106. [Google Scholar] [CrossRef]
- Botto, C.; Mauro, N.; Amore, E.; Martorana, E.; Giammona, G.; Bondi, M.L. Surfactant effect on the physicochemical characteristics of cationic solid lipid nanoparticles. Int. J. Pharm. 2017, 516, 334–341. [Google Scholar] [CrossRef]
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Kumar, N.S.; Vekariya, R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef]
- Pink, D.L.; Loruthai, O.; Ziolek, R.M.; Wasutrasawat, P.; Terry, A.E.; Lawrence, M.J.; Lorenz, C.D. On the structure of solid lipid nanoparticles. Small 2019, 15, 1903156. [Google Scholar] [CrossRef]
- Severino, P.; Andreani, T.; Marcedo, A.S.; Fangueiro, J.F.; Santana, M.H.; Silva, A.M.; Souto, E.B. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J. Drug Deliv. 2012, 2012, 750891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, C.; Long, R.; Chen, T.; Yan, C.; Yao, Y. Pillar[5]arene based [1]rotaxane systems with redox-responsive host-guest property: Design, synthesis and the key role of chain length. Front. Chem. 2019, 7, 508. [Google Scholar] [CrossRef] [Green Version]
- Nazarova, A.A.; Yakimova, L.S.; Klochkov, V.V.; Stoikov, I.I. Monoaminophosphorylated pillar[5]arenes as hosts for alkaneamines. New J. Chem. 2017, 41, 1820–1826. [Google Scholar] [CrossRef]
- Nazarova, A.A.; Padnya, P.L.; Gilyazeva, A.I.; Khannanov, A.A.; Evtugyn, V.G.; Kutyreva, M.P.; Klochkov, V.V.; Stoikov, I.I. Supramolecular motifs for the self-assembly of monosubstituted pillar[5]arenes with an amide fragment: From nanoparticles to supramolecular polymers. New J. Chem. 2018, 42, 19853–19863. [Google Scholar] [CrossRef]
- Shalaeva, Y.V.; Morozova, J.E.; Gubaidullin, A.T.; Safina, A.F.; Syakaev, V.V.; Ermakova, A.M.; Nizameev, I.R.; Kadirov, M.K.; Ovsyannikov, A.S.; Konovalov, A.I. Gold nanoparticles, capped by carboxy-calix[4]resorcinarenes: Effect of structure and concentration of macrocycles on the nanoparticles size and aggregation. J. Incl. Phenom. Macro. 2018, 92, 211–221. [Google Scholar] [CrossRef]
- Chi, X.; Xue, M.; Yao, Y.; Huang, F. Redox-responsive complexation between a pillar[5]arene with mono(ethylene oxide) substituents and paraquat. Org. Lett. 2013, 15, 4722–4725. [Google Scholar] [CrossRef]
- Chen, L.; Cai, Y.; Feng, W.; Yuan, L. Pillararenes as macrocyclic hosts: A rising star in metal ion separation. Chem. Commun. 2019, 55, 7883–7898. [Google Scholar] [CrossRef]
- Antipin, I.S.; Alfimov, M.V.; Arslanov, V.V.; Burilov, V.A.; Vatsadze, S.Z.; Voloshin, Y.Z.; Volcho, K.P.; Gorbatchuk, V.V.; Gorbunova, Y.G.; Gromov, S.P.; et al. Functional Supramolecular Systems: Design and Applications. Russ. Chem. Rev. 2021, 90, 895–1107. [Google Scholar] [CrossRef]
- Nazarova, A.; Khannanov, A.; Boldyrev, A.; Yakimova, L.; Stoikov, I. Self-assembling systems based on pillar[5]arenes and surfactants for encapsulation of diagnostic dye dapi. Int. J. Mol. Sci. 2021, 22, 6038. [Google Scholar] [CrossRef] [PubMed]
- Vasilieva, E.A.; Valeeva, F.G.; Yeliseeva, O.E.; Lukashenko, S.S.; Saifutdinova, M.N.; Zakharov, V.M.; Gavrilova, E.L.; Zakharova, L.Y. Supramolecular nanocontainers based on hydrophobized calix[4]resorcinol: Modification by gemini surfactants and polyelectrolyte. Macroheterocycles 2017, 10, 182–189. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Mahbub, S.; Hoque, M.A.; Rub, M.A.; Kumar, D.J. Investigation of mixed micellization study of sodium dodecyl sulfate and tetradecyltrimethylammonium bromide mixtures at different compositions: Effect of electrolytes and temperatures. Phys. Org. Chem. 2020, 33, e4047. [Google Scholar] [CrossRef]
- Sharipov, M.; Tawfik, S.M.; Gerelkhuu, Z.; Huy, B.T.; Lee, Y.-I. Phospholipase A2-responsive phosphate micelle-loaded UCNPs for bioimaging of prostate cancer cells. Sci. Rep. 2017, 7, 16073. [Google Scholar] [CrossRef] [Green Version]
- Noble, J.M.; Roberts, L.M.; Vidavsky, N.; Chiou, A.E.; Fishbach, C.; Paszek, M.J.; Estroff, L.A.; Kourkoutis, L.F. Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles. J. Struct. Biol. 2020, 210, 107474. [Google Scholar] [CrossRef]
C, M | d, nm | PDI | ζ, mV | |
---|---|---|---|---|
SLN-4 | 5 × 10−5 | 223 ± 4 | 0.08 ± 0.00 | −31.8 ± 1.1 |
1 × 10−4 | 88 ± 1 | 0.08 ± 0.00 | −26.3 ± 1.0 | |
3 × 10−4 | 5124 ± 184 | 0.47 ± 0.06 | N/A * | |
SLN-5 | 5 × 10−5 | 253 ± 11 | 0.16 ± 0.01 | −28.8 ± 1.0 |
1 × 10−4 | 250 ± 8 | 0.18 ± 0.02 | −29.0 ± 1.2 | |
3 × 10−4 | 297 ± 13 | 0.21 ± 0.02 | −37.9 ± 1.0 | |
SLN-6 | 5 × 10−5 | 268 ± 4 | 0.14 ± 0.01 | −31.0 ± 0.9 |
1 × 10−4 | 215 ± 3 | 0.08 ± 0.00 | −19.4 ± 0.6 | |
3 × 10−4 | 262 ± 7 | 0.14 ± 0.01 | −23.0 ± 0.9 |
Cpillar, M | Pillar[5]arene/Surfactant Ratio | d, nm | PDI | ζ, mV |
---|---|---|---|---|
1 × 10−4 | 1:1 | 278 ± 9 | 0.15 ± 0.01 | −30.3 ± 1.0 |
1:100 | 695 ± 141 | 0.62 ± 0.16 | N/A * | |
1:1000 | 2026 ± 666 | 0.39 ± 0.06 | N/A * | |
3 × 10−4 | 1:1 | 231 ± 6 | 0.11 ± 0.00 | −22.1 ± 0.9 |
1:100 | 2670 ± 1379 | 0.68 ± 0.19 | N/A * | |
1:1000 | 2433 ± 1831 | 0.72 ± 0.16 | N/A * |
Pillar[5]arene/Surfactant Ratio | d, nm | PDI | ζ, mV | |
---|---|---|---|---|
SLN-5 | 1:1 | 265 ± 13 | 0.19 ± 0.01 | −43.5 ± 1.0 |
1:100 | 406 ± 29 | 0.46 ± 0.16 | N/A * | |
1:1000 | 284 ± 5 | 0.18 ± 0.01 | 19.5 ± 0.6 | |
SLN-6 | 1:1 | 342 ± 9 | 0.17 ± 0.02 | −47.4 ± 1.0 |
1:100 | 133 ± 6 | 0.22 ± 0.01 | −32.5 ± 1.0 | |
1:1000 | 756 ± 147 | 0.68 ± 0.19 | N/A * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazarova, A.; Yakimova, L.; Filimonova, D.; Stoikov, I. Surfactant Effect on the Physicochemical Characteristics of Solid Lipid Nanoparticles Based on Pillar[5]arenes. Int. J. Mol. Sci. 2022, 23, 779. https://doi.org/10.3390/ijms23020779
Nazarova A, Yakimova L, Filimonova D, Stoikov I. Surfactant Effect on the Physicochemical Characteristics of Solid Lipid Nanoparticles Based on Pillar[5]arenes. International Journal of Molecular Sciences. 2022; 23(2):779. https://doi.org/10.3390/ijms23020779
Chicago/Turabian StyleNazarova, Anastasia, Luidmila Yakimova, Darya Filimonova, and Ivan Stoikov. 2022. "Surfactant Effect on the Physicochemical Characteristics of Solid Lipid Nanoparticles Based on Pillar[5]arenes" International Journal of Molecular Sciences 23, no. 2: 779. https://doi.org/10.3390/ijms23020779
APA StyleNazarova, A., Yakimova, L., Filimonova, D., & Stoikov, I. (2022). Surfactant Effect on the Physicochemical Characteristics of Solid Lipid Nanoparticles Based on Pillar[5]arenes. International Journal of Molecular Sciences, 23(2), 779. https://doi.org/10.3390/ijms23020779