Identification of Core Genes and Pathways in Melanoma Metastasis via Bioinformatics Analysis
Abstract
:1. Introduction
2. Results
2.1. Identification of DEGs
2.2. GO Function and KEGG Pathway Enrichment Analyses of DEGs
2.3. Hub Genes and Module Screening from PPI Network
2.4. Validation of Hub Gene Expression between Primary Melanoma and Metastatic Site in TCGA Database
2.5. Validation of Protein Expression of Hub Genes in Paired Premetastatic and Postmetastatic Melanoma Cells
2.6. KRT5 Knockdown Promotes Cell Proliferation, Migration, and Invasion of Melanoma
3. Discussion
4. Materials and Methods
4.1. Microarray Data
4.2. Identification of the DEGs
4.3. GO Function and KEGG Pathway Analyses of DEGs
4.4. Construction of PPI Network and Module Analysis
4.5. Definitions of Hub Genes
4.6. Validation of Hub Gene Expression in TCGA Database
4.7. Cell, Cell Culture, and Postmetastatic Cell Line Establishment
4.8. siRNA-Mediated Knockdown of KRT5 in A375 Cells
4.9. qRT-PCR
4.10. Quantification of Protein Profiles Using Western Blotting
4.11. Cell Proliferation Assay
4.12. Transwell Assay
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eggermont, A.M.; Spatz, A.; Robert, C. Cutaneous melanoma. Lancet 2014, 383, 816–827. [Google Scholar] [CrossRef]
- Braeuer, R.R.; Watson, I.R.; Wu, C.J.; Mobley, A.K.; Kamiya, T.; Shoshan, E.; Bar-Eli, M. Why is melanoma so metastatic? Pigment. Cell Melanoma Res. 2014, 27, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Owens, B. Melanoma. Nature 2014, 515, S109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, C.; Lim, J.-H.; Lee, Y.; Granter, S.R.; Thomas, A.; Vazquez, F.; Widlund, H.R.; Puigserver, P. A PGC1α-mediated transcriptional axis suppresses melanoma metastasis. Nature 2016, 537, 422–426. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Miele, M.E.; Hicks, D.J.; Philips, K.K.; Trent, J.M.; Weissman, B.E.; Welch, D.R. KiSS-1, a Novel Human Malignant Melanoma Metastasis-Suppressor Gene. J. Natl. Cancer Inst. 1996, 88, 1731–1737. [Google Scholar] [CrossRef]
- McKenzie, J.A.; Liu, T.; Jung, J.Y.; Jones, B.B.; Ekiz, H.A.; Welm, A.L.; Grossman, D. Survivin promotion of melanoma metastasis requires upregulation of alpha5 integrin. Carcinogenesis 2013, 34, 2137–2144. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Li, B.; Chen, F.; Shen, W.; Lu, Y.; Zhong, C.; Zhang, C.; Xie, H.; Katanaev, V.L.; et al. WDR74 modulates melanoma tumorigenesis and metastasis through the RPL5-MDM2-p53 pathway. Oncogene 2020, 39, 2741–2755. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhong, C.; Wang, J.; Chen, F.; Shen, W.; Li, B.; Zheng, N.; Lu, Y.; Katanaev, V.L.; Jia, L. NOL7 facilitates melanoma progression and metastasis. Signal Transduct. Target. Ther. 2021, 6, 352. [Google Scholar] [CrossRef]
- Krepler, C.; Sproesser, K.; Brafford, P.; Beqiri, M.; Garman, B.; Xiao, M.; Shannan, B.; Watters, A.; Perego, M.; Zhang, G. A comprehensive patient-derived xenograft collection representing the heterogeneity of melanoma. Cell Rep. 2017, 21, 1953–1967. [Google Scholar] [CrossRef]
- Yan, J.; Huang, Q. Genomics screens for metastasis genes. Cancer Metastasis Rev. 2012, 31, 419–428. [Google Scholar] [CrossRef]
- Sun, C.; Yuan, Q.; Wu, D.; Meng, X.; Wang, B. Identification of core genes and outcome in gastric cancer using bioinformatics analysis. Oncotarget 2017, 8, 70271. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA A Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [Green Version]
- Yuzhalin, A.E.; Lim, S.Y.; Kutikhin, A.G.; Gordon-Weeks, A.N. Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim. Biophys. Acta-Rev. Cancer 2018, 1870, 207–228. [Google Scholar] [CrossRef]
- Schomberg, J.; Wang, Z.; Farhat, A.; Guo, K.L.; Xie, J.; Zhou, Z.; Liu, J.; Kovacs, B.; Liu-Smith, F. Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROS. Biochem. Pharmacol. 2020, 177, 114025. [Google Scholar] [CrossRef]
- Barney, L.E.; Dandley, E.C.; Jansen, L.E.; Reich, N.G.; Mercurio, A.; Peyton, S. A cell–ECM screening method to predict breast cancer metastasis. Integr. Biol. 2015, 7, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Venning, F.A.; Wullkopf, L.; Erler, J.T. Targeting ECM disrupts cancer progression. Front. Oncol. 2015, 5, 224. [Google Scholar] [CrossRef] [Green Version]
- Hall, A. The cytoskeleton and cancer. Cancer Metastasis Rev. 2009, 28, 5–14. [Google Scholar] [CrossRef]
- Ruocco, M.R.; Avagliano, A.; Granato, G.; Vigliar, E.; Masone, S.; Montagnani, S.; Arcucci, A. Metabolic flexibility in melanoma: A potential therapeutic target. Semin. Cancer Biol. 2019, 59, 187–207. [Google Scholar] [CrossRef] [PubMed]
- Kleszczynski, K.; Kim, T.K.; Bilska, B.; Sarna, M.; Mokrzynski, K.; Stegemann, A.; Pyza, E.; Reiter, R.J.; Steinbrink, K.; Bohm, M.; et al. Melatonin exerts oncostatic capacity and decreases melanogenesis in human MNT-1 melanoma cells. J. Pineal Res. 2019, 67, e12610. [Google Scholar] [CrossRef] [PubMed]
- Rich, J.N. Cancer stem cells in radiation resistance. Cancer Res. 2007, 67, 8980–8984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliva, I.B.; Coelho, R.M.; Barcellos, G.G.; Saldanha-Gama, R.; Wermelinger, L.S.; Marcinkiewicz, C.; Benedeta Zingali, R.; Barja-Fidalgo, C. Effect of RGD-disintegrins on melanoma cell growth and metastasis: Involvement of the actin cytoskeleton, FAK and c-Fos. Toxicon 2007, 50, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Pellerin, L.; Carrie, L.; Dufau, C.; Nieto, L.; Segui, B.; Levade, T.; Riond, J.; Andrieu-Abadie, N. Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives. Cancers 2020, 12, 3147. [Google Scholar] [CrossRef]
- Brozyna, A.A.; Jozwicki, W.; Carlson, J.A.; Slominski, A.T. Melanogenesis affects overall and disease-free survival in patients with stage III and IV melanoma. Hum. Pathol. 2013, 44, 2071–2074. [Google Scholar] [CrossRef] [Green Version]
- Mood, K.; Bong, Y.-S.; Lee, H.-S.; Ishimura, A.; Daar, I.O. Contribution of JNK, Mek, Mos and PI-3K signaling to GVBD in Xenopus oocytes. Cell. Signal. 2004, 16, 631–642. [Google Scholar] [CrossRef]
- Leroy, A.; Mareel, M.; De Bruyne, G.; Bailey, G.; Nelis, H. Metastasis of Entamoeba histolytica compared to colon cancer: One more step in invasion. Invasion Metastasis 1994, 14, 177–191. [Google Scholar]
- Nawijn, M.C.; Hackett, T.L.; Postma, D.S.; van Oosterhout, A.J.; Heijink, I.H. E-cadherin: Gatekeeper of airway mucosa and allergic sensitization. Trends Immunol. 2011, 32, 248–255. [Google Scholar] [CrossRef]
- Canel, M.; Serrels, A.; Frame, M.C.; Brunton, V.G. E-cadherin–integrin crosstalk in cancer invasion and metastasis. J. Cell Sci. 2013, 126, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Kuphal, S.; Bosserhoff, A.K. E-cadherin cell–cell communication in melanogenesis and during development of malignant melanoma. Arch. Biochem. Biophys. 2012, 524, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Y.; Liang, J.; Tian, Y.; Zhang, Y.; Tao, K. Bioinformatics analysis to identify the critical genes, microRNAs and long noncoding RNAs in melanoma. Medicine 2017, 96, e7497. [Google Scholar] [CrossRef] [PubMed]
- Mathur, M.; Goodwin, L.; Cowin, P. Interactions of the cytoplasmic domain of the desmosomal cadherin Dsg1 with plakoglobin. J. Biol. Chem. 1994, 269, 14075–14080. [Google Scholar] [CrossRef]
- Han, Y.; Li, X.; Yan, J.; Ma, C.; Wang, X.; Pan, H.; Zheng, X.; Zhang, Z.; Gao, B.; Ji, X.Y. Bioinformatic Analysis Identifies Potential Key Genes in the Pathogenesis of Melanoma. Front. Oncol. 2020, 10, 581985. [Google Scholar] [CrossRef]
- Li, G.; Schaider, H.; Satyamoorthy, K.; Hanakawa, Y.; Hashimoto, K.; Herlyn, M. Downregulation of E-cadherin and Desmoglein 1 by autocrine hepaocyte growth factor during melanoma development. Oncogene 2001, 20, 8125–8135. [Google Scholar] [CrossRef] [Green Version]
- Bilandzic, M.; Rainczuk, A.; Green, E.; Fairweather, N.; Jobling, T.W.; Plebanski, M.; Stephens, A.N. Keratin-14 (KRT14) Positive Leader Cells Mediate Mesothelial Clearance and Invasion by Ovarian Cancer Cells. Cancers 2019, 11, 1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.X.; Li, Y.; Chen, G.Z. Network-based co-expression analysis for exploring the potential diagnostic biomarkers of metastatic melanoma. PLoS ONE 2018, 13, e0190447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhalla, S.; Kaur, H.; Dhall, A.; Raghava, G.P.S. Prediction and Analysis of Skin Cancer Progression using Genomics Profiles of Patients. Sci. Rep. 2019, 9, 15790. [Google Scholar] [CrossRef] [Green Version]
- Leick, K.M.; Rodriguez, A.B.; Melssen, M.M.; Benamar, M.; Lindsay, R.S.; Eki, R.; Du, K.P.; Parlak, M.; Abbas, T.; Engelhard, V.H.; et al. The Barrier Molecules Junction Plakoglobin, Filaggrin, and Dystonin Play Roles in Melanoma Growth and Angiogenesis. Ann. Surg. 2019, 270, 712–722. [Google Scholar] [CrossRef]
- Ricciardelli, C.; Lokman, N.A.; Pyragius, C.E.; Ween, M.P.; Macpherson, A.M.; Ruszkiewicz, A.; Hoffmann, P.; Oehler, M.K. Keratin 5 overexpression is associated with serous ovarian cancer recurrence and chemotherapy resistance. Oncotarget 2017, 8, 17819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasca, V.; Vasca, E.; Freiman, P.; Marian, D.; Luce, A.; Mesolella, M.; Caraglia, M.; Ricciardiello, F.; Duminica, T. Keratin 5 expression in squamocellular carcinoma of the head and neck. Oncol. Lett. 2014, 8, 2501–2504. [Google Scholar] [CrossRef] [Green Version]
- Watt, F.M. Involucrin and other markers of keratinocyte terminal differentiation. J. Investig. Dermatol. 1983, 81, S100–S103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azuma, Y.; Chou, S.-C.; Lininger, R.A.; Murphy, B.J.; Varia, M.A.; Raleigh, J.A. Hypoxia and differentiation in squamous cell carcinomas of the uterine cervix: Pimonidazole and involucrin. Clin. Cancer Res. 2003, 9, 4944–4952. [Google Scholar]
- Tsuda, H.; Sakamaki, C.; Fukutomi, T.; Hirohashi, S. Squamoid features and expression of involucrin in primary breast carcinoma associated with high histological grade, tumour cell necrosis and recurrence sites. Br. J. Cancer 1997, 75, 1519–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, Y.-J.; Chen, H.; Chen, J.-Q.; Lei, Q.-H.; Zheng, M.; Shao, Z.-R. Immunolocalization of vimentin, keratin 17, Ki-67, involucrin, β-catenin and E-cadherin in cutaneous squamous cell carcinoma. Pathol. Oncol. Res. 2014, 20, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, Y.; Cui, T.; Knosel, T.; Zhang, Q.; Albring, K.F.; Huber, O.; Petersen, I. Desmoplakin acts as a tumor suppressor by inhibition of the Wnt/beta-catenin signaling pathway in human lung cancer. Carcinogenesis 2012, 33, 1863–1870. [Google Scholar] [CrossRef] [Green Version]
- Nath, A.; Oak, A.; Chen, K.Y.; Li, I.; Splichal, R.C.; Portis, J.; Foster, S.; Walton, S.P.; Chan, C. Palmitate-Induced IRE1–XBP1–ZEB Signaling Represses Desmoplakin Expression and Promotes Cancer Cell Migration. Mol. Cancer Res. 2021, 19, 240–248. [Google Scholar] [CrossRef]
- Hodorogea, A.; Calinescu, A.; Antohe, M.; Balaban, M.; Nedelcu, R.I.; Turcu, G.; Ion, D.A.; Badarau, I.A.; Popescu, C.M.; Popescu, R.; et al. Epithelial-Mesenchymal Transition in Skin Cancers: A Review. Anal. Cell. Pathol. 2019, 2019, 3851576. [Google Scholar] [CrossRef] [Green Version]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2012, 41, D991–D995. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007, 23, 1846–1847. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Marhiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.W.; Ramage, D.; Amin, D.; Schwikowshi, B.; Ideker, T. Cytoscape: A Software Enviroment for Intergrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Shen, W.; Peng, H.; Li, Y.; Chen, F.; Zheng, L.; Xu, J.; Jia, L. Fibronectin 1 promotes melanoma proliferation and metastasis by inhibiting apoptosis and regulating EMT. Onco Targets Ther. 2019, 12, 3207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chen, F.; Shen, W.; Li, B.; Xiang, R.; Qu, L.; Zhang, C.; Li, G.; Xie, H.; Katanaev, V.L.; et al. WDR74 induces nuclear beta-catenin accumulation and activates Wnt-responsive genes to promote lung cancer growth and metastasis. Cancer Lett. 2020, 471, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Li, Y.; Li, B.; Zheng, L.; Xie, X.; Le, J.; Lu, Y.; Li, T.; Chen, F.; Jia, L. Downregulation of KCTD12 contributes to melanoma stemness by modulating CD271. Cancer Biol. Med. 2019, 16, 498–513. [Google Scholar] [CrossRef] [PubMed]
A. Top 15 Upregulated DEGs | |||
---|---|---|---|
Gene Symbol | Gene ID | Log2 (Fold Change) | Adjusted p Value |
PSPH | 5723 | 2.8486465 | 2.98 × 10−10 |
SPP1 | 6696 | 2.767764 | 1.99 × 10−7 |
IGF2BP3 | 10643 | 2.5198993 | 1.44 × 10−8 |
DNAJB9 | 4189 | 2.2987063 | 4.92 × 10−8 |
MAGEA6 | 4105 | 2.1640936 | 2.14 × 10−3 |
MAGEA3 | 4102 | 2.1640936 | 2.14 × 10−3 |
ADAM12 | 8038 | 2.1087045 | 2.97 × 10−9 |
RRM2 | 6241 | 1.9764716 | 1.95 × 10−6 |
ITGB3 | 3690 | 1.9427608 | 2.67 × 10−5 |
DHFR | 1719 | 1.8997797 | 1.24 × 10−6 |
PAEP | 5047 | 1.8672555 | 6.61 × 10−3 |
CDK1 | 983 | 1.8363552 | 1.61 × 10−6 |
UGT8 | 7368 | 1.8051681 | 6.63 × 10−6 |
EXOC5 | 10640 | 1.7962246 | 3.13 × 10−6 |
CENPN | 55839 | 1.7951241 | 3.07 × 10−5 |
B. Top 15 Downregulated DEGs | |||
Gene Symbol | Gene ID | Log2 (Fold Change) | Adjusted p Value |
S100A7 | 6278 | −8.6805712 | 9.06 × 10−20 |
KRT14 | 3861 | −8.6624659 | 6.11 × 10−17 |
KRT16 | 3868 | −8.0258657 | 1.74 × 10−20 |
SPRR1A | 6698 | −7.8002823 | 2.57 × 10−19 |
KRT6A | 3853 | −6.8262439 | 1.06 × 10−18 |
KRT17 | 3872 | −6.7016996 | 1.41 × 10−19 |
JUP | 3728 | −6.7016996 | 1.41 × 10−19 |
KRT5 | 3852 | −6.6593224 | 1.79 × 10−17 |
KRT6C | 286887 | −6.4903185 | 1.36 × 10−18 |
KRT6B | 3854 | −6.4903185 | 1.36 × 10−18 |
LOR | 4014 | −6.4902197 | 1.94 × 10−16 |
SFN | 2810 | −6.3583246 | 6.30 × 10−19 |
LGALS7B | 653499 | −6.2382627 | 4.02 × 10−15 |
LGALS7 | 3963 | −6.2382627 | 4.02 × 10−15 |
PKP1 | 5317 | −6.0861137 | 1.14 × 10−17 |
A. Upregulated DEGs | |||||
---|---|---|---|---|---|
Category | Term | Count | p Value | Genes | FDR |
KEGG_PATHWAY | hsa04512: ECM-receptor interaction | 3 | 3.90 × 10−12 | ITGA4, ITGB3, SPP1 | 1.04 × 10−44 |
KEGG_PATHWAY | hsa04914: Progesterone-mediated oocyte maturation | 3 | 3.92 × 10−7 | CDK1, MAD2L1, BUB1 | 1.66 × 10−39 |
KEGG_PATHWAY | hsa04810: Regulation of actin cytoskeleton | 4 | 3.94 × 10−2 | LIMK1, PIP5K1A, ITGA4, ITGB3 | 5.14 × 10−33 |
KEGG_PATHWAY | hsa01100: Metabolic pathways | 9 | 6.17 × 10−2 | DHFR, SLC33A1, GLUD2, RRM2, UGT8, PIP5K1A, PSPH, ACSL3, PYGB | 5.59 × 10−19 |
B. Downregulated DEGs | |||||
KEGG_PATHWAY | hsa05146: Amoebiasis | 12 | 2.00 × 10−7 | IL1R2, GNA15, ARG1, GNAL, LAMB3, LAMA3, LAMC3, SERPINB2, LAMC2, SERPINB4, SERPINB3, SERPINB13 | 2.45 × 10−24 |
KEGG_PATHWAY | hsa04916: Melanogenesis | 9 | 2.86 × 10−4 | DCT, WNT5A, TYRP1, WNT4, FZD10, ADCY2, CALML3, EDN1, CALML5 | 1.67 × 10−17 |
KEGG_PATHWAY | hsa04512: ECM-receptor interaction | 8 | 6.70 × 10−4 | SDC1, LAMB3, LAMA3, LAMC3, COMP, COL6A2, ITGB4, LAMC2 | 5.78 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, R.; Li, B.; Jia, L.; Li, Y. Identification of Core Genes and Pathways in Melanoma Metastasis via Bioinformatics Analysis. Int. J. Mol. Sci. 2022, 23, 794. https://doi.org/10.3390/ijms23020794
Xie R, Li B, Jia L, Li Y. Identification of Core Genes and Pathways in Melanoma Metastasis via Bioinformatics Analysis. International Journal of Molecular Sciences. 2022; 23(2):794. https://doi.org/10.3390/ijms23020794
Chicago/Turabian StyleXie, Renjian, Bifei Li, Lee Jia, and Yumei Li. 2022. "Identification of Core Genes and Pathways in Melanoma Metastasis via Bioinformatics Analysis" International Journal of Molecular Sciences 23, no. 2: 794. https://doi.org/10.3390/ijms23020794
APA StyleXie, R., Li, B., Jia, L., & Li, Y. (2022). Identification of Core Genes and Pathways in Melanoma Metastasis via Bioinformatics Analysis. International Journal of Molecular Sciences, 23(2), 794. https://doi.org/10.3390/ijms23020794