The Role of GRP and MGP in the Development of Non-Hemorrhagic VKCFD1 Phenotypes
Abstract
:1. Introduction
2. VKD Calcification Inhibitors
2.1. Matrix Gla Protein
2.2. Gla Rich Protein
2.3. Osteocalcin
2.4. Non-Hemorrhagic Phenotypes of VKCFD1
2.4.1. Skeletal Defects
2.4.2. Skin Hyper-Laxity
2.4.3. Cardiac Defects
2.5. Assays Determining γ-Carboxylation
2.6. Potential Roles of ucMGP and ucGRP in the Development of Mineralization Defects in VKCFD1 Patients
2.6.1. Skeletal Defects
2.6.2. Skin Hyper-Laxity
2.6.3. Cardiac Abnormalities
2.7. Treatment of Non-Hemorrhagic Phenotypes in VKCFD1
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Berkner, K.L. The vitamin K-dependent carboxylase. Annu. Rev. Nutr. 2005, 25, 127–149. [Google Scholar] [CrossRef]
- Berkner, K.L. Vitamin K-dependent carboxylation. Vitam. Horm. 2008, 78, 131–156. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.-K.; Stafford, D.W. Structural and functional insights into enzymes of the vitamin K cycle. J. Thromb. Haemost. 2016, 14, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Oldenburg, J.; Marinova, M.; Müller-Reible, C.; Watzka, M. The vitamin K cycle. Vitam. Horm. 2008, 78, 35–62. [Google Scholar] [CrossRef]
- Rost, S.; Fregin, A.; Ivaskevicius, V.; Conzelmann, E.; Hörtnagel, K.; Pelz, H.-J.; Lappegard, K.; Seifried, E.; Scharrer, I.; Tuddenham, E.G.D.; et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004, 427, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Rishavy, M.A.; Berkner, K.L. Vitamin K oxygenation, glutamate carboxylation, and processivity: Defining the three critical facets of catalysis by the vitamin K-dependent carboxylase. Adv. Nutr. 2012, 3, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Watzka, M.; Geisen, C.; Scheer, M.; Wieland, R.; Wiegering, V.; Dorner, T.; Laws, H.-J.; Gumruk, F.; Hanalioglu, S.; Unal, S.; et al. Bleeding and non-bleeding phenotypes in patients with GGCX gene mutations. Thromb. Res. 2014, 134, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Vanakker, O.M.; Martin, L.; Gheduzzi, D.; Leroy, B.P.; Loeys, B.L.; Guerci, V.I.; Matthys, D.; Terry, S.F.; Coucke, P.J.; Pasquali-Ronchetti, I.; et al. Pseudoxanthoma elasticum-like phenotype with cutis laxa and multiple coagulation factor deficiency represents a separate genetic entity. J. Investig. Dermatol. 2007, 127, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Rost, S.; Fregin, A.; Koch, D.; Compes, M.; Muller, C.R.; Oldenburg, J. Compound heterozygous mutations in the gamma-glutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br. J. Haematol. 2004, 126, 546–549. [Google Scholar] [CrossRef] [PubMed]
- Rost, S.; Geisen, C.; Fregin, A.; Seifried, E.; Muller, C.R.; Oldenburg, J. Founder mutation Arg485Pro led to recurrent compound heterozygous GGCX genotypes in two German patients with VKCFD type 1. Blood Coagul. Fibrinolysis 2006, 17, 503–507. [Google Scholar] [CrossRef]
- Li, D.; Ryu, E.; Saeidian, A.H.; Youssefian, L.; Oliphant, E.; Terry, S.F.; Tong, P.L.; Uitto, J.; Haass, N.K.; Li, Q. GGCX mutations in a patient with overlapping pseudoxanthoma elasticum/cutis laxa-like phenotype. Br. J. Dermatol. 2021, 184, 1170–1174. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Grange, D.K.; Armstrong, N.L.; Whelan, A.J.; Hurley, M.Y.; Rishavy, M.A.; Hallgren, K.W.; Berkner, K.L.; Schurgers, L.J.; Jiang, Q.; et al. Mutations in the GGCX and ABCC6 genes in a family with pseudoxanthoma elasticum-like phenotypes. J. Investig. Dermatol. 2009, 129, 553–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darghouth, D.; Hallgren, K.W.; Issertial, O.; Bazaa, A.; Berkner, K.L.; Rosa, J.-P.; Favier, R. Compound Heterozygosity of a W493C Substitution and R704/Premature Stop Codon within the γ-Glutamyl Carboxylase in Combined Vitamin K-Dependent Coagulation Factor Deficiency in a French Family. Blood 2009, 114, 1302. [Google Scholar] [CrossRef]
- Darghouth, D.; Hallgren, K.W.; Shtofman, R.L.; Mrad, A.; Gharbi, Y.; Maherzi, A.; Kastally, R.; LeRicousse, S.; Berkner, K.L.; Rosa, J.-P. Compound heterozygosity of novel missense mutations in the gamma-glutamyl-carboxylase gene causes hereditary combined vitamin K-dependent coagulation factor deficiency. Blood 2006, 108, 1925–1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, B.; Sanchez-Vega, B.; Wu, S.M.; Lanir, N.; Stafford, D.W.; Solera, J. A missense mutation in gamma-glutamyl carboxylase gene causes combined deficiency of all vitamin K-dependent blood coagulation factors. Blood 1998, 92, 4554–4559. [Google Scholar] [CrossRef] [PubMed]
- Spronk, H.M.; Farah, R.A.; Buchanan, G.R.; Vermeer, C.; Soute, B.A. Novel mutation in the gamma-glutamyl carboxylase gene resulting in congenital combined deficiency of all vitamin K-dependent blood coagulation factors. Blood 2000, 96, 3650–3652. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.-K.; Carneiro, J.D.A.; Jin, D.-Y.; Martinhago, C.D.; Vermeer, C.; Stafford, D.W. Characterization of vitamin K-dependent carboxylase mutations that cause bleeding and nonbleeding disorders. Blood 2016, 127, 1847–1855. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Kraus, K.; Biswas, A.; Müller, J.; Buhl, A.-L.; Forin, F.; Singer, H.; Höning, K.; Hornung, V.; Watzka, M.; et al. GGCX mutations show different responses to vitamin K thereby determining the severity of the hemorrhagic phenotype in VKCFD1 patients. J. Thromb. Haemost. 2021, 19, 1412–1424. [Google Scholar] [CrossRef]
- De Vilder, E.Y.; Debacker, J.; Vanakker, O.M. GGCX-Associated Phenotypes: An Overview in Search of Genotype-Phenotype Correlations. Int. J. Mol. Sci. 2017, 18, 240. [Google Scholar] [CrossRef]
- Marles, R.J.; Roe, A.L.; Oketch-Rabah, H.A. US Pharmacopeial Convention safety evaluation of menaquinone-7, a form of vitamin K. Nutr. Rev. 2017, 75, 553–578. [Google Scholar] [CrossRef]
- Simes, D.C.; Viegas, C.S.B.; Araújo, N.; Marreiros, C. Vitamin K as a Powerful Micronutrient in Aging and Age-Related Diseases: Pros and Cons from Clinical Studies. Int. J. Mol. Sci. 2019, 20, 4150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, L.; Chen, J.; Duan, L.; Li, S. Vitamin K-dependent proteins involved in bone and cardiovascular health (Review). Mol. Med. Rep. 2018, 18, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapp, N.; Brandenburg, V.M.; Kaesler, N.; Bakker, S.J.L.; Stöhr, R.; Schuh, A.; Evenepoel, P.; Schurgers, L.J. Hepatic and Vascular Vitamin K Status in Patients with High Cardiovascular Risk. Nutrients 2021, 13, 3490. [Google Scholar] [CrossRef] [PubMed]
- Simes, D.C.; Viegas, C.S.B.; Araújo, N.; Marreiros, C. Vitamin K as a Diet Supplement with Impact in Human Health: Current Evidence in Age-Related Diseases. Nutrients 2020, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Nollet, L.; van Gils, M.; Verschuere, S.; Vanakker, O. The Role of Vitamin K and Its Related Compounds in Mendelian and Acquired Ectopic Mineralization Disorders. Int. J. Mol. Sci. 2019, 20, 2142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, J.E.; Fraser, J.D.; Price, P.A. The identification of matrix Gla protein in cartilage. J. Biol. Chem. 1988, 263, 5820–5824. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Cranenburg, E.C.M.; Vermeer, C. Matrix Gla-protein: The calcification inhibitor in need of vitamin K. Thromb. Haemost. 2008, 100, 593–603. [Google Scholar]
- Willems, B.A.G.; Vermeer, C.; Reutelingsperger, C.P.M.; Schurgers, L.J. The realm of vitamin K dependent proteins: Shifting from coagulation toward calcification. Mol. Nutr. Food Res. 2014, 58, 1620–1635. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Spronk, H.M.H.; Skepper, J.N.; Hackeng, T.M.; Shanahan, C.M.; Vermeer, C.; Weissberg, P.L.; Proudfoot, D. Post-translational modifications regulate matrix Gla protein function: Importance for inhibition of vascular smooth muscle cell calcification. J. Thromb. Haemost. 2007, 5, 2503–2511. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Uitto, J.; Reutelingsperger, C.P. Vitamin K-dependent carboxylation of matrix Gla-protein: A crucial switch to control ectopic mineralization. Trends Mol. Med. 2013, 19, 217–226. [Google Scholar] [CrossRef]
- Wallin, R.; Cain, D.; Hutson, S.M.; Sane, D.C.; Loeser, R. Modulation of the binding of matrix Gla protein (MGP) to bone morphogenetic protein-2 (BMP-2). Thromb. Haemost. 2000, 84, 1039–1044. [Google Scholar]
- Zebboudj, A.F.; Shin, V.; Boström, K. Matrix GLA protein and BMP-2 regulate osteoinduction in calcifying vascular cells. J. Cell. Biochem. 2003, 90, 756–765. [Google Scholar] [CrossRef]
- Bjørklund, G.; Svanberg, E.; Dadar, M.; Card, D.J.; Chirumbolo, S.; Harrington, D.J.; Aaseth, J. The Role of Matrix Gla Protein (MGP) in Vascular Calcification. Curr. Med. Chem. 2020, 27, 1647–1660. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Ducy, P.; McKee, M.D.; Pinero, G.J.; Loyer, E.; Behringer, R.R.; Karsenty, G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997, 386, 78–81. [Google Scholar] [CrossRef] [PubMed]
- El-Maadawy, S.; Kaartinen, M.T.; Schinke, T.; Murshed, M.; Karsenty, G.; McKee, M.D. Cartilage formation and calcification in arteries of mice lacking matrix Gla protein. Connect. Tissue Res. 2003, 44 (Suppl. 1), 272–278. [Google Scholar] [CrossRef]
- Marulanda, J.; Eimar, H.; McKee, M.D.; Berkvens, M.; Nelea, V.; Roman, H.; Borras, T.; Tamimi, F.; Ferron, M.; Murshed, M. Matrix Gla protein deficiency impairs nasal septum growth, causing midface hypoplasia. J. Biol. Chem. 2017, 292, 11400–11412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munroe, P.B.; Olgunturk, R.O.; Fryns, J.P.; van Maldergem, L.; Ziereisen, F.; Yuksel, B.; Gardiner, R.M.; Chung, E. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat. Genet. 1999, 21, 142–144. [Google Scholar] [CrossRef]
- Cancela, M.L.; Laizé, V.; Conceição, N.; Kempf, H.; Murshed, M. Keutel Syndrome, a Review of 50 Years of Literature. Front. Cell Dev. Biol. 2021, 9, 642136. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, B.L.; Liu, B.Y.; Shi, S.; Da Gao, Y.; Zhang, T.C.; Shi, H.J.; Li, Z.; Shum, W.W. Vitamin K2-Dependent GGCX and MGP Are Required for Homeostatic Calcium Regulation of Sperm Maturation. iScience 2019, 14, 210–225. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.S.B.; Simes, D.C.; Laize, V.; Williamson, M.K.; Price, P.A.; Cancela, M.L. Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates. J. Biol. Chem. 2008, 283, 36655–36664. [Google Scholar] [CrossRef] [Green Version]
- Surmann-Schmitt, C.; Dietz, U.; Kireva, T.; Adam, N.; Park, J.; Tagariello, A.; Onnerfjord, P.; Heinegård, D.; Schlötzer-Schrehardt, U.; Deutzmann, R.; et al. Ucma, a novel secreted cartilage-specific protein with implications in osteogenesis. J. Biol. Chem. 2008, 283, 7082–7093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eitzinger, N.; Surmann-Schmitt, C.; Bosl, M.; Schett, G.; Engelke, K.; Hess, A.; von der Mark, K.; Stock, M. Ucma is not necessary for normal development of the mouse skeleton. Bone 2012, 50, 670–680. [Google Scholar] [CrossRef]
- Cavaco, S.; Viegas, C.S.B.; Rafael, M.S.; Ramos, A.; Magalhaes, J.; Blanco, F.J.; Vermeer, C.; Simes, D.C. Gla-rich protein is involved in the cross-talk between calcification and inflammation in osteoarthritis. Cell. Mol. Life Sci. 2016, 73, 1051–1065. [Google Scholar] [CrossRef]
- Rafael, M.S.; Cavaco, S.; Viegas, C.S.B.; Santos, S.; Ramos, A.; Willems, B.A.G.; Herfs, M.; Theuwissen, E.; Vermeer, C.; Simes, D.C. Insights into the association of Gla-rich protein and osteoarthritis, novel splice variants and γ-carboxylation status. Mol. Nutr. Food Res. 2014, 58, 1636–1646. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.S.B.; Rafael, M.S.; Enriquez, J.L.; Teixeira, A.; Vitorino, R.; Luis, I.M.; Costa, R.M.; Santos, S.; Cavaco, S.; Neves, J.; et al. Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.S.B.; Santos, L.; Macedo, A.L.; Matos, A.A.; Silva, A.P.; Neves, P.L.; Staes, A.; Gevaert, K.; Morais, R.; Vermeer, C.; et al. Chronic Kidney Disease Circulating Calciprotein Particles and Extracellular Vesicles Promote Vascular Calcification: A Role for GRP (Gla-Rich Protein). Arterioscler. Thromb. Vasc. Biol. 2018, 38, 575–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willems, B.A.; Furmanik, M.; Caron, M.M.J.; Chatrou, M.L.L.; Kusters, D.H.M.; Welting, T.J.M.; Stock, M.; Rafael, M.S.; Viegas, C.S.B.; Simes, D.C.; et al. Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling. Sci. Rep. 2018, 8, 4961. [Google Scholar] [CrossRef]
- Ducy, P.; Desbois, C.; Boyce, B.; Pinero, G.; Story, B.; Dunstan, C.; Smith, E.; Bonadio, J.; Goldstein, S.; Gundberg, C.; et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996, 382, 448–452. [Google Scholar] [CrossRef] [Green Version]
- Katagiri, T.; Takahashi, N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002, 8, 147–159. [Google Scholar] [CrossRef]
- Hoang, Q.Q.; Sicheri, F.; Howard, A.J.; Yang, D.S.C. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 2003, 425, 977–980. [Google Scholar] [CrossRef]
- Ferron, M.; Lacombe, J.; Germain, A.; Oury, F.; Karsenty, G. GGCX and VKORC1 inhibit osteocalcin endocrine functions. J. Cell Biol. 2015, 208, 761–776. [Google Scholar] [CrossRef]
- Ferron, M.; Hinoi, E.; Karsenty, G.; Ducy, P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl. Acad. Sci. USA 2008, 105, 5266–5270. [Google Scholar] [CrossRef] [Green Version]
- Bonneau, J.; Ferland, G.; Karelis, A.D.; Doucet, É.; Faraj, M.; Rabasa-Lhoret, R.; Ferron, M. Association between osteocalcin gamma-carboxylation and insulin resistance in overweight and obese postmenopausal women. J. Diabetes Complicat. 2017, 31, 1027–1034. [Google Scholar] [CrossRef]
- Favre, G.; Laurain, A.; Aranyi, T.; Szeri, F.; Fulop, K.; Le Saux, O.; Duranton, C.; Kauffenstein, G.; Martin, L.; Lefthériotis, G. The ABCC6 Transporter: A New Player in Biomineralization. Int. J. Mol. Sci. 2017, 18, 1941. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, H.; Davis, E.C.; Starcher, B.C.; Ouchi, T.; Yanagisawa, M.; Richardson, J.A.; Olson, E.N. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 2002, 415, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Schurgers, L.J.; Smith, A.C.M.; Tsokos, M.; Uitto, J.; Cowen, E.W. Co-existent pseudoxanthoma elasticum and vitamin K-dependent coagulation factor deficiency: Compound heterozygosity for mutations in the GGCX gene. Am. J. Pathol. 2009, 174, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Okubo, Y.; Masuyama, R.; Iwanaga, A.; Koike, Y.; Kuwatsuka, Y.; Ogi, T.; Yamamoto, Y.; Endo, Y.; Tamura, H.; Utani, A. Calcification in dermal fibroblasts from a patient with GGCX syndrome accompanied by upregulation of osteogenic molecules. PLoS ONE 2017, 12, e0177375. [Google Scholar] [CrossRef] [Green Version]
- Kariminejad, A.; Bozorgmehr, B.; Najafi, A.; Khoshaeen, A.; Ghalandari, M.; Najmabadi, H.; Kariminejad, M.H.; Vanakker, O.M.; Hosen, M.J.; Malfait, F.; et al. Retinitis pigmentosa, cutis laxa, and pseudoxanthoma elasticum-like skin manifestations associated with GGCX mutations. J. Investig. Dermatol. 2014, 134, 2331–2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutucumarana, V.P.; Stafford, D.W.; Stanley, T.B.; Jin, D.Y.; Solera, J.; Brenner, B.; Azerad, R.; Wu, S.M. Expression and characterization of the naturally occurring mutation L394R in human gamma-glutamyl carboxylase. J. Biol. Chem. 2000, 275, 32572–32577. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Jin, D.-Y.; Chen, X.; Schurgers, L.J.; Stafford, D.W.; Tie, J.-K. γ-Glutamyl carboxylase mutations differentially affect the biological function of vitamin K-dependent proteins. Blood 2021, 137, 533–543. [Google Scholar] [CrossRef]
- Ghosh, S.; Kraus, K.; Biswas, A.; Müller, J.; Forin, F.; Singer, H.; Höning, K.; Hornung, V.; Watzka, M.; Oldenburg, J.; et al. GGCX variants leading to biallelic deficiency to γ-carboxylate GRP cause skin laxity in VKCFD1 patients. Hum. Mutat. 2022, 43, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Rieder, M.J.; Reiner, A.P.; Gage, B.F.; Nickerson, D.A.; Eby, C.S.; McLeod, H.L.; Blough, D.K.; Thummel, K.E.; Veenstra, D.L.; Rettie, A.E. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 2005, 352, 2285–2293. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.S.B.; Cavaco, S.; Neves, P.L.; Ferreira, A.; Joao, A.; Williamson, M.K.; Price, P.A.; Cancela, M.L.; Simes, D.C. Gla-rich protein is a novel vitamin K-dependent protein present in serum that accumulates at sites of pathological calcifications. Am. J. Pathol. 2009, 175, 2288–2298. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Edelweiss, E.; Schneider, J.; Schaeffer-Reiss, C.; Poterszman, A.; Rafael, M.; Araújo, N.; Macedo, A.; Alves de Matos, A.; Simes, D. Use of an innovative system and nanotechnology-based strategy for therapeutic applications of Gla-rich protein (GRP). Ann. Med. 2019, 51, 38. [Google Scholar] [CrossRef] [Green Version]
- Schurgers, L.J.; Vermeer, C. Differential lipoprotein transport pathways of K-vitamins in healthy subjects. Biochim. Biophys. Acta 2002, 1570, 27–32. [Google Scholar] [CrossRef]
- Halder, M.; Petsophonsakul, P.; Akbulut, A.C.; Pavlic, A.; Bohan, F.; Anderson, E.; Maresz, K.; Kramann, R.; Schurgers, L. Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease. Int. J. Mol. Sci. 2019, 20, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genotype (Allele 1 Allele 2) | VKORC1 c.-1639 (VKOR Activity) | Age | Non-Hemorrhagic Phenotypes | Refs. | In Vitro γ-Carboxylation from Cell Based Assay | ||
---|---|---|---|---|---|---|---|
γ-Carboxylated MGP | γ-Carboxylated MGP | γ-Carboxylated GRP | |||||
Hao et al. | Ghosh et al. | Ghosh et al. | |||||
R83P R83P | AA (33%) | 3 years | Facial Dysmorphism + Septal defect | Watzka et al., 2014 | 76% 76% | 27% 27% | 13% 13% |
D153G M174R + (R325Q) | NA | 4 months | Keutel syndrome like phenotype | Tie et al., 2016 | 39% 0% | 38% 1% | 93% 1% |
W157R (D31N) + T591K | NA | 11 years | Developmental delay and stunted growth + Septal Defect | Dargouth et al., 2006 | 34% (108%) + 9% | 58% 24% | 44% 32% |
R204C R204C | GA (66%) | 11 years | Midfacial hypoplasia | Watzka et al., 2014 | 20% 20% | 55% 55% | 67% 67% |
R204C R204C | GG (100%) | 14 years | Face morphology normal | Watzka et al., 2014 | 20% 20% | 55% 55% | 67% 67% |
S284P W315X | AA | 13 years | Midfacial hypoplasia + Septal defect | Watzka et al., 2014 | 134% 0% | 100% ND | 80% ND |
R485P W315X | GA | 14 years | Chondrodysplasia punctate and pulmonary arterial stenosis | Watzka et al., 2014 | 37% 0% | 87% ND | 58% ND |
G125R D534V | AA | 5 years | Mild midfacial hypoplasia | Watzka et al., 2014 | 0% 43% | ND ND | ND ND |
G72_L124del R485P | NA | 1 year | Midfacial hypoplasia and persistent ductus artheriosus Botalli | Rost et al., 2004 | ND 37% | ND 87% | ND 58% |
Genotype (Allele 1 Allele 2) | VKORC1 c.-1639 | Age | Non-Hemorrhagic Phenotypes | Refs. | In Vitro γ-Carboxylation from Cell Based Assay | ||
---|---|---|---|---|---|---|---|
γ-Carboxylated MGP | γ-Carboxylated MGP | γ-Carboxylated GRP | |||||
Hao et al. | Ghosh et al. | Ghosh et al. | |||||
R83W Q374X | NA | 46 years | Skin hyper-laxity | Li et al., 2009 | 81% 0% | 32% ND | 26% ND |
V255M S300F | NA | 16 years | Skin hyper-laxity + peripheral pulmonary artery stenosis | Li, Grange et al., 2009 | 163% 21% | 10% 3% | 31% 1% |
G558R F299S | NA | 40 years | Skin hyper-laxity | Vanakker et al., 2007 | 13% 0% | 18% 1% | 32% 0% |
H404P R485P | GG (100%) | 47 years | Mild skin symptom + Calcified peripheral arteries | Watzka et al., 2014 | 78% 37% | 9% 87% | 35% 58% |
G537A Q374X | NA | 46 years, 44 years | Skin hyper-laxity + Atherosclerosis | Vanakker et al., 2007 | 94% 0% | 102% ND | 18% ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Oldenburg, J.; Czogalla-Nitsche, K.J. The Role of GRP and MGP in the Development of Non-Hemorrhagic VKCFD1 Phenotypes. Int. J. Mol. Sci. 2022, 23, 798. https://doi.org/10.3390/ijms23020798
Ghosh S, Oldenburg J, Czogalla-Nitsche KJ. The Role of GRP and MGP in the Development of Non-Hemorrhagic VKCFD1 Phenotypes. International Journal of Molecular Sciences. 2022; 23(2):798. https://doi.org/10.3390/ijms23020798
Chicago/Turabian StyleGhosh, Suvoshree, Johannes Oldenburg, and Katrin J. Czogalla-Nitsche. 2022. "The Role of GRP and MGP in the Development of Non-Hemorrhagic VKCFD1 Phenotypes" International Journal of Molecular Sciences 23, no. 2: 798. https://doi.org/10.3390/ijms23020798
APA StyleGhosh, S., Oldenburg, J., & Czogalla-Nitsche, K. J. (2022). The Role of GRP and MGP in the Development of Non-Hemorrhagic VKCFD1 Phenotypes. International Journal of Molecular Sciences, 23(2), 798. https://doi.org/10.3390/ijms23020798