Novel Diagnostic Biomarkers in Colorectal Cancer
Abstract
:1. Introduction
2. Blood Biomarkers
2.1. Liquid Biopsy
2.2. Circulating Tumor Cells (CTC)
2.3. Circulating Tumor DNA (ctDNA)
2.4. Circulating MicroRNA (c-miRNA)
2.5. Sept 9 Methylation
2.6. Long Non Coding RNA (lncRNA)
2.7. Insulin-like Growth Factor Binding Protein 2 (IGFBP-2)
2.8. Pyruvate Kinase M2 (PKM2)
2.9. Dickkopf3 (DDK3)
2.10. DDK3, PKM2, IGFBP-2
3. Tissue Biomarkers
3.1. Caudal Type Homebox 2 (CDX2)
3.2. Special AT-Rich Sequence-Binding Protein 2 (SATB2)
3.3. Glycoprotein A33 (GPA 33)
3.4. Cadherin-17 (CDH17)
3.5. Cytokeratins
3.5.1. Cytokeratin 7 (CK7)
3.5.2. Cytokeratin 20 (CK20)
3.5.3. CK20+/CK7−
3.5.4. Cytokeratin 15 (CK15)
3.5.5. Cytokeratin 18 (CK18)
3.6. Telomerase
4. Diagnostic Stool Biomarkers for Colorectal Cancer
4.1. Guaiac-Based Faecal Occult Blood Testing (gFOBT)
4.2. Faecal Immunochemical Test (FIT)
4.3. Stool DNA (sDNA)
4.4. Faecal Immunochemical Test (FIT) and Stool DNA Test
4.5. Methylation of DNA
4.6. Stool miRNA
4.7. Faecal Bacteria
4.8. The Gut Microbiota and miRNA
5. Volatile Organic Compounds (VOC)
5.1. Urinary VOCs
5.2. Stool VOCs
5.3. Breath VOCs
6. European Society of Medical Oncology (ESMO) Recommendations for Screening
Colrectal Cancer Screening and the COVID-19 Pandemic
7. CRC Screening Today and Future Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loktionov, A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins? World J. Gastrointest. Oncol. 2020, 12, 124–148. [Google Scholar] [CrossRef] [PubMed]
- Binefa, G.; Rodriguez-Moranta, F.; Teule, A.; Medina-Hayas, M. Colorectal cancer: From prevention to personalized medicine. World J. Gastroenterol. 2014, 20, 6786–6808. [Google Scholar] [CrossRef]
- Kit, A.H.; Nielsen, H.M.; Tost, J. DNA methylation based biomarkers: Practical considerations and applications. Biochimie 2012, 94, 2314–2337. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Wang, T.; Chen, Z.Y.; Zhang, K.H. Blood-derived molecular signatures as biomarker panels for the early detection of colorectal cancer. Mol. Biol. Rep. 2020, 47, 8159–8168. [Google Scholar] [CrossRef] [PubMed]
- Mansour, H. Cell-free nucleic acids as noninvasive biomarkers for colorectal cancer detection. Front. Genet. 2014, 5, 182. [Google Scholar] [CrossRef] [Green Version]
- Marcuello, M.; Vymetalkova, V.; Neves, R.P.L.; Duran-Sanchon, S.; Vedeld, H.M.; Tham, E.; van Dalum, G.; Flugen, G.; Garcia-Barberan, V.; Fijneman, R.J.; et al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol. Asp. Med. 2019, 69, 107–122. [Google Scholar] [CrossRef]
- Danese, E.; Montagnana, M.; Lippi, G. Circulating molecular biomarkers for screening or early diagnosis of colorectal cancer: Which is ready for prime time? Ann. Transl. Med. 2019, 7, 610. [Google Scholar] [CrossRef]
- Willis, B.; Gorse, E.; Lee, V. Role of liquid biopsies in colorectal cancer. Curr. Probl. Cancer 2018, 42, 593–600. [Google Scholar] [CrossRef]
- Normanno, N.; Cervantes, A.; Ciardiello, F.; De Luca, A.; Pinto, C. The liquid biopsy in the management of colorectal cancer patients: Current applications and future scenarios. Cancer Treat. Rev. 2018, 70, 1–8. [Google Scholar] [CrossRef]
- Vacante, M.; Ciuni, R.; Basile, F.; Biondi, A. The liquid biopsy in the management of colorectal cancer: An overview. Biomedicines 2020, 8, 308. [Google Scholar] [CrossRef]
- Ding, Y.; Li, W.; Wang, K.; Xu, C.; Hao, M.; Ding, L. Perspectives of the application of liquid biopsy in colorectal cancer. Biomed. Res. Int. 2020, 2020, 6843180. [Google Scholar] [CrossRef] [Green Version]
- Alix-Panabieres, C.; Pantel, K. Real-time liquid biopsy: Circulating tumor cells versus circulating tumor DNA. Ann. Transl. Med. 2013, 1, 18. [Google Scholar]
- Tsai, W.S.; Watson, D.; Chang, Y.; Hsieh, B.; Shao, H.J.; Wu, J.C.; Lai, J.M.; Chang, S.E.; Javey, M.; Mei, R.; et al. Prospective clinical study of circulating tumor cells for colorectal cancer screening. J. Clin. Oncol. 2018, 36, 556. [Google Scholar] [CrossRef]
- Flamini, E.; Mercatali, L.; Nanni, O.; Calistri, D.; Nunziatini, R.; Zoli, W.; Rosetti, P.; Gardini, N.; Lattuneddu, A.; Verdecchia, G.M.; et al. Free DNA and carcinoembryonic antigen serum levels: An important combination for diagnosis of colorectal cancer. Clin. Cancer Res. 2006, 12, 6985–6988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Fei, F.; Zhang, M.; Li, Y.; Zhan, X.; Zhu, S.; Zhang, S. The role of mSEPT9 in screening, diagnosis, and recurrence monitoring of colorectal cancer. BMC Cancer 2019, 19, 450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Link, A.; Balaguer, F.; Shen, Y.; Nagasaka, T.; Lozano, J.J.; Boland, R.C.; Goel, A. Fecal microRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1766–1774. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.N.; Chen, Z.H.; Chen, W.C. Novel circulating microRNAs expression profile in colon cancer: A pilot study. Eur. J. Med. Res. 2017, 22, 51. [Google Scholar] [CrossRef] [Green Version]
- Koga, Y.; Yamazaki, N.; Yamamoto, Y.; Yamamoto, S.; Saito, N.; Kakugawa, Y.; Otake, Y.; Matsumoto, M.; Matsumura, Y. Fecal miR-106a is a useful marker for colorectal cancer patients with false-negative results in immunochemical fecal occult blood test. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1844–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazanov, A.A.; Kiselyova, E.V.; Zakharenko, A.A.; Romanov, M.N.; Zaraysky, M.I. Plasma and saliva miR-21 expression in colorectal cancer patients. J. Appl. Genet. 2017, 58, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Jiang, Y.; Liang, C.; Cheng, M.; Jin, C.; Duan, Q.; Xu, D.; Yang, L.; Zhang, X.; Ren, B.; et al. Exosomal miR-6803-5p as potential diagnostic and prognostic marker in colorectal cancer. J. Cell Biochem. 2018, 119, 4113–4119. [Google Scholar] [CrossRef]
- Peng, Z.Y.; Gu, R.H.; Yan, B. Downregulation of exosome-encapsulated miR-548c-5p is associated with poor prognosis in colorectal cancer. J. Cell Biochem. 2018, 120, 1457–1463. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Gao, S.; Jing, F.; Yang, Y.; Du, L.; Zheng, G.; Li, P.; Li, C.; Wang, C. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget 2016, 7, 85551–85563. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pan, B.; Sun, L.; Chen, X.; Zeng, K.; Hu, X.; Xu, T.; Xu, M.; Wang, S. Circulating exosomal miR-27a and miR-130a act as novel diagnostic and prognostic biomarkers of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2018, 27, 746–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racila, E.; Euhus, D.; Weiss, A.J.; Rao, C.; McConnell Tertappen, L.W.; Uhr, J.W. Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. USA 1998, 95, 4589–4594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcuello, M.; Duran-Sanchon, S.; Moreno, L.; Lozano, J.J.; Bujanda, L.; Castells, A.; Gironella, M. Analysis of a 6-miRNA signature in serum from colorectal cancer screening participants as non-invasive biomarkers for advanced adenoma and colorectal cancer detection. Cancers 2019, 11, 1542. [Google Scholar] [CrossRef] [Green Version]
- Alix-Panabières, C.; Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 2014, 14, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Yu, H.; Jiang, L.; Chen, W.; Li, H.; Qin, J. Integrated microfluidic device for enrichment and identification of circulating tumor cells from the blood of patients with colorectal cancer. Dis. Markers 2019, 2019, 8945974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandel, P.M.; Métais, P. Les acides nucléiques du plasma sanguin chez l’Homme [French]. C. R. Seances Soc. Biol. Fil. 1948, 142, 241–243. [Google Scholar]
- Thierry, A.R.; El Messaoudi, S.; Gahan, P.B.; Anker, P.; Stroun, M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016, 35, 347–376. [Google Scholar] [CrossRef] [Green Version]
- Kahlert, C.; Melo, S.A.; Protopopov, A.; Tang, J.; Seth, S.; Koch, M.; Zhang, J.; Weitz, J.; Chin, L.; Futreal, A.; et al. Identification of doublestranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 2014, 289, 3869–3875. [Google Scholar] [CrossRef] [Green Version]
- Thakur, B.K.; Zhang, H.; Becker, A.; Matei, I.; Huang, Y.; Costa-Silva, B.; Zheng, Y.; Hoshino, A.; Brazier, H.; Xiang, J.; et al. Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res. 2014, 24, 766–769. [Google Scholar] [CrossRef] [Green Version]
- Stroun, M.; Lyautey, J.; Lederrey, C.; Olson-Sand, A.; Anker, P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin. Chim. Acta 2001, 313, 139–142. [Google Scholar] [CrossRef]
- Turk, B. Targeting proteases: Successes, failures and future prospects. Nat. Rev. Drug Discov. 2006, 5, 785–799. [Google Scholar] [CrossRef]
- Roth, C.; Pantel, K.; Müller, V.; Rack, B.; Kasimir-Bauer, S.; Janni, W.; Schwarzenbach, H. Apoptosis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression. BMC Cancer 2011, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- López-Otín, C.; Matrisian, L.M. Emerging roles of proteases in tumour suppression. Nat. Rev. Cancer 2007, 7, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Crowley, E.; Nicolantonio, F.D.; Loupakis, F.; Bardelli, A. Liquid biopsy: Monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 2013, 10, 472–484. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; Hoon, D.S.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef] [PubMed]
- To, E.W.H.; Chan, K.C.A.; Leung, S.F.; Chan, L.Y.S.; To, K.F.; Chan, A.T.C.; Johnson, P.J.; Lo, Y.M.D. Rapid clearance of plasma Epstein-Barr virus DNA after surgical treatment of nasopharyngeal carcinoma. Clin. Cancer Res. 2003, 9, 3254–3259. [Google Scholar]
- Jung, M.; Klotzek, S.; Lewandowski, M.; Fleischhacker, M.; Jung, K. Changes in concentration of DNA in serum and plasma during storage of blood samples. Clin. Chem. 2003, 49, 1028–1029. [Google Scholar] [CrossRef] [Green Version]
- El Messaoudi, S.; Rolet, F.; Mouliere, F.; Thierry, A.R. Circulating cell free DNA: Preanalytical considerations. Clin. Chim. Acta 2013, 424, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.E.; Simon, D.; Ikuta, N.; Klovan, C.; Dannebrock, F.A.; Oliveira de Oliveira, C.; Regner, A. Elevated cell-free plasma DNA level as an independent predictor of mortality in patients with severe traumatic brain injury. J. Neurotrauma 2014, 31, 1639–1646. [Google Scholar] [CrossRef] [Green Version]
- Tsai, N.W.; Lin, T.K.; Chen, S.D.; Chang, W.N.; Wang, H.C.; Yang, T.M.; Lin, Y.J.; Jan, C.R.; Huang, C.R.; Liou, C.W.; et al. The value of serial plasma nuclear and mitochondrial DNA levels in patients with acute ischemic stroke. Clin. Chim. Acta 2011, 412, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Breitbach, S.; Sterzing, B.; Magallanes, C.; Tug, S.; Simon, P. Direct measurement of cell-free DNA from serially collected capillary plasma during incremental exercise. J. Appl. Physiol. 2014, 117, 119–130. [Google Scholar] [CrossRef] [Green Version]
- De Vlaminck, I.; Valantine, H.A.; Snyder, T.M.; Strehl, C.; Cohen, G.; Luikart, H.; Neff, N.F.; Okamoto, J.; Bernstein, D.; Weisshaar, D.; et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci. Transl. Med. 2014, 6, 241ra77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vlaminck, I.; Martin, L.; Kertesz, M.; Patel, K.; Kowarsky, M.; Strehl, C.; Garrett, C.; Luikart, H.; Neff, N.F.; Okamoto, J.; et al. Noninvasive monitoring of infection and rejection after lung transplantation. Proc. Natl. Acad. Sci. USA 2015, 112, 13336–13341. [Google Scholar] [CrossRef] [Green Version]
- Osumi, H.; Shinozaki, E.; Yamaguchi, K.; Zembutsu, H. Clinical utility of circulating tumor DNA for colorectal cancer. Cancer Sci. 2019, 110, 1148–1155. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, L.; Lou, J. Nanotechnology strategies for the analysis of circulating tumor DNA: A review. Med. Sci. Monit. 2020, 26, e921040. [Google Scholar] [CrossRef]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 224ra24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Vychytilova-Faltejskova, P.; Svobodova-Kovarikova, A.; Grolich, T.; Prochazka, V.; Slaba, K.; Machackova, T.; Halamkova, J.; Svoboda, M.; Kala, Z.; Kiss, I.; et al. MicroRNA biogenesis pathway genes are deregulated in colorectal cancer. Int. J. Mol. Sci. 2019, 20, 4460. [Google Scholar] [CrossRef] [Green Version]
- Van Roosbroeck, K.; Calin, G.A. Cancer hallmarks and MicroRNAs: The therapeutic connection. Adv. Cancer Res. 2017, 135, 119–149. [Google Scholar] [PubMed]
- Kim, V.N. MicroRNA biogenesis: Coordinated cropping and dicing. Nat. Rev. Mol. Cell. Biol. 2005, 6, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Borchert, G.M.; Lanier, W.; Davidson, B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 2006, 13, 1097–1101. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. Embo J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef]
- Gregory, R.I.; Yan, K.P.; Amuthan, G.; Chendrimada, T.; Doratotaj, B.; Cooch, N.; Shiekhattar, R. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432, 235–240. [Google Scholar] [CrossRef]
- Fareh, M.; Yeom, K.H.; Haagsma, A.C.; Chauhan, S.; Heo, I.; Joo, C. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat. Commun. 2016, 7, 13694. [Google Scholar] [CrossRef]
- Yang, J.S.; Maurin, T.; Robine, N.; Rasmussen, K.D.; Jeffrey, K.L.; Chandwani, R.; Papapetrou, E.P.; Sadelain, M.; O’Carroll, D.; Lai, E.C. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 15163–15168. [Google Scholar] [CrossRef] [Green Version]
- Ruby, J.G.; Jan, C.H.; Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing. Nature 2007, 448, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Okamura, K.; Lai, E.C. Endogenous small interfering RNAs in animals. Nat. Rev. Mol. Cell Biol. 2008, 9, 673–678. [Google Scholar] [CrossRef] [Green Version]
- Scott, M.S.; Ono, M. From snoRNA to miRNA: Dual function regulatory non-coding RNAs. Biochimie 2011, 93, 1987–1992. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Cuellar, T.L.; McManus, M.T. MicroRNAs and endocrine biology. J. Endocrinol. 2005, 187, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liang, H.; Zhang, J.; Zen, K.; Zhang, C.Y. Secreted microRNAs: A new form of intercellular communication. Trends Cell Biol. 2012, 22, 125–132. [Google Scholar] [CrossRef]
- Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAsare conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J.S.; Milosevic, D.; Reddi, H.V.; Grebe, S.K.; Algeciras-Schimnich, A. Analysis of circulating microRNA: Preanalytical and analytical challenges. Clin. Chem. 2011, 57, 833–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhang, H.; Lu, G.; Li, Q.; Gu, J.; Song, Y.; Gao, S.; Ding, Y. Mechanism analysis of colorectal cancer according to the microRNA expression profile. Oncol. Lett. 2016, 12, 2329–2336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartley, A.N.; Yao, H.; Barkoh, B.A.; Ivan, C.; Mishra, B.M.; Rashid, A.; Calin, G.A.; Luthra, R.; Hamilton, S.R. Complex patterns of altered microRNA expression during the adenoma-adenocarcinoma sequence for microsatellite-stable colorectal cancer. Clin. Cancer Res. 2011, 17, 7283–7293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Li, B. Role of miRNA in transformation from normal tissue to colorectal adenoma and cancer. J. Cancer Res. Ther. 2019, 15, 278–285. [Google Scholar] [PubMed]
- Yin, Y.; Song, M.; Gu, B.; Qi, X.; Hu, Y.; Feng, Y.; Liu, H.; Zhou, L.; Bian, Z.; Zhang, J.; et al. Systematic analysis of key miRNAs and related signaling pathways in colorectal tumorigenesis. Gene 2016, 578, 177–184. [Google Scholar] [CrossRef]
- Uratani, R.; Toiyama, Y.; Kitajima, T.; Kawamura, M.; Hiro, J.; Kobayashi, M.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Mori, T.; et al. Diagnostic potential of cell-free and exosomal microRNAs in the identification of patients with high-risk colorectal adenomas. PLoS ONE 2016, 11, e0160722. [Google Scholar] [CrossRef]
- Imaoka, H.; Toiyama, Y.; Fujikawa, H.; Hiro, J.; Saigusa, S.; Tanaka, K.; Inoue, Y.; Mohir, Y.; Kato, T.; Toden, S.; et al. Circulating microRNA-1290 as a novel diagnostic and prognostic biomarker in human colorectal cancer. Ann. Oncol. 2016, 27, 1879–1886. [Google Scholar] [CrossRef] [PubMed]
- Ho, G.Y.; Jung, H.J.; Schoen, R.E.; Wang, T.; Lin, J.; Williams, Z.; Weissfeld, J.L.; Park, J.Y.; Loudig, O.; Suh, Y. Differential expression of circulating microRNAs according to severity of colorectal neoplasia. Transl. Res. 2015, 166, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groen, F.L.; Timmer, L.M.; Menezes, R.X.; Diosdado, B.; Hooijberg, E.; Meijer, G.A.; Steenbergen, R.D.M.; Carvalho, B. Oncogenic role of miR-15a-3p in 13q amplicon-driven colorectal adenoma-to-carcinoma progression. PLoS ONE 2015, 10, e0132495. [Google Scholar]
- Wu, C.W.; Ng, S.C.; Dong, Y.; Tian, L.; Ng, S.S.; Leung, W.W.; Law, W.T.; Yau, T.O.; Leung Chan, K.F.; Yiu Sung, J.J.; et al. Identification of microRNA-135b in stool as a potential noninvasive biomarker for colorectal cancer and adenoma. Clin. Cancer Res. 2014, 20, 2994–3002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.W.; Ng, S.S.; Dong, Y.J.; Ng, S.C.; Leung, W.W.; Lee, C.W.; Wong, Y.N.; Chan, F.K.L.; Yu, J.; Sung, J.J.Y. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut 2012, 61, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Tsikitis, V.L.; Potter, A.; Mori, M.; Buckmeier, J.A.; Preece, C.R.; Harrington, C.A.; Bartley, A.N.; Bhattacharyya, A.K.; Hamilton, S.R.; Lance, M.P.; et al. MicroRNA signatures of colonic polyps on screening and histology. Cancer Prev. Res. 2016, 9, 942–949. [Google Scholar] [CrossRef] [Green Version]
- Tadano, T.; Kakuta, Y.; Hamada, S.; Shimodaira, Y.; Kuroha, M.; Kawakami, Y.; Kimura, T.; Shiga, H.; Endo, K.; Masamune, A.; et al. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6. World J. Gastrointest. Oncol. 2016, 8, 532–542. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Cai, S.L.; Li, J.; Qi, Z.P.; Li, X.Q.; Ye, L.C.; Xie, X.F.; Hou, Y.Y.; Yao, L.Q.; Xu, M.D.; et al. Mecp2-mediated epigenetic silencing of miR-137 contributes to colorectal adenoma-carcinoma sequence and tumor progression via relieving the suppression of c-met. Sci. Rep. 2017, 7, 44543. [Google Scholar] [CrossRef]
- Hibino, Y.; Sakamoto, N.; Naito, Y.; Goto, K.; Oo, H.Z.; Sentani, K.; Hinoi, T.; Ohdan, H.; Oue, N.; Yasui, W. Significance of miR-148a in colorectal neoplasia: Downregulation of miR-148a contributes to the carcinogenesis and cell invasion of colorectal cancer. Pathobiology 2015, 82, 233–241. [Google Scholar] [CrossRef]
- Fang, Z.; Tang, J.; Bai, Y.; Lin, H.; You, H.; Jin, H.; Lin, L.; You, P.; Li, J.; Dai, Z.; et al. Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma. J. Exp. Clin. Cancer Res. 2015, 34, 86. [Google Scholar] [CrossRef] [Green Version]
- Basso, D.; Padoan, A.; Laufer, T.; Aneloni, V.; Moz, S.; Schroers, H.; Pelloso, M.; Saiz, A.; Krapp, M.; Fogar, P.; et al. Relevance of preanalytical blood management on the emerging cardiovascular protein biomarkers TWEAK and HMGB1 and on miRNA serum and plasma profiling. Clin. Biochem. 2017, 50, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Sourvinou, I.S.; Markou, A.; Lianidou, E.S. Quantification of circulating miRNAs in plasma: Effect of preanalytical and analytical parameters on their isolation and stability. J. Mol. Diagn. 2013, 15, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Terrinoni, A.; Calabrese, C.; Basso, D.; Aita, A.; Caporali, S.; Plebani, M.; Bernardini, S. The circulating miRNAs as diagnostic and prognostic markers. Clin. Chem. Lab. Med. 2019, 57, 932–953. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clin. Epigenetics 2018, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Kirschner, M.B.; Kao, S.C.; Edelman, J.J.; Armstrong, N.J.; Vallely, M.P.; van Zandwijk, N.; Reid, G. Haemolysis during sample preparation alters microRNA content of plasma. PLoS ONE 2011, 6, e24145. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.H.; Yi, H.S.; Kim, Y.; Kroh, E.M.; Chien, J.W.; Eaton, K.D.; Goodman, M.T.; Tait, J.F.; Tewari, M.; Pritchard, C.C. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS ONE 2013, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Healy, N.A.; Heneghan, H.M.; Miller, N.; Osborne, C.K.; Schiff, R.; Kerin, M.J. Systemic mirnas as potential biomarkers for malignancy. Int. J. Cancer 2012, 131, 2215–2222. [Google Scholar] [CrossRef]
- Kanaan, Z.; Roberts, H.; Eichenberger, M.R.; Billeter, A.; Ocheretner, G.; Pan, J.; Rai, S.N.; Jorden, J.; Williford, A.; Galandiuk, S. A plasma microRNA panel for detection of colorectal adenomas: A step toward more precise screening for colorectal cancer. Ann. Surg. 2013, 258, 400–408. [Google Scholar] [CrossRef]
- Giráldez, M.D.; Lozano, J.J.; Ramírez, G.; Hijona, E.; Bujanda, L.; Castells, A.; Gironella, M. Circulating microRNAs as biomarkers of colorectal cancer: Results from a genome-wide profiling and validation study. Clin. Gastroenterol. Hepatol. 2013, 11, 681–688. [Google Scholar] [CrossRef]
- Wang, R.; Wen, H.; Xu, Y.; Chen, Q.; Luo, Y.; Lin, Y.; Luo, Y.; Xu, A. Circulating microRNAs as a novel class of diagnostic biomarkers in gastrointestinal tumors detection: A meta-analysis based on 42 articles. PLoS ONE 2014, 9, e113401. [Google Scholar] [CrossRef]
- Slaby, O. Non-coding RNAs as biomarkers for colorectal cancer screening and early detection. Adv. Exp. Med. Biol. 2016, 937, 153–170. [Google Scholar] [PubMed]
- Carter, J.V.; Galbraith, N.J.; Yang, D.; Burton, J.F.; Walker, S.P.; Galandiuk, S. Blood-based microRNAs as biomarkers for the diagnosis of colorectal cancer: A systematic review and meta-analysis. Br. J. Cancer 2017, 116, 762–774. [Google Scholar] [CrossRef]
- Chen, B.; Xia, Z.; Deng, Y.N.; Yang, Y.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. Emerging microRNA biomarkers for colorectal cancer diagnosis and prognosis. Open Biol. 2019, 9, 180212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabry, D.; El-Deek, S.E.M.; Maher, M.; El-Baz, M.A.H.; El-Bader, H.M.; Amer, E.; Hassan, E.A.; Fathy, W.; El-Deek, H.E.M. Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: Impact of HIF-1α-VEGF signaling pathway. Mol. Cell Biochem. 2019, 454, 177–189. [Google Scholar] [CrossRef]
- Ng, L.; Wan, T.M.; Man, J.H.; Chow, A.K.; Iyer, D.; Chen, G.; Yau, T.C.; Lo, O.S.; Foo, D.C.; Poon, J.T.; et al. Identification of serum miR-139-3p as a non-invasive biomarker for colorectal cancer. Oncotarget 2017, 8, 27393–27400. [Google Scholar] [CrossRef]
- Wang, P.; He, X. Current research on circular RNAs associated with colorectal cancer. Scand. J. Gastroenterol. 2017, 52, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, T.; Hu, X.; Chen, X.; Zeng, K.; Sun, L.; Wang, S. Elevated circulating miR-182 acts as a diagnostic biomarker for early colorectal cancer. Cancer Manag. Res. 2018, 10, 857–865. [Google Scholar] [CrossRef] [Green Version]
- Bilegsaikham, E.; Liu, H.N.; Shen, X.Z.; Liu, T.T. Circulating miR-338-5p is a potential diagnostic biomarker in colorectal cancer. J. Dig. Dis. 2018, 19, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, P.; Powrózek, T.; Olesiński, T.; Dmitruk, A.; Dziwota, J.; Kowalski, D.; Milanowski, J. Evaluation of miR-506 and miR-4316 expression in early and non-invasive diagnosis of colorectal cancer. Int. J. Color. Dis. 2017, 32, 1057–1060. [Google Scholar] [CrossRef] [Green Version]
- Nonaka, R.; Miyake, Y.; Hata, T.; Kagawa, Y.; Kato, T.; Osawa, H.; Nishimura, J.; Ikenaga, M.; Murata, K.; Uemura, M.; et al. Circulating miR-103 and miR-720 as novel serum biomarkers for patients with colorectal cancer. Int. J. Oncol. 2015, 47, 1097–1102. [Google Scholar] [CrossRef] [Green Version]
- Sarlinova, M.; Halasa, M.; Mistuna, D.; Musak, L.; Iliev, R.; Slaby, O.; Mazuchova, J.; Valentova, V.; Plank, L.; Halasova, E. miR-21, miR-221 and miR-150 are deregulated in peripheral blood of patients with colorectal cancer. Anticancer Res. 2016, 36, 5449–5454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, P.Y.; Chen, C.C.; Chang, Y.S.; Tsai, W.S.; You, J.F.; Lin, G.P.; Chen, T.W.; Chen, J.S.; Chan, E.C. MicroRNA-223 and microRNA-92a in stool and plasma samples act as complementary biomarkers to increase colorectal cancer detection. Oncotarget 2016, 7, 10663–10675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolaou, S.; Qiu, S.; Fiorentino, F.; Rasheed, S.; Tekkis, P.; Kontovounisios, C. Systematic review of blood diagnostic markers in colorectal cancer. Tech. Coloproctol. 2018, 22, 481–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Xu, X.; Pan, B.; He, B.; Chen, X.; Zeng, K.; Xu, M.; Pan, Y.; Sun, H.; Xu, T.; et al. Circulating miR-1290 and miR-320d as novel diagnostic biomarkers of human colorectal cancer. J. Cancer 2019, 10, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wikberg, M.L.; Myte, R.; Palmqvist, R.; van Guelpen, B.; Ljuslinder, I. Plasma miRNA can detect colorectal cancer, but how early? Cancer Med. 2018, 7, 1697–1705. [Google Scholar] [CrossRef]
- Herreros-Villanueva, M.; Duran-Sanchon, S.; Martin, A.C.; Perez-Palacios, R.; Vila-Navarro, E.; Marcuello, M.; Diaz-Centeno, M.; Cubiella, J.; Diez, M.S.; Bujanda, L.; et al. Plasma microRNA signature validation for early detection of colorectal cancer. Clin. Transl. Gastroenterol. 2019, 10, e00003. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, M.; Shan, X.; Zhou, X.; Wang, T.; Zhang, J.; Tao, J.; Cheng, W.; Chen, G.; Li, J.; et al. A panel of seven-miRNA signature in plasma as potential biomarker for colorectal cancer diagnosis. Gene 2019, 687, 246–254. [Google Scholar] [CrossRef]
- Tian, J.; Xi, X.; Wang, J.; Yu, J.; Huang, Q.; Ma, R.; Zhang, X.; Li, H.; Wang, L. CircRNA hsa_circ_0004585 as a potential biomarker for colorectal cancer. Cancer Manag. Res. 2019, 11, 5413–5423. [Google Scholar] [CrossRef]
- Karimi, N.; Hosseinpour Feizi, M.A.; Safarazadeh, R.; Hashemzadeh, S.; Baradaran, B.; Shokouhi, B.; Teimourian, S. Serum overexpression of miR-301a and miR-23a in patients with colorectal cancer. J. Chin. Med. Assoc. 2019, 82, 215–220. [Google Scholar] [CrossRef]
- Tan, Y.; Lin, J.J.; Yang, X.F.; Gou, D.M.; Wu, F.L.; Li, F.R.; Yu, X.F. A panel of three plasma microRNAs for colorectal cancer diagnosis. Cancer Epidemiol. 2019, 60, 67–76. [Google Scholar] [CrossRef]
- Maminezdah, H.; Ghanadian, S.; Pakravan, K.; Razmara, E.; Rouhollah, F.; Mossahebi-Mohammadi, M.; Babashah, S. A panel of six-circulating miRNA signature in serum and its potential diagnostic value in colorectal cancer. Life Sci. 2020, 258, 118226. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yang, D.; Chen, L.; Liu, Q.; Wang, W.; Yang, Z.; Shang, A.; Quan, W.; Li, D. Plasma exosomal miRNA-139-3p is a novel biomarker of colorectal cancer. J. Cancer 2020, 11, 4899–4906. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.H.; Lu, S.; Wang, A.F. Expression and clinical significance of miR-4516 and miR-21-5p in serum of patients with colorectal cancer. BMC Cancer 2020, 20, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mun-Kar Ng, J.; Yu, J. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int. J. Mol. Sci. 2015, 16, 2472–2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, L.; Li, Y. SEPT9: A specific circulating biomarker for colorectal cancer. Adv. Clin. Chem. 2015, 72, 171–204. [Google Scholar]
- Song, L.; Jia, J.; Peng, X.; Xiao, W.; Li, Y. The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: A meta-analysis. Sci. Rep. 2017, 7, 3032. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Hu, B.; Gui, Y.C.; Tan, Z.B.; Xu, J.W. Diagnostic value and clinical significance of methylated SEPT9 for colorectal cancer: A meta-analysis. Med. Sci. Monit. 2019, 25, 5813–5822. [Google Scholar] [CrossRef]
- Hariharan, R.; Jenkins, M. Utility of the methylated SEPT9 test for the early detection of colorectal cancer: A systematic review and meta-analysis of diagnostic test accuracy. BMJ Open Gastroenterol. 2020, 7, e000355. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, P.M.; Liu, R.B. Advance in plasma SEPT9 gene methylation assay for colorectal cancer early detection. World J. Gastrointest. Oncol. 2018, 10, 15–22. [Google Scholar] [CrossRef]
- Tepus, M.; On Yau, T. Non-invasive colorectal cancer screening: An overview. Gastrointest. Tumors 2020, 7, 62–73. [Google Scholar] [CrossRef]
- Song, L.; Li, Y.; Jia, J.; Zhou, G.; Wang, J.; Kang, Q.; Jin, P.; Sheng, J.; Cai, G.; Cai, S.; et al. Algorithm optimization in methylation detection with multiple RT-qPCR. PLoS ONE 2016, 11, e0163333. [Google Scholar] [CrossRef] [Green Version]
- Church, T.R.; Wandell, M.; Lofton-Day, C.; Mongin, S.J.; Burger, M.; Payne, S.R.; Castaños-Vélez, E.; Blumenstein, B.A.; Rösch, T.; Osborn, N.; et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 2014, 63, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W., Jr.; García, F.A.R.; Gillman, M.W.; Harper, D.M.; Kemper, A.R.; Krist, A.H.; et al. US preventive services task force screening for colorectal cancer: US preventive services task force recommendation statement. JAMA 2016, 315, 2564–2575. [Google Scholar]
- Grützmann, R.; Molnar, B.; Pilarsky, C.; Habermann, J.K.; Schalg, P.M.; Saeger, H.D.; Miehlke, S.; Stolz, T.; Model, F.; Roblick, U.J.; et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS ONE 2008, 3, e3759. [Google Scholar] [CrossRef] [Green Version]
- Lofton-Day, C.; Model, F.; Devos, T.; Tetzner, R.; Distler, J.; Schuster, M.; Song, X.; Lesche, R.; Liebenberg, V.; Ebert, M.; et al. DNA methylation biomarkers for blood based colorectal cancer screening. Clin. Chem. 2008, 54, 414–423. [Google Scholar] [CrossRef]
- deVos, T.; Tetzner, R.; Model, F.; Weiss, G.; Schuster, M.; Distler, J.; Steiger, K.V.; Grutzmann, R.; Pilarsky, C.; Habermann, J.K.; et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin. Chem. 2009, 55, 1337–1346. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Chen, H.Y.; Bai, E.Q.; Luo, Y.X.; Fu, R.J.; He, Y.S.; Jiang, J.; Wang, H.Q. Development of a multiplex MethyLight assay for the detection of multigene methylation in human colorectal cancer. Cancer Genet. Cytogenet. 2010, 202, 1–10. [Google Scholar] [CrossRef]
- Tanzer, M.; Balluff, B.; Distler, J.; Hale, K.; Leodolter, A.; Rocken, C.; Molnar, B.; Schmid, R.; Lofton-Day, C.; Schuster, T.; et al. Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS ONE 2010, 5, e9061. [Google Scholar] [CrossRef] [Green Version]
- Herbst, A.; Rahmig, K.; Stieber, P.; Phillipe, A.; Jung, A.; Ofner, A.; Crispin, A.; Neumann, J.; Lamerz, R.; Kolligs, F.T. Methylation of NEUROG1 in serum is a sensitive marker for the detection of early colorectal cancer. Am. J. Gastroenterol. 2011, 106, 1110–1118. [Google Scholar] [CrossRef]
- Warren, J.D.; Xiong, W.; Bunker, A.M.; Vaughn, C.P.; Furtado, L.V.; Roberts, W.L.; Fang, J.C.; Samowitz, W.S.; Heichman, K.A. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 2011, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Tóth, K.; Sipos, F.; Kalmár, A.; Patai, A.V.; Wichmann, B.; Stoehr, R.; Golcher, H.; Schellerer, V.; Tulassay, Z.; Molnár, B. Detection of methylated SEPT9 in plasma is a reliable screening method for both left- and right-sided colon cancers. PLoS ONE 2012, 7, e46000. [Google Scholar] [CrossRef]
- Ahlquist, D.A.; Taylor, W.R.; Mahoney, D.W.; Zou, H.; Domanico, M.; Thibodeau, S.N.; boardman, L.A.; Berger, B.M.; Lidgard, G.P. The stool DNA test is more accurate than the plasma septin 9 test in detecting colorectal neoplasia. Clin. Gastroenterol. Hepatol. 2012, 10, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Hwang, S.M.; Kim, T.S.; Kim, D.W.; Park, D.J.; Kang, S.B.; Kim, H.H.; Park, K.U. Circulating methylated septin 9 nucleic acid in the plasma of patients with gastrointestinal cancer in the stomach and colon. Transl. Oncol. 2013, 6, 290–294. [Google Scholar] [CrossRef] [Green Version]
- Potter, N.T.; Hurban, P.; White, M.N.; Whitlock, K.D.; Lofton-Day, C.E.; Tetzner, R.; Koenig, T.; Quigley, N.B.; Weiss, G. Validation of a real-time PCR-based qualitative assay for the detection of methylated SEPT9 DNA in human plasma. Clin. Chem. 2014, 60, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Su, X.L.; Wang, Y.F.; Li, S.J.; Zhang, F.; Cui, H.W. High methylation of the SEPT9 gene in Chinese colorectal cancer patients. Genet. Mol. Res. 2014, 13, 2513–2520. [Google Scholar] [CrossRef]
- Johnson, D.A.; Barclay, R.L.; Mergener, K.; Weiss, G.; König, T.; Beck, J.; Potter, N.T. Plasma Septin9 versus fecal immunochemical testing for colorectal cancer screening: A prospective multicenter study. PLoS ONE 2014, 9, e98238. [Google Scholar] [CrossRef]
- Jin, P.; Kang, Q.; Wang, X.; Yang, L.; Yu, Y.; Li, N.; He, Y.Q.; Han, X.; Hang, J.; Zhang, J.; et al. Performance of a second generation methylated SEPT9 test in detecting colorectal neoplasm. J. Gastroenterol. Hepatol. 2015, 30, 830–833. [Google Scholar] [CrossRef]
- Kang, Q.; Jin, P.; Yang, L.; Wang, X.; An, H.; Liu, L.; Li, N.; Sheng, J. Significance of Septin9 gene methylation detection of plasma circulation DNA in colorectal cancer screening. Zhonghua Yi Xue Za Zhi 2014, 94, 3839–3841. (In Chenese) [Google Scholar]
- Toth, K.; Wasserkort, R.; Sipos, F.; Kalmar, A.; Wichmann, B.; Leiszter, K.; Valcz, G.; Juhasz, M.; Miheller, P.; Patai, A.V.; et al. Detection of methylated septin 9 in tissue and plasma of colorectal patients with neoplasia and the relationship to the amount of circulating cell-free DNA. PLoS ONE 2014, 9, e115415. [Google Scholar] [CrossRef]
- Ørntoft, M.B.; Nielsen, H.J.; Ørntoft, T.F.; Andersen, C.L.; Danish Study Group on Early Detection of Colorectal Cancer. Performance of the colorectal cancer screening marker Sept9 is influenced by age, diabetes and arthritis: A nested case-control study. BMC Cancer 2015, 15, 819. [Google Scholar] [CrossRef] [Green Version]
- Behrouz Sharif, S.; Hashemzadeh, S.; Mousavi Ardehaie, R.; Eftekharsadat, A.; Ghojazadeh, M.; Mehrtash, A.H.; Estiar, M.A.; Teimoori-Toolabi, L.; Sakhinia, E. Detection of aberrant methylated SEPT9 and NTRK3 genes in sporadic colorectal cancer patients as a potential diagnostic biomarker. Oncol. Lett. 2016, 12, 5335–5343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Zhou, G.; Jin, P.; Zhu, J.; Li, S.; Wu, Q.; Wang, G.; Sheng, J.; Wang, J.; Song, L.; et al. Detection of colorectal cancer using a simplified SEPT9 gene methylation assay is a reliable method for opportunistic screening. J. Mol. Diagn. 2016, 18, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Nian, J.; Sun, X.; Ming, S.; Yan, C.; Ma, Y.; Feng, Y.; Yang, L.; Yu, M.; Zhang, G.; Wang, X. Diagnostic accuracy of methylated SEPT9 for blood-based colorectal cancer detection: A systematic review and meta-analysis. Clin. Transl. Gastroenterol. 2017, 8, e216. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Yan, P.; Zhang, S.; Lu, Y.; Pan, L.; Tang, W.; Chen, S.; Chen, S.; Zhang, A.; Liu, W. Cell-free circulating methylated SEPT9 for noninvasive diagnosis and monitoring of colorectal cancer. Dis. Markers 2018, 2018, 6437104. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Jiang, X.; Li, Q.; Su, Z.; Quan, W.; Duan, W.; Li, D.; Che, T. Diagnostic value of methylated septin9 for colorectal cancer detection. Front. Oncol. 2018, 8, 247–254. [Google Scholar] [CrossRef]
- Arellano, M.L.; Garcia-Arranz, M.; Ruiz, R.; Olivera, R.; Magallares, S.; Olmedillas-Lopez, S.; Valdez-Sanchez, T.; Guadalajara, H.; Garcia-Olmo, D. A first step to a biomarker of curative surgery in colorectal cancer by liquid biopsy of methylated septin 9 gene. Dis. Markers 2020, 2020, 9761406. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, G.; Miao, J.; Li, H.; Ma, Y.; Liu, X.; Li, S.; Zhu, Y.; Xiong, S.; Zheng, M.; et al. Performance comparison between plasma and stool methylated SEPT9 tests for detecting colorectal cancer. Front. Genet. 2020, 11, 324. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Lin, W.; Qi, P.; Xu, M.D.; Wu, X.; Ni, S.; Huang, D.; Weng, W.W.; Tan, C.; Sheng, W.; et al. Circulating long RNAs in serum extracellular vesicles: Their characterization and potential application as biomarkers for diagnosis of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2016, 25, 1158–1166. [Google Scholar] [CrossRef] [Green Version]
- Ferracin, M.; Lupini, L.; Mangolini, A.; Negrini, M. Circulating non-coding RNA as biomarkers in colorectal cancer. Adv. Exp. Med. Biol. 2016, 937, 171–181. [Google Scholar]
- Ragusa, M.; Barbagallo, C.; Statello, L.; Condorelli, A.G.; Battaglia, R.; Tamburello, L.; Barbagallo, D.; Di Pietro, C.; Purrello, M. Non-coding landscapes of colorectal cancer. World J. Gastroenterol. 2015, 21, 11709–11739. [Google Scholar] [CrossRef]
- Manzat Saplacan, R.M.; Mircea, P.A.; Balacescu, L.; Balacescu, O. MicroRNAs as non-invasive screening biomarkers of colorectal cancer. Clujul Med. 2015, 88, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 2009, 10, 155–159. [Google Scholar] [CrossRef]
- Hüttenhofer, A.; Vogel, J. Experimental approaches to identify non-coding RNAs. Nucleic Acids Res. 2006, 34, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.D.; Qi, P.; Du, X. Long non-coding RNAs in colorectal cancer: Implications for pathogenesis and clinical application. Mod. Pathol. 2014, 27, 1310–1320. [Google Scholar] [CrossRef] [Green Version]
- Sole, C.; Arnaiz, E.; Manterola, L.; Otaegui, D.; Lawrie, C.H. The circulating transcriptome as a source of cancer liquid biopsy biomarkers. Semin. Cancer Biol. 2019, 58, 100–108. [Google Scholar] [CrossRef]
- Galamb, O.; Bartak, B.K.; Kalmar, A.; Nagy, Z.B.; Szigeti, K.A.; Tulassay, Z.; Igaz, P.; Molnar, B. Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World J. Gastroenterol. 2019, 25, 5026–5048. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Wang, F.; Moyer, M.P.; Wei, Q.; Zhang, P.; Yang, Z.; Liu, W.; Zhang, H.; Chen, N.; et al. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α. Gut 2016, 65, 1494–1504. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Liu, X.; Fu, X.; Zhang, L.; Sui, H.; Zhou, L.; Sun, J.; Cai, J.; Qin, J.; Ren, J.; et al. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS ONE 2013, 8, e78700. [Google Scholar] [CrossRef]
- Yang, P.; Yang, Y.; An, W.; Xu, J.; Zhang, G.; Jie, J.; Zhang, Q. The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145 pathway. J. Gastroenterol. Hepatol. 2017, 32, 837–845. [Google Scholar] [CrossRef]
- Lo, Y.M. Circulating nucleic acids in plasma and serum: An overview. Ann. N. Y. Acad. Sci. 2001, 945, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, T.; Gao, G.; Cao, Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis. Markers 2016, 2016, 9085195. [Google Scholar] [CrossRef] [Green Version]
- Qi, P.; Zhou, X.Y.; Du, X. Circulating long non-coding RNAs in cancer: Current status and future perspectives. Mol. Cancer 2016, 15, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, H.; Ma, H.; Zhou, D. Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. BioMed. Res. Int. 2013, 2013, 136106. [Google Scholar] [CrossRef]
- Revenfeld, A.L.; Baek, R.; Nielsen, M.H.; Stensballe, A.; Varming, K.; Jorgensen, M. Diagnostic and prognostic potential of extracellular vesicles in peripheral blood. Clin. Ther. 2014, 36, 830–846. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019, 21, 9–17. [Google Scholar] [CrossRef]
- Svoboda, M.; Slyskova, J.; Schneiderova, M.; Makovicky, P.; Bielik, L.; Levy, M.; Lipska, L.; Hemmelova, B.; Kala, Z.; Protivankova, M.; et al. HOTAIR long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients. Carcinogenesis 2014, 35, 1510–1515. [Google Scholar] [CrossRef]
- Van Niel, G.; Porto-Carreiro, I.; Simoes, S.; Raposo, G. Exosomes: A common pathway for a specialized function. J. Biochem. 2006, 140, 13–21. [Google Scholar] [CrossRef]
- Fang, T.; Lv, H.; Lv, G.; Li, T.; Wang, C.; Han, Q.; Yu, L.; Su, B.; Guo, L.; Huang, S.; et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat. Commun. 2018, 9, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Investig. 2016, 126, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Shen, Y.; Chen, T.; Xu, F.; Chen, X.; Zheng, S. The functions and clinical applications of tumorderived exosomes. Oncotarget 2016, 7, 60736–66075. [Google Scholar] [CrossRef] [Green Version]
- Baassiri, A.; Nassar, F.; Mukherji, D.; Shamseddine, A.; Nasr, R.; Temraz, S. Exosomal non coding RNA in LIQUID biopsies as a promising biomarker for colorectal cancer. Int. J. Mol. Sci. 2020, 21, 1398. [Google Scholar] [CrossRef] [Green Version]
- Benes, V.; Castoldi, M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 2010, 50, 244–249. [Google Scholar] [CrossRef]
- Duran-Sanchon, S.; Vila-Navarro, E.; Marcuello, M.; Lozano, J.J.; Munoz, J.; Cubiella, J.; Diez, M.S.; Bujanda, L.; Lanas, A.; Jover, R.; et al. Validation of miR-1228-3p as housekeeping for microRNA analysis in liquid biopsies from colorectal cancer patients. Biomolecules 2019, 10, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Song, M.; Zhang, J.; Kuerban, M.; Wang, H. Combined identification of long non-coding RNA CCAT1 and HOTAIR in serum as an effective screening for colorectal carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 14131–14140. [Google Scholar]
- Wang, C.; Yu, J.; Han, Y.; Li, L.; Li, J.; Li, T.; Qi, P. Long non-coding RNAs LOC285194, RP11-462C24.1 and Nbla12061 in serum provide a new approach for distinguishing patients with colorectal cancer from healthy controls. Oncotarget 2016, 7, 70769–70778. [Google Scholar] [CrossRef] [Green Version]
- Dai, M.; Chen, X.; Mo, S.; Li, J.; Huang, Z.; Huang, S.; Xu, J.; He, B.; Zou, Y.; Chen, J.; et al. Meta-signature LncRNAs serve as novel biomarkers for colorectal cancer: Integrated bioinformatics analysis, experimental validation and diagnostic evaluation. Sci. Rep. 2017, 7, 46572. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, C.; Brex, D.; Caponnetto, A.; Cirnigliaro, M.; Scalia, M.; Magnano, A.; Caltabiano, R.; Barbagallo, D.; Biondi, A.; Cappellani, A.; et al. LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol. Ther. Nucleic Acids 2018, 12, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ye, D.; Chen, A.; Tan, D.; Zhang, W.; Jiang, W.; Wang, M.; Zhang, X. A pilot study of new promising non-coding RNA diagnostic biomarkers for early-stage colorectal cancers. Clin. Chem. Lab. Med. 2019, 57, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Abedini, P.; Fattahi, A.; Agah, S.; Talebi, A.; Beygi, A.H.; Amini, S.M.; Mirzaei, A.; Akbari, A. Expression analysis of circulating plasma long noncoding RNAs in colorectal cancer: The relevance of lncRNAs ATB and CCAT1 as potential clinical hallmarks. J. Cell. Physiol. 2019, 234, 22028–22033. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhao, W.; Yu, H.; Wang, Y.; Liu, Y.; Xie, C. A comprehensive meta-analysis of microRNAs for predicting colorectal cancer. Medicine 2016, 95, e2738. [Google Scholar] [CrossRef]
- He, Y.; Lin, J.; Kong, D.; Huang, M.; Xu, C.; Kim, T.K.; Etheridge, A.; Luo, Y.; Ding, Y.; Wang, K. Current state of circulating microRNAs as cancer biomarkers. Clin. Chem. 2015, 61, 1138–1155. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Tu, Y.; Zhu, Y.; Wang, Z.; Li, C.; Lao, L.; Wu, G. Predictive power of circulating miRNAs in detecting colorectal cancer. Tumour Biol. 2015, 36, 2559–2567. [Google Scholar] [CrossRef]
- Yu, H.; Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl. Cancer Inst. 2000, 92, 1472–1489. [Google Scholar] [CrossRef]
- Pollak, M.N.; Schernhammer, E.S.; Hankinson, E. Insulin-like growth factors and neoplasia. Nat. Rev. Cancer 2004, 4, 505–518. [Google Scholar] [CrossRef]
- Schoen, R.E.; Tangen, C.M.; Kuller, L.H.; Burke, G.L.; Cushman, M.; Tracy, R.P.; Dobs, A.; Savage, P.J. Increased blood glucose and insulin, body size, and incident colorectal cancer. J. Natl. Cancer Inst. 1999, 91, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Schütt, B.S.; Langkamp, M.; Rauschnabel, U.; Ranke, M.B.; Elmlinger, M.W. Integrin-mediated action of insulin-like growth factor binding protein-2 in tumor cells. J. Mol. Endocrinol. 2004, 32, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.S.; Huang, C.Y.; Lee, C.H.; Chen, W.Y.; Huang, M.T.; Wei, P.L.; Chang, Y.J. IGFBP2 plays an important role in heat shock protein 27-mediated cancer progression and metastasis. Oncotarget 2017, 8, 54978–54992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diehl, D.; Hessel, E.; Oesterle, D.; Renner-Muller, I.; Elmlinger, M.; Langhammer, M.; Hoeflich, A. IGFBP-2 overexpression reduces the appearance of dysplastic aberrant crypt foci and inhibits growth of adenomas in chemically induced colorectal carcinogenesis. Int. J. Cancer 2009, 124, 2220–2225. [Google Scholar] [CrossRef] [PubMed]
- Renehan, A.G.; Jones, J.; Potten, C.S.; Shalet, S.M.; O’Dwyer, S.T. Elevated serum insulin-like growth factor (IGF)-II and IGF binding protein-2 in patients with colorectal cancer. Br. J. Cancer 2000, 83, 1344–1350. [Google Scholar] [CrossRef]
- Demir, A.S.; Erdenen, F.; Muderrisoglu, C.; Toros, A.B.; Bektas, H.; Gelisgen, R.; Tabak, O.; Altunoglu, E.; Uzun, H.; Huq, G.E.E.; et al. Diagnostic and prognostic value of tumor M2-pyruvate kinase levels in patients with colorectal cancer. Turk. J. Gastroenterol. 2013, 24, 36–42. [Google Scholar] [CrossRef]
- Hardt, P.D.; Ewald, N. Tumor M2 pyruvate kinase: A tumor marker and its clinical application in gastrointestinal malignancy. Expert Rev. Mol. Diagn. 2008, 8, 579–585. [Google Scholar] [CrossRef]
- Hardt, P.D.; Toepler, M.; Ngoumou, B.; Rupp, J.; Kloer, H.U. Measurement of fecal pyruvate kinase type M2 (tumor M2-PK) concentrations in patients with gastric cancer, colorectal cancer, colorectal adenomas and controls. Anticancer Res. 2003, 23, 851–853. [Google Scholar]
- Haug, U.; Hundt, S.; Brenner, H. Sensitivity and specificity of faecal tumour M2 pyruvate kinase for detection of colorectal adenomas in a large screening study. Br. J. Cancer 2008, 99, 133–135. [Google Scholar] [CrossRef]
- Koss, K.; Maxton, D.; Jankowski, J.A. Faecal dimeric M2 pyruvate kinase in colorectal cancer and polyps correlates with tumour staging and surgical intervention. Color. Dis. 2008, 10, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, J.; Xue, H.; Huang, G. Diagnostic value of fecal tumor M2-pyruvate kinase for CRC screening: A systematic review and meta-analysis. Int. J. Cancer 2012, 131, 1837–1845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulder, S.A.; van Leerdam, M.E.; van Vuuren, A.J.; Francke, J.; van Toorenenbergen, A.W.; Kuipers, E.J.; Ouwendijk, R.J.T. Tumor pyruvate kinase isoenzyme type M2 and immunochemical fecal occult blood test: Performance in screening for colorectal cancer. Eur. J. Gastroenterol. Hepatol. 2007, 19, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Shastri, Y.M.; Loitsch, S.; Hoepffner, N.; Povse, N.; Hanisch, E.; Rosch, W.; Mossner, J.; Stein, J.M. Comparison of an established simple office-based immunological FOBT with fecal tumor pyruvate kinase type M2 (M2-PK) for colorectal cancer screening: Prospective multicenter study. Am. J. Gastroenterol. 2008, 103, 1496–1504. [Google Scholar] [CrossRef]
- Uppara, M.; Adaba, F.; Askari, A.; Clark, S.; Hanna, G.; Athanasiou, T.; Faiz, O. A systematic review and metaanalysis of the diagnostic accuracy of pyruvate kinase M2 isoenzymatic assay in diagnosing colorectal cancer. World J. Surg. Oncol. 2015, 13, 48. [Google Scholar] [CrossRef] [Green Version]
- Sithambaram, S.; Hilmi, I.; Goh, K.L. The diagnostic accuracy of the M2 pyruvate kinase quick stool test—A rapid office based assay test for the detection of colorectal cancer. PLoS ONE 2015, 10, e0131616. [Google Scholar] [CrossRef]
- Croix, B.S.; Rago, C.; Velculescu, V.; Traverso, G.; Romans, K.E.; Montgomery, E.; Lal, A.; Riggins, G.J.; Lengauer, C.; Vogelstein, B.; et al. Genes expressed in human tumor endothelium. Science 2000, 289, 1197–1202. [Google Scholar] [CrossRef]
- Krupnik, V.E.; Sharp, J.D.; Jiang, C.; Robison, K.; Chickering, T.W.; Amaravadi, L.; Brown, D.E.; Guyot, D.; Mays, G.; Leiby, K.; et al. Functional and structural diversity of the human Dickkopf gene family. Gene 1999, 238, 301–313. [Google Scholar] [CrossRef]
- Niehr, C. Function and biological roles of the Dickkopf family of WNT modulators. Oncogene 2006, 25, 7469–7481. [Google Scholar] [CrossRef] [Green Version]
- Maehata, T.; Taniguchi, H.; Yamamoto, H.; Nosho, K.; Adachi, Y.; Miyamoto, N.; Miyamoto, C.; Akutsu, N.; Yamaoka, S.; Itoh, F. Transcriptional silencing of Dickkopf gene family by CpG island hypermethylation in human gastrointestinal cancer. World J. Gastroenterol. 2008, 14, 2702–2714. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Suzuki, H.; Toyota, M.; Nojima, M.; Maruyama, R.; Sasaki, S.; Takagi, H.; Sogabe, Y.; Sasaki, Y.; Idogawa, M.; et al. Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 2007, 28, 2459–2466. [Google Scholar] [CrossRef] [Green Version]
- Zitt, M.; Untergasser, G.; Amberger, A.; Moser, P.; Stadlmann, S.; Zitt, M.; Muller, H.M.; Muhlmann, G.; Perathoner, A.; Margreiter, R.; et al. Dickkopf-3 as a new potential marker for neoangiogenesis in colorectal cancer: Expression in cancer tissue and adjacent non-cancerous tissue. Dis. Markers 2008, 24, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, K.Y.C.; Tabor, B.; Buckley, M.J.; Priebe, I.K.; Purins, L.; Pompeia, C.; Brierley, G.V.; Lockett, T.; Gibbs, P.; Tie, J.; et al. Blood-based protein biomarker panel for the detection of colorectal cancer. PLoS ONE 2015, 10, e0120425. [Google Scholar] [CrossRef] [Green Version]
- Kawai, H.; Tomii, K.; Toyooka, S.; Yano, M.; Murakami, M.; Tsukuda, K.; Shimizu, N. Promoter methylation downregulates CDX2 expression in colorectal carcinomas. Oncol. Rep. 2005, 13, 547–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Wang, P.; Andrade, C.F.; Zhao, I.Y.; Dube, P.E.; Brubaker, P.L.; Liu, M.; Jin, T. PKA independent and cell type specific activation of the expression of caudal homeobox gene Cdx-2 by cyclic AMP. FEBS J. 2005, 272, 2746–2759. [Google Scholar] [CrossRef]
- Zheng, J.; He, S.; Qi, J.; Wang, X.; Yu, J.; Wu, Y.; Gao, Q.; Wang, K.; Sun, X. Targeted CDX2 expression inhibits aggressive phenotypes of colon cancer cells in vitro and in vivo. Int. J. Oncol. 2017, 51, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Persad, S.; Troussard, A.A.; McPhee, T.R.; Mulholland, D.J.; Dedhar, S. Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J. Cell Biol. 2001, 153, 1161–1174. [Google Scholar] [CrossRef]
- Olsen, A.K.; Coskun, M.; Bzorek, M.; Kristensen, M.H.; Danielsen, E.T.; Jørgensen, S.; Olsen, J.; Engel, U.; Holck, S.; Troelsen, J.T. Regulation of APC and AXIN2 expression by intestinal tumor suppressor CDX2 in colon cancer cells. Carcinogenesis 2013, 34, 1361–1369. [Google Scholar] [CrossRef]
- Toth, C.; Sukosd, F.; Valicsek, E.; Herpel, E.; Schirmacher, P.; Tiszlavicz, L. Loss of CDX2 gene expression is associated with DNA repair proteins and is a crucial member of the Wnt signaling pathway in liver metastasis of colorectal cancer. Oncol. Lett. 2018, 15, 3586–3593. [Google Scholar] [PubMed] [Green Version]
- Wang, Y.; Li, Z.; Li, W.; Liu, S.; Han, B. Methylation of promoter region of CDX2 gene in colorectal cancer. Oncol. Lett. 2016, 12, 3229–3233. [Google Scholar] [CrossRef] [Green Version]
- Asgari-Karchekani, S.; Karimian, M.; Mazoochi, T.; Taheri, M.A.; Khamehchian, T. CDX2 protein expression in colorectal cancer and its correlation with clinical and pathological characteristics, prognosis, and survival rate of patients. J. Gastrointest. Cancer 2020, 51, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.Y.; Jones, J.C.; Briggler, A.M.; Hubbard, J.M.; Kipp, B.R.; Sargent, D.J.; Dixon, J.G.; Grothey, A. Lack of caudal-type homeobox transcription factor 2 expression as a prognostic biomarker in metastatic colorectal cancer. Clin. Colorectal Cancer 2017, 16, 124–128. [Google Scholar] [CrossRef]
- Shigematsu, Y.; Inamura, K.; Mise, Y.; Saiura, A.; Rehnberg, E.; Yamammoto, N.; Ishikawa, Y.; Takahashi, S.; Kanda, H. CDX2 expression is concordant between primary colorectal cancer lesions and corresponding liver metastases independent of chemotherapy: A single-center retrospective study in Japan. Oncotarget 2018, 9, 17056–17065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Zhu, Y.; Shen, W.; Ding, W.; Wu, T.; Guo, Y.; Chen, X.; Zhou, M.; Chen, Y.; Cui, L.; et al. Combination of CDX2 expression and T stage improves prognostic prediction of colorectal cancer. J. Int. Med. Res. 2019, 47, 1829–1842. [Google Scholar] [CrossRef]
- Rajarajan, S.; Anupamam, C.E.; Jose, B.; Correa, M.; Sengupta, S.; Prabhu, J.S. Identification of colorectal cancers with defective DNA damage repair by immunohistochemical profiling of mismatch repair proteins, CDX2 and BRCAMol. Clin. Oncol. 2020, 13, 57. [Google Scholar]
- Nishiuchi, A.; Hisamori, S.; Sakaguchi, M.; Fukuyama, K.; Hoshino, N.; Itatani, Y.; Honma, S.; Maekawa, H.; Nishigori, T.; Tsunodal, S.; et al. MicroRNA-9-5p-CDX2 axis: A useful prognostic biomarker for patients with stage II/III colorectal cancer. Cancers 2019, 11, 1891. [Google Scholar] [CrossRef] [Green Version]
- Dalerba, P.; Sahoo, D.; Paik, S. CDX2 as a prognostic biomarker in stage II and stage III colon cancer. N. Engl. J. Med. 2016, 374, 211–222. [Google Scholar] [CrossRef]
- Pilati, C.; Taieb, J.; Balogoun, R.; Marisa, L.; de Reynies, A.; Laurent-Puig, P. CDX2 prognostic value in stage II/III resected colon cancer is related to CMS classification. Ann. Oncol. 2017, 28, 1032–1035. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.; Eiholm, S.; Kirkeby, L.T.; Espersen, M.L.; Jess, P.; Gögenür, I.; Olsen, J.; Troelsen, J.T. CDX2 downregulation is associated with poor differentiation and MMR deficiency in colon cancer. Exp. Mol. Pathol. 2016, 100, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Aasebo, K.; Dragomir, A.; Sundstrom, M.; Mezheyeuski, A.; Edqvist, P.H.; Eide, G.E.; Ponten, F.; Pfeiffer, P.; Glimelius, B.; Sorbye, H. CDX2: A prognostic marker in metastatic colorectal cancer defining a better BRAF mutated and a worse KRAS mutated subgroup. Front. Oncol. 2020, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Xie, H.; Lai, J.; Chen, Y.; Dong, J.; Zhang, X.; Liu, X. Double negativity for expression of YAP1 and CDX2 defines an aggressive type of colitis-associated cancer. Anticancer Res. 2020, 40, 5411–5416. [Google Scholar] [CrossRef]
- Dobreva, G.; Chahrour, M.; Dautzenberg, M.; Chirivella, L.; Kanzler, B.; Farinas, I.; Karsenty, G.; Grosschedl, R. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 2006, 125, 971–986. [Google Scholar] [CrossRef] [Green Version]
- FitzPatrick, D.R.; Carr, I.M.; McLaren, L.; Leek, J.P.; Wightman, P.; Williamson, K.; Gautier, P.; McGill, N.; Hayward, C.; Firth, H.; et al. Identification of SATB2 as the cleft palate gene on 2q32–qHum. Mol. Genet. 2003, 12, 2491–2501. [Google Scholar]
- Magnusson, K.; de Wit, M.; Brennan, D.J.; Johnson, L.B.; McGee, S.F.; Lundberg, E.; Naicker, K.; Klinger, R.; Kampf, C.; Asplund, A.; et al. SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. Am. J. Surg. Pathol. 2011, 35, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Zarate, Y.A.; Perry, H.; Ben-Omran, T.; Sellars, E.A.; Stein, Q.; Amureikhi, M.; Simmons, K.; Klein, O.; Fish, J.; Feingold, M.; et al. Further supporting evidence for the SATB2-associated syndrome found through whole exome sequencing. Am. J. Med. Genet. 2015, 167A, 1026–1032. [Google Scholar] [CrossRef]
- Berg, K.B.; Schaeffer, D.F. SATB2 as an immunohistochemical marker for colorectal adenocarcinoma: A concise review of benefits and pitfalls. Arch. Pathol. Lab. Med. 2017, 141, 1428–1433. [Google Scholar] [CrossRef] [Green Version]
- Brandler, T.C.; Jelloul, F.Z.; Soto, D.; Das, K.; Rosen, L.; Bhuiya, T.A. Young investigator challenge: Cadherin-17 and SATB2 in cytology specimens: Do these new immunostains help in differentiating metastatic colorectal adenocarcinoma from adenocarcinomas of other origins? Cancer Cytopathol. 2015, 123, 706–713. [Google Scholar] [CrossRef] [Green Version]
- Neri, G.; Arpa, G.; Guerini, C.; Grillo, F.; Lenti, M.V.; Giuffrida, P.; Furlan, D.; Sessa, F.; Quaquarini, E.; Viglio, A.; et al. Small bowel adenocarcinomas featuring special AT-rich sequence-binding protein 2 (SATB2) expression and a colorectal cancer-like immunophenotype: A potential diagnostic pitfall. Cancers 2020, 12, 3441. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, C.N.; White, S.J.; Tebbutt, N.C.; Clay, F.J.; Ernst, M.; Biggs, W.H.; Viars, C.S.; Czekay, S.; Arden, K.C.; Heath, J.K. Analysis of the regulation of the A33 antigen gene reveals intestine-specific mechanisms of gene expression. J. Biol. Chem. 2002, 277, 34531–34539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fey, D.; Coelho, V.; Petrausch, U.; Schaefer, M.; Keilholz, U.; Thiel, E.; Deckert, P.M. Surface expression of gpA33 is dependent on culture density and cell-cycle phase and is regulated by intracellular traffic rather than gene transcription. Cancer Biother. Radiopharm. 2008, 23, 65–73. [Google Scholar]
- Ackerman, M.E.; Chalouni, C.; Schmidt, M.M.; Raman, V.V.; Ritter, G.; Old, L.J.; Mellman, I.; Wittrup, K.D. A33 antigen displays persistent surface expression. Cancer Immunol. Immunother. 2008, 57, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Kuespert, K.; Pils, S.; Hauck, C.R. CEACAMs: Their role in physiology and pathophysiology. Curr. Opin. Cell Biol. 2006, 18, 565–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chretien, I.; Marcuz, A.; Courtet, M.; Katevuo, K.; Vainio, O.; Heath, J.K.; White, S.J.; Du Pasquier, L. CTX, a Xenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates. Eur. J. Immunol. 1998, 28, 4094–4104. [Google Scholar] [CrossRef]
- Bazzoni, G. The JAM family of junctional adhesion molecules. Curr. Opin. Cell Biol. 2003, 15, 525–530. [Google Scholar] [CrossRef]
- Wong, N.A.; Adamczyk, L.A.; Evans, S.; Cullen, J.; Oniscu, A.; Oien, K.A. A33 shows similar sensitivity to but is more specific than CDX2 as an immunomarker of colorectal carcinoma. Histopathology 2017, 71, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Berndorff, D.; Gessner, R.; Kreft, B.; Schnoy, N.; Lajous-Petter, A.M.; Loch, N.; Reutter, W.; Hortsch, M.; Tauber, R. Liver-intestine cadherin: Molecular cloning and characterization of a novel Ca(2+)-dependent cell adhesion molecule expressed in liver and intestine. J. Cell Biol. 1994, 125, 1353–1369. [Google Scholar] [CrossRef] [Green Version]
- Wendeler, M.W.; Drenckhahn, D.; Gessner, R.; Baumgartner, W. Intestinal LI-cadherin acts as a Ca2+-dependent adhesion switch. J. Mol. Biol. 2007, 370, 220–230. [Google Scholar] [CrossRef]
- Su, M.C.; Yuan, R.H.; Lin, C.Y.; Jeng, Y.M. Cadherin-17 is a useful diagnostic marker for adenocarcinomas of the digestive system. Mod. Pathol. 2008, 21, 1379–1386. [Google Scholar] [CrossRef]
- Hinoi, T.; Luca, P.C.; Kuick, R.; Hanash, S.; Cho, K.R.; Fearon, E.R. CDX2 regulates liver intestine-cadherin expression in normal and malignant colon epithelium and intestinal metaplasia. Gastroenterology 2002, 123, 1565–1577. [Google Scholar] [CrossRef]
- Panarelli, N.C.; Yantiss, R.K.; Yeh, M.M.; Liu, Y.; Chen, Y.T. Tissue-specific cadherin CDH17 is a useful marker of gastrointestinal adenocarcinomas with higher sensitivity than CDX2. Am. J. Clin. Pathol. 2012, 138, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Gessner, R.; Tauber, R. Intestinal cell adhesion molecules: Liver-intestine cadherin. Ann. N. Y. Acad. Sci. 2000, 915, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Bartolome, R.A.; Barderas, R.; Torres, S.; Fernandez-Acenero, M.J.; Mendes, M.; Garcia-Foncillas, J.; Lopez-Lucendo, M.; Casal, J.I. Cadherin-17 interacts with α2β1 integrin to regulate cell proliferation and adhesion in colorectal cancer cells causing liver metastasis. Oncogene 2014, 33, 1658–1669. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.M.; Kennedy, D.W. Dualistic nature of adhesive protein function: Fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J. Cell Biol. 1984, 99, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Pierschbacher, M.D.; Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984, 309, 30–33. [Google Scholar] [CrossRef]
- Bartolome, R.A.; Pelaez-Garcia, A.; Gomez, I.; Torres, S.; Fernandez-Acenero, M.J.; Escudero-Paniagua, B.; Imbaud, I.; Casal, I. An RGD motif present in cadherin 17 induces integrin activation and tumor growth. J. Biol. Chem. 2014, 289, 34801–34814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordonez, N.G. Cadherin 17 is a novel diagnostic marker for adenocarcinomas of the digestive system. Adv. Anat. Pathol. 2014, 21, 131–137. [Google Scholar] [CrossRef]
- Abouelkhair, M.B.; Mabrouk, S.H.; Zaki, S.S.A.; Nada, O.H.; Hakim, S.A. The diagnostic value of cadherin 17 and CDX2 expression as immunohistochemical markers in colorectal adenocarcinoma. J. Gastrointest. Cancer 2021, 52, 960–969. [Google Scholar] [CrossRef]
- Bian, T.; Zhao, J.; Feng, J.; Zhang, Q.; Qian, L.; Liu, J.; Jiang, D.; Liu, Y.; Zhang, J. Combination of cadherin-17 and SATB homeobox 2 serves as potential optimal makers for the differential diagnosis of pulmonary enteric adenocarcinoma and metastatic colorectal adenocarcinoma. Oncotarget 2017, 8, 63442–63452. [Google Scholar] [CrossRef]
- Herrmann, H.; Strelkov, S.V.; Burkhard, P.; Aebi, U. Intermediate filaments: Primary determinants of cell architecture and plasticity. J. Clin. Investig. 2009, 119, 1772–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karantza, V. Keratins in health and cancer: More than mere epithelial cell markers. Oncogene 2011, 30, 127–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, H.; Bar, H.; Kreplak, L.; Strelkov, S.V.; Aebi, U. Intermediate filaments: From cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 2007, 8, 562–573. [Google Scholar] [CrossRef]
- Kim, S.; Wong, P.; Coulombe, P.A. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 2006, 441, 362–365. [Google Scholar] [CrossRef]
- Oriolo, A.S.; Wald, F.A.; Ramsauer, V.P.; Salas, P.J. Intermediate filaments: A role in epithelial polarity. Exp. Cell Res. 2007, 313, 2255–2264. [Google Scholar] [CrossRef] [Green Version]
- Styers, M.L.; Kowalczyk, A.P.; Faundez, V. Intermediate filaments and vesicular membrane traffic: The odd couple’s first dance? Traffic 2005, 6, 359–365. [Google Scholar] [CrossRef]
- Toivola, D.M.; Tao, G.Z.; Habtezion, A.; Liao, J.; Omary, M.B. Cellular integrity plus: Organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 2005, 15, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraj, P.; Kroger, C.; Reuter, U.; Windoffer, R.; Leube, R.E.; Magin, T.M. Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor. J. Cell Biol. 2009, 187, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, J.; Bowden, P.E.; Coulombe, P.A.; Langbein, L.; Lane, E.B.; Magin, T.M.; Maltais, L.; Omary, M.B.; Parry, D.A.D.; Rogers, M.A.; et al. New consensus nomenclature for mammalian keratins. J. Cell. Biol. 2006, 174, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Harbaum, L.; Pollheimer, M.J.; Kornprat, P.; Lindtner, R.A.; Schlemmer, A.; Rehak, P.; Langner, C. Keratin 7 expression in colorectal cancer-freak of nature or significant finding? Histopathology 2011, 59, 225–234. [Google Scholar] [CrossRef]
- Czapiewski, P.; Bobowicz, M.; Pęksa, R.; Skrzypski, M.; Gorczyński, A.; Szczepańska-Michalska, K.; Korwat, A.; Jankowski, M.; Zegarski, W.; Szulgo-Paczkowska, A.; et al. Keratin 7 expression in lymph node metastases but not in the primary tumour correlates with distant metastases and poor prognosis in colon carcinoma. Pol. J. Pathol. 2016, 67, 228–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jass, J.R. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 2007, 50, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Gurzu, S.; Jung, I. Aberrant pattern of the cytokeratin 7/cytokeratin 20 immunophenotype in colorectal adenocarcinomas with BRAF mutations. Pathol. Res. Pract. 2012, 208, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.; Hoos, A.; Mueller, J.; Baier, P.; Stricker, D.; Werner, M.; Nekarda, H.; Siewert, J.R. Prognostic significance of cytokeratin-20 reverse transcriptase polymerase chain reaction in lymph nodes of node-negative colorectal cancer patients. J. Clin. Oncol. 2002, 20, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Harbaum, L.; Pollheimer, M.J.; Kornprat, P.; Lindtner, R.A.; Schlemmer, A.; Rehak, P.; Langner, C. Keratin 20—A diagnostic and prognostic marker in colorectal cancer? Histol. Histopathol. 2012, 27, 347–356. [Google Scholar]
- McGregor, D.K.; Wu, T.T.; Rashid, A.; Luthra, R.; Hamilton, S.R. Reduced expression of cytokeratin 20 in colorectal carcinomas with high levels of microsatellite instability. Am. J. Surg. Pathol. 2004, 28, 712–718. [Google Scholar] [CrossRef]
- Bayrak, R.; Yenidunya, S.; Haltas, H. Cytokeratin 7 and cytokeratin 20 expression in colorectal adenocarcinomas. Pathol. Res. Pract. 2011, 207, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.H.; Chu, P. Immunohistochemical features of the gastrointestinal tract tumors. J. Gastrointest. Oncol. 2012, 3, 262–284. [Google Scholar]
- Park, S.Y.; Kim, B.H.; Kim, J.H.; Lee, S.; Kang, G.H. Panels of immunohistochemical markers help determine primary sites of metastatic adenocarcinoma. Arch. Pathol. Lab. Med. 2007, 131, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Bae, J.H.; Lee, A.; Jung, C.K.; Yim, H.W.; Park, J.S.; Lee, K.Y. CK7, CK20, CDX2 and MUC2 Immunohistochemical staining used to distinguish metastatic colorectal carcinoma involving ovary from primary ovarian mucinous adenocarcinoma. Jpn. J. Clin. Oncol. 2010, 40, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Al-Maghrabi, J.; Emam, E.; Gomaa, W. Immunohistochemical staining of cytokeratin 20 and cytokeratin 7 in colorectal carcinomas: Four different immunostaining profiles. Saudi J. Gastroenterol. 2018, 24, 129–134. [Google Scholar] [CrossRef]
- Hernandez, B.Y.; Frierson, H.F.; Moskaluk, C.A.; Li, Y.J.; Clegg, L.; Cote, T.R.; McCusker, M.E.; Hankey, B.F.; Edwards, B.K.; Goodman, M.T. CK20 and CK7 protein expression in colorectal cancer: Demonstration of the utility of a population-based tissue microarray. Hum. Pathol. 2005, 36, 275–281. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, H.S.; Hong, E.K.; Kim, W.H. Expression of cytokeratins 7 and 20 in primary carcinomas of the stomach and colorectum and their value in the differential diagnosis of metastatic carcinomas to the ovary. Hum. Pathol. 2002, 33, 1078–1085. [Google Scholar] [CrossRef]
- Waseem, A.; Dogan, B.; Tidman, N.; Alam, Y.; Purkis, P.; Jackson, S.; Lalli, A.; Machesney, M.; Leigh, I.M. Keratin 15 expression in stratified epithelia: Downregulation in activated keratinocytes. J. Investig. Dermatol. 1999, 112, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Chong, L.Y.; Cheok, P.Y.; Tan, W.J.; Thike, A.A.; Allen, G.; Ang, M.K.; Ooi, A.S.; Tan, P.; Teh, B.T.; Tan, P.H. Keratin 15, transcobalamin I and homeobox gene Hox-B13 expression in breast phyllodes tumors: Novel markers in biological classification. Breast Cancer Res. Treat. 2012, 132, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahalingam, M.; Srivastava, A.; Hoang, M.P. Expression of stem-cell markers (cytokeratin 15 and nestin) in primary adnexal neoplasms-clues to etiopathogenesis. Am. J. Dermatopathol. 2010, 32, 774–779. [Google Scholar] [CrossRef]
- Gelfand, R.; Vernet, D.; Bruhn, K.W.; Sarkissyan, S.; Heber, D.; Vadgama, J.V.; Gonzalez-cadavid, N.F. Long-term exposure of MCF-7 breast cancer cells to ethanol stimulates oncogenic features. Int. J. Oncol. 2017, 50, 49–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatta, M.; Miyake, Y.; Uchida, K.; Yamazaki, J. Keratin 13 gene is epigenetically suppressed during transforming growth factor-beta1-induced epithelial-mesenchymal transition in a human keratinocyte cell line. Biochem. Biophys. Res. Commun. 2018, 496, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Lion, M.; Bisio, A.; Tebaldi, T.; De Sanctis, V.; Menendez, D.; Resnick, M.A.; Ciribilli, Y.; Inga, A. Interaction between p53 and estradiol pathways in transcriptional responses to chemotherapeutics. Cell Cycle 2013, 12, 1211–1224. [Google Scholar] [CrossRef] [Green Version]
- Cimino, D.; Fuso, L.; Sfiligoi, C.; Biglia, N.; Ponzone, R.; Maggiorotto, F.; Russo, G.; Cicatiello, L.; Weisz, A.; Taverna, D.; et al. Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. Int. J. Cancer 2008, 123, 1327–1338. [Google Scholar] [CrossRef]
- Gomez-Morales, M.; Camara-Pulido, M.; Miranda-Leon, M.T.; Sanchez-Palencia, A.; Boyero, L.; Gomez-Capilla, J.A.; Farez-Vidal, M.E. Differential immunohistochemical localization of desmosomal plaque-related proteins in non-small-cell lung cancer. Histopathology 2013, 63, 103–113. [Google Scholar] [CrossRef]
- Khanom, R.; Sakamoto, K.; Pal, S.K.; Shimida, Y.; Morita, K.; Omura, K.; Miki, Y.; Yamaguchi, A. Expression of basal cell keratin 15 and keratin 19 in oral squamous neoplasms represents diverse pathophysiologies. Histol. Histopathol. 2012, 27, 949–959. [Google Scholar] [PubMed]
- Rao, X.; Wang, J.; Song, H.M.; Deng, B.; Li, J.G. KRT15 overexpression predicts poor prognosis in colorectal cancer. Neoplasma 2020, 67, 410–414. [Google Scholar] [CrossRef]
- Lai, Y.C.; Cheng, C.C.; Lai, Y.S.; Liu, Y.H. Cytokeratin 18-associated histone 3 modulation in hepatocellular carcinoma: A mini review. Cancer Genomics Proteomics 2017, 14, 219–223. [Google Scholar]
- Fortier, A.M.; Asselin, E.; Cadrin, M. Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J. Biol. Chem. 2013, 288, 11555–11571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, D.W.; Lane, E.B. Keratin mutations and intestinal pathology. J. Pathol. 2004, 204, 377–385. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, S.; Li, Y. KRT18 is correlated with the malignant status and acts as an oncogene in colorectal cancer. Biosci. Rep. 2019, 39, BSR20190884. [Google Scholar] [CrossRef] [Green Version]
- Bertorelle, R.; Briarava, M.; Rampazzo, E.; Biasini, L.; Agostini, M.; Maretto, I.; Lonardi, S.; Friso, M.L.; Mescoli, C.; Zagonel, V.; et al. Telomerase is an independent prognostic marker of overall survival in patients with colorectal cancer. Br. J. Cancer 2013, 108, 278–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, M.D.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific associ-ation of human telomerase activity with immortal cells and cancer. Science 1994, 266, 2011–2015. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.M.; Morin, G.B.; Chapman, K.B.; Weinrich, S.L.; Andrews, W.H.; Lingner, J.; Harley, C.B.; Cech, T.R. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997, 277, 955–959. [Google Scholar] [CrossRef]
- Chen, C.H.; Chen, R.J. Prevalence of telomerase activity in human cancer. J. Formos. Med. Assoc. 2011, 110, 275–289. [Google Scholar] [CrossRef] [Green Version]
- Bertorelle, R.; Rampazzo, E.; Pucciarelli, S.; Nitti, D.; De Rossi, A. Telomeres, telomerase and colorectal cancer. World J. Gastroenterol. 2014, 20, 1940–1945. [Google Scholar] [CrossRef] [PubMed]
- Terrin, L.; Rampazzo, E.; Pucciarelli, S.; Agostini, M.; Bertorelle, R.; Esposito, G.; Del Bianco, P.; Nitti, D.; De Rossi, A. Relationship between tumor and plasma levels of hTERT mRNA in patients with colorectal cancer: Implications for monitoring of neoplastic disease. Clin. Cancer Res. 2008, 14, 7444–7451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernadez-Marcelo, T.; Sanchez-Pernaute, A.; Pascua, I.; De Juan, C.; Head, J.; Torres-Garcia, A.J.; Iniesta, P. Clinical relevance of telomere status and telomerase activity in colorectal cancer. PLoS ONE 2016, 11, e0149626. [Google Scholar]
- Bae, S.U.; Park, W.J.; Jeong, W.K.; Baek, S.K.; Lee, H.W.; Lee, J.H. Prognostic impact of telomeric repeat-containing RNA expression on long-term oncologic outcomes in colorectal cancer. Medicine 2019, 98, 314932. [Google Scholar] [CrossRef]
- Ayiomamitis, G.D.; Notas, G.; Zaravinos, A.; Zizi-Sermpetzoglou, A.; Georgiadou, M.; Sfakianaki, O.; Kouroumallis, E. Differences in telomerase activity between colon and rectal cancer. Can. J. Surg. 2014, 57, 199–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatsumoto, N.; Hiyama, E.; Murakami, Y.; Imamura, Y.; Shay, J.W.; Matsuura, Y.; Yokoyama, T. High telomerase activity is an independent prognostic indicator of poor outcome in colorectal cancer. Clin. Cancer Res. 2000, 6, 2696–2701. [Google Scholar]
- Gertler, R.; Rosenberg, R.; Stricker, D.; Friederichs, J.; Hoos, A.; Werner, M.; Ulm, K.; Holzmann, B.; Nekarda, H.; Siewert, J.R. Telomere length and human telomerase reverse transcriptase expression as markers for progression and prognosis of colorectal carcinoma. J. Clin. Oncol. 2004, 22, 1807–1814. [Google Scholar] [CrossRef]
- Rosenberg, R.; Gertler, R.; Stricker, D.; Lassmann, S.; Werner, M.; Nekarda, H.; Siewert, J.R. Telomere length and hTERT expression in patients with colorectal carcinoma. Recent Results Cancer Res. 2003, 162, 177–181. [Google Scholar]
- Tahara, H.; Yasui, W.; Tahara, E.; Fujimoto, J.; Ito, K.; Tamai, K.; Nakayama, J.; Ishikawa, F.; Tahara, E.; Ide, T. Immuno-histochemical detection of human telomerase catalytic component, hTERT, in human colorectal tumor and non-tumor tissue sections. Oncogene 1999, 18, 1561–1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kammori, M.; Kanauchi, H.; Nakamura, K.; Kawahara, M.; Weber, T.K.; Mafune, K.I.; Kaminishi, M.; Takubo, K. Demonstration of human telomerase reverse transcriptase in human colorectal carcinomas by in situ hybridization. Int. J. Oncol. 2002, 20, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, M.; Drullinsky, P.; Guillem, J.; Moore, M.A. Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin. Cancer Res. 1997, 3, 1931–1941. [Google Scholar] [PubMed]
- Yoshida, K.; Sugino, T.; Goodison, S.; Warren, B.F.; Nolan, D.; Wadsworth, S.; Mortensen, N.J.; Toge, T.; Tahara, E.; Tarin, D. Detection of telomerase activity in exfoliated cancer cells in colonic luminal washings and its related clinical implications. Br. J. Cancer 1997, 75, 548–553. [Google Scholar] [CrossRef] [Green Version]
- Myung, S.J.; Yang, S.K.; Chang, H.S.; Byeon, J.S.; Kim, K.J.; Hong, S.S.; Jeong, J.Y.; Lee, S.M.; Hong, W.S.; Kim, J.H.; et al. Clinical usefulness of telomerase for the detection of colon cancer in ulcerative colitis patients. J. Gastroenterol. Hepatol. 2005, 20, 1578–1583. [Google Scholar] [CrossRef]
- Kawanishi-Tabata, R.; Lopez, F.; Fratantonio, S.; Kim, N.; Goldblum, J.; Tubbs, R.; Elson, P.; Lavery, I.; Bukowski, R.M.; Ganapathi, R.; et al. Telomerase activity in stage II colorectal carcinoma. Cancer 2002, 95, 1834–1839. [Google Scholar] [CrossRef]
- Fang, D.C.; Young, J.; Luo, Y.H.; Lu, R.; Jass, J. Detection of telomerase activity in biopsy samples of colorectal cancer. J. Gastroenterol. Hepatol. 1999, 14, 328–332. [Google Scholar] [CrossRef]
- Ishibashi, K.; Hirose, K.; Kato, H.; Ogawa, K.; Haga, S. Determining the telomerase activity of exfoliated cells in intestinal lavage solution to detect colorectal carcinoma. Anticancer Res. 1999, 19, 2831–2836. [Google Scholar]
- Nikolouzakis, T.K.; Vassilopoulou, L.; Fragkiadaki, P.; Sapsakos, T.M.; Papadakis, G.Z.; Spandidos, D.A.; Tsatsakis, A.M.; Tsiaoussis, J. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients. (Review). Oncol. Rep. 2018, 39, 2455–2472. [Google Scholar] [CrossRef] [Green Version]
- Ahlquist, D.A.; McGill, D.B.; Schwartz, S.; Taylor, W.F.; Owen, R.A. Fecal blood levels in health and disease. A study using HemoQuant. N. Engl. J. Med. 1985, 312, 1422–1428. [Google Scholar] [CrossRef]
- Vu, H.V.; Burke, C.A. Advances in colorectal cancer screening. Curr. Gastroenterol. Rep. 2009, 11, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Burch, J.; Soares-Weiser, K.; St John, D.; Duffy, S.; Smith, S.; Keijnen, J.; Westwood, M. Diagnostic accuracy of faecal occult blood tests used in screening for colorectal cancer: A systematic review. J. Med. Screen. 2007, 14, 132–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rengucci, C.; De Maio, G.; Menghi, M.; Benzi, F.; Calistri, D. Evaluation of colorectal cancer risk and prevalence by stool DNA integrity detection. J. Vis. Exp. 2020, 160. [Google Scholar] [CrossRef] [PubMed]
- Hirai, H.W.; Tsoi, K.K.F.; Chan, J.Y.C.; Wong, S.H.; Ching, J.Y.L.; Wong, M.C.S.; Wu, J.C.Y.; Chan, F.K.L.; Sung, J.J.Y.; Ng, S.C. Systematic review with meta-analysis: Faecal occult blood tests show lower colorectal cancer detection rates in the proximal colon in colonoscopy-verified diagnostic studies. Aliment. Pharmacol. Ther. 2016, 43, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Dollinger, M.M.; Behl, S.; Fleig, W.E. Early detection of colorectal cancer: A multi-center preclinical case cohort study for validation of a combined DNA stool test. Clin. Lab. 2018, 64, 1719–1730. [Google Scholar] [CrossRef]
- Okada, T.; Tanaka, K.; Kawachi, H.; Ito, T.; Nishikage, T.; Odagaki, T.; Zarate, A.J.; Kronberg, U.; Lopez-Kostner, F.; Karelovic, S.; et al. International collaboration between Japan and Chile to improve detection rates in colorectal cancer screening. Cancer 2016, 122, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Rank, K.M.; Shaukat, A. Stool based testing for colorectal cancer: An overview of available evidence. Curr. Gastroenterol. Rep. 2017, 19, 39. [Google Scholar] [CrossRef]
- Kościelniak-Merak, B.; Radosavljević, B.; Zając, A.; Tomasik, P.J. Faecal occult blood point-of-care tests. J. Gastrointest. Cancer 2018, 49, 402–405. [Google Scholar] [CrossRef] [Green Version]
- Robertson, D.J.; Imperiale, T.F. Stool testing for colorectal cancer screening. Gastroenterology 2015, 149, 1286–1293. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, B.T.; Kisiel, J.; Ahlquist, D.A.; Grady, W.M. Molecular markers for colorectal cancer screening. Gut 2015, 64, 1485–1494. [Google Scholar] [CrossRef] [Green Version]
- Janz, T.; Lu, K.; Povlow, M.R.; Urso, B. A Review of colorectal cancer detection modalities, stool DNA, and fecal immunochemistry testing in adults over the age of 50. Cureus 2016, 8, e931. [Google Scholar] [CrossRef] [Green Version]
- Issa, I.A.; Noureddine, M. Colorectal cancer screening: An updated review of the available options. World J. Gastroenterol. 2017, 23, 5086–5096. [Google Scholar] [CrossRef]
- Hundt, S.; Haug, U.; Brenner, H. Comparative evaluation of immunochemical fecal occult blood tests for colorectal adenoma detection. Ann. Intern. Med. 2009, 150, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Van Doorn, S.C.; Stegeman, I.; Stroobants, A.K.; Mundt, M.W.; de Wijkerslooth, T.R.; Fockens, P.; Kuipers, E.J.; Bossuyt, P.M.; Dekker, E. Fecal immunochemical testing results and characteristics of colonic lesions. Endoscopy 2015, 47, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; Liles, E.G.; Bent, S.; Levin, T.R.; Corley, D.A. Accuracy of fecal immunochemical tests for colorectal cancer: Systematic review and meta-analysis. Ann. Intern. Med. 2014, 160, 171. [Google Scholar] [CrossRef]
- Lieberman, D.A.; Weiss, D.G. One-time screening for colorectal cancer with combined fecal occult-blood testing and examination of the distal colon. N. Engl. J. Med. 2001, 345, 555–560. [Google Scholar] [CrossRef]
- Niedermaier, T.; Balavarca, Y.; Brenner, H. Stage-specific sensitivity of fecal immunochemical tests for detecting colorectal cancer: Systematic review and meta-analysis. Am. J. Gastroenterol. 2020, 115, 56–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, N.; Sharp, L.; Osborne, A.; Kearney, P.M. Comparison of uptake of colorectal cancer screening based on fecal immunochemical testing (FIT) in males and females: A systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 2015, 24, 39–347. [Google Scholar] [CrossRef] [Green Version]
- Okada, T.; Odagaki, T.; Lopez-Kostner, F.; Zarate, A.J.; Ponce, A.; Kronberg, U.; Karelovic, S.; Flores, S.; Estela, R.; Ito, T.; et al. Colorectal cancer risk factors in asymptomatic Chilean population: A survey of international collaboration between Japan and Chile. Eur. J. Cancer Prev. 2020, 29, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.R.; Aggarwal, A.; Imperiale, T.F. Colorectal cancer screening: Stool DNA and other noninvasive modalities. Gut Liver 2016, 10, 204–211. [Google Scholar] [CrossRef]
- Carethers, J.M. Fecal DNA testing for colorectal cancer screening. Annu. Rev. Med. 2020, 71, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Iannone, A.; Losurdo, G.; Pricci, M.; Girardi, B.; Massaro, A.; Principi, M.; Barone, M.; Ierardi, E.; Di Leo, A. Stool investigations for colorectal cancer screening: From occult blood Test to DNA analysis. J. Gastrointest. Cancer 2016, 47, 143–151. [Google Scholar] [CrossRef]
- Eckmann, J.D.; Ebner, D.W.; Kisiel, J.B. Multi-target stool DNA testing for colorectal cancer screening: Emerging learning on real-world performance. Curr. Treat. Options Gastroenterol. 2020, 18, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014, 370, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Malik, P. A novel multitarget stool DNA test for colorectal cancer screening. Postgrad. Med. 2016, 128, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, S.; Wang, H.; Zheng, L.; Zhou, C.; Li, G.; Huang, R.; Wang, H.; Li, C.; Fan, X.; et al. Robust performance of a novel stool DNA test of methylated SDC2 for colorectal cancer detection: A multicenter clinical study. Clin. Epigenetics 2020, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Bosch, L.J.; Melotte, V.; Mongera, S.; Daenen, K.L.; Coupe, V.M.H.; van Turenhout, S.T.; Stoop, E.M.; de Wijkerslooth, T.R.; Mulder, C.J.J.; Rausch, C.; et al. Multitarget stool DNA test performance in an average-risk colorectal cancer screening population. Am. J. Gastroeneterol. 2019, 114, 1909–1918. [Google Scholar] [CrossRef] [Green Version]
- Eckmann, J.D.; Ebner, D.W.; Bering, J.; Kahn, A.; Rodriguez, E.; Devens, M.E.; Lowrie, K.L.; Doering, K.; Then, S.; Burger, K.N.; et al. Multitarget stool DNA screening in clinical practice: High positive predictive value for colorectal neoplasia regardless of exposure to previous colonoscopy. Am. J. Gastroenterol. 2020, 15, 608–615. [Google Scholar] [CrossRef]
- Price, M.; Lester, L.; Chiniwala, R.; Berger, B. Multitarget stool DNA tests increases colorectal cancer screening among previously noncompliant Medicare patients. World J. Gastroenterol. 2017, 23, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Kisiel, J.B.; Eckmann, J.D.; Limburg, P.J. Multitarget stool DNA for average risk colorectal cancer screening: Major achievements and future directions. J. Gastrointest. Endosc. Clin. N. Am. 2020, 30, 553–568. [Google Scholar] [CrossRef]
- Yuan, Y.; Qu, B.; Yan, J.; Wang, H.; Yin, L.; Han, Q. Diagnostic value of aberrant gene methylation in stool samples for colorectal cancer or adenomas: A meta-analysis. Panminerva Med. 2015, 57, 55–64. [Google Scholar]
- Pickhardt, P.J.; Graffy, P.M.; Weigman, B.; Deiss-Yehiely, N.; Hassan, C.; Weiss, J.M. Diagnostic performance of multitarget stool DNA and CT colonography for noninvasive colorectal cancer screening. Radiology 2020, 297, 120–129. [Google Scholar] [CrossRef]
- Qian, L.Y.; Zhang, W. The diagnostic value of DNA hypermethylation in stool for colorectal cancer: A meta-analysis. J. Cancer Res. Ther. 2014, 10, 287–291. [Google Scholar] [CrossRef]
- Zhai, R.L.; Xu, F.; Zhang, P.; Zhang, W.L.; Wang, H.; Wang, J.L.; Cai, K.L.; Long, Y.P.; Lu, X.M.; Tao, K.T.; et al. The diagnostic performance of stool DNA testing for colorectal cancer: A systematic review and meta-analysis. Medicine 2016, 95, e2129. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, J.; Wu, Y.Q.; Zhang, P.; Jiang, J.; Wang, Q.X.; Zhu, Y.Q. Accuracy of early detection of colorectal tumours by stool methylation markers: A meta-analysis. World J. Gastroenterol. 2014, 20, 14040–14050. [Google Scholar] [CrossRef]
- Luo, Y.X.; Chen, D.K.; Song, S.X.; Wang, L.; Wang, J.P. Aberrant methylation of genes in stool samples as diagnostic biomarkers for colorectal cancer or adenomas: A meta-analysis. Int. J. Clin. Pract. 2011, 65, 1313–1320. [Google Scholar] [CrossRef]
- Mojtabanezhad Shariatpanahi, A.; Yassi, M.; Nouraie, M.; Sahebkar, A.; Tabrizi, F.V.; Kerachian, M.A. The importance of stool DNA methylation in colorectal cancer diagnosis: A meta-analysis. PLoS ONE 2018, 13, e0200735. [Google Scholar] [CrossRef]
- Gachabayov, M.; Lebovics, E.; Rojas, A.; Felsenreich, D.M.; Latifi, R.; Bergamaschi, R. Performance evaluation of stool DNA methylation test in colorectal cancers screening: A systemic review and metaanalysis. Colorectal Dis. 2021, 23, 1030–1042. [Google Scholar] [CrossRef] [PubMed]
- Muller, H.M.; Oberwalder, M.; Fiegl, H.; Morandell, M.; Goebel, G.; Zitt, M.; Muhlthaler, M.; Ofner, D.; Margreiter, R.; Widchwendter, M. Methylation changes in faecal DNA: A marker for colorectal cancer screening? Lancet 2004, 363, 1283–1285. [Google Scholar] [CrossRef]
- Petko, Z.; Ghiassi, M.; Shuber, A.; Gorham, J.; Smalley, W.; Washington, M.K.; Schultenover, S.; Gautam, S.; Markowitz, S.D.; Grady, W.M. Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps. Clin. Cancer Res. 2005, 11, 1203–1209. [Google Scholar] [PubMed]
- Huang, Z.; Li, L.; Wang, J. Hypermethylation of SFRP2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions. Dig. Dis. Sci. 2007, 52, 2287–2291. [Google Scholar] [CrossRef]
- Itzkowitz, S.H.; Jandorf, L.; Brand, R.; Rabeneck, L.; Schroy, P.C., III; Sontang, S.; Johnson, D.; Skoletsky, J.; Durkee, K.; Markowitz, S.; et al. Improved fecal DNA test for colorectal cancer screening. Clin. Gastroenterol. Hepatol. 2007, 5, 111–117. [Google Scholar] [CrossRef]
- Wang, D.R.; Tang, D. Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer nininvasive screening. World J. Gastroenterol. 2008, 14, 524–531. [Google Scholar] [CrossRef]
- Itzkowitz, S.; Brand, R.; Jandorf, L.; Durkee, K.; Millholland, J.; Rabeneck, L.; Schroy, P.C., 3rd; Sontag, S.; Johnson, D.; Markowitz, S.; et al. A simplified, noninvasive stool DNA test for colorectal cancer detection. Am. J. Gastroenterol. 2008, 103, 2862–2870. [Google Scholar] [CrossRef]
- Oberwalder, M.; Zitt, M.; Wontner, C.; Fiegl, H.; Goebel, G.; Zitt, M.; Kohle, O.; Muhlmann, G.; Ofner, D.; Margreiter, R.; et al. SFRP2 methylation in fecal DNA--a marker for colorectal polyps. Int. J. Color. Dis. 2008, 23, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Glockner, S.C.; Dhir, M.; Yi, J.M.; McGarvey, K.E.; Van Neste, L.; Louwagie, J.; Chan, T.A.; Kleeberger, W.; de Bruine, A.P.; Smits, K.M.; et al. Methylation of TFPI2 in stool DNA: A potential novel biomarker for the detection of colorectal cancer. Cancer Res. 2009, 69, 4691–4699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melotte, V.; Lentjes, M.H.; van den Bosch, S.M.; Hellebrekers, D.M.; de Hoon, J.P.; Wouters, K.A.; Daenen, K.L.; Partouns-Hendriks, I.E.; Stessels, F.; Louwagie, J.; et al. N-Myc downstream-regulated gene 4 (NDRG4): A candidate tumor suppressor gene and potential biomarker for colorectal cancer. J. Natl. Cancer Inst. 2009, 101, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Hellebrekers, D.M.E.I.; Lentjes, M.H.F.M.; van den Bosch, S.; Melotte, V.; Wouters, K.A.D.; Daenen, K.L.J.; Smits, K.M.; Kiyama, Y.; Yuasa, Y.; Sanduleanu, S.; et al. GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin. Cancer Res. 2009, 15, 3900–3907. [Google Scholar] [CrossRef] [Green Version]
- Ausch, C.; Kim, Y.H.; Tsuchiya, K.D.; Dzieciatkowski, S.; Washington, M.K.; Paraskeva, C.; Radich, J.; Grady, W.M. Comparative analysis of PCR-based biomarker assay methods for colorectal polyp detection from fecal DNA. Clin. Chem. 2009, 55, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, T.; Tanaka, N.; Cullinds, H.M.; Sun, D.S.; Sasamoto, H.; Uchida, T.; Koi, M.; Nishida, N.; Naomoto, Y.; Boland, C.R.; et al. Analysis of fecal DNA methylation to detect gastrointestinal neoplasia. J. Natl. Cancer Inst. 2009, 101, 1244–1258. [Google Scholar] [CrossRef]
- Chang, E.; Park, D.I.; Kim, Y.J.; Kim, B.K.; Park, J.H.; Kim, H.J.; Cho, Y.K.; Sohn, C.I.; Jeon, W.K.; Kim, B.I.; et al. Detection of colorectal neoplasm using promoter methylation of ITGA4, SFRP2, and p16 in stool samples: A preliminary report in Korean patients. Hepatogastroenterology 2010, 57, 720–727. [Google Scholar] [PubMed]
- Zhang, J.P.; Wang, J.; Gui, Y.L.; Zhu, Q.Q.; Xu, Z.W.; Li, J.S. Human stool vimentin, oncostatin M receptor and tissue factor pathway inhibitor 2 gene methylation analysis for the detection of colorectal neoplasms. Zhonghua Yi Xue Za Zhi 2011, 91, 2482–2484. (In Chinese) [Google Scholar] [PubMed]
- Bosch, L.J.W.; Oort, F.A.; Neerincx, M.; Khalid-de Bakker, C.A.J.; Terhaar sive Droste, J.S.; Melotte, V.; Jonkers, D.M.; Masclee, A.; Mongera, S.; Grooteclaes, M.; et al. DNA methylation of phosphatase and actin regulator 3 detects colorectal cancer in stool and complements FIT. Cancer Prev. Res. 2012, 5, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Kisiel, J.B.; Yab, T.C.; Nazer Hussain, F.T.; Taylor, W.R.; Garrity-Park, M.M.; Sandborn, W.J.; Loftus, E.V.; Wolff, B.G.; Smyrk, T.C.; Itzkowitz, S.H.; et al. Stool DNA testing for the detection of colorectal neoplasia in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2013, 37, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Amiot, A.; Mansour, H.; Baumgaertner, I.; Delchier, J.C.; Tournigand, C.; Furet, J.P.; Carrau, J.P.; Canoui-Poitrine, F.; Sobhani, I. CRC of Val De Marne. The detection of the methylated Wif-1 gene is more accurate than a fecal occult blood test for colorectal cancer screening. PLoS ONE 2014, 9, e99233. [Google Scholar]
- Zhang, H.; Zhu, Y.Q.; Wu, Y.Q.; Zhang, P.; Qi, J. Detection of promoter hypermethylation of Wnt antagonist genes in fecal samples for diagnosis of early colorectal cancer. World J. Gastroenterol. 2014, 20, 6329–6335. [Google Scholar] [CrossRef]
- Wu, X.; Song, Y.C.; Cao, P.L.; Zhang, H.; Guo, Q.; Yan, R.; Diao, D.M.; Cheng, Y.; Dang, C.X. Detection of miR-34a and miR-34b/c in stool sample as potential screening biomarkers for noninvasive diagnosis of colorectal cancer. Med. Oncol. 2014, 31, 894. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, B.; Wang, G.; Zhu, W.; Wang, Z.; Lin, J.; Xu, A.; Wang, X. Validation of methylation-sensitive high-resolution melting (MS-HRM) for the detection of stool DNA methylation in colorectal neoplasms. Clin. Chim. Acta 2014, 431, 154–163. [Google Scholar] [CrossRef]
- Teixeira, Y.; Lima, J.M.; Souza, M.L.; Aguiar, P.; Silva, T.D.; Forones, N.M. Human DNA quantification in the stools of patients with colorectal cancer. Arq. Gastroenterol. 2015, 52, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, H.; Guo, Q.; Wu, X.; Xu, Z.; Dang, C.; Xia, P.; Song, Y. Detection of SNCA and FBN1 methylation in the stool as a biomarker for colorectal cancer. Dis. Markers 2015, 2015, 657570. [Google Scholar] [CrossRef] [Green Version]
- Park, S.K.; Baek, H.L.; Yu, J.; Kim, J.Y.; Yang, H.J.; Jung, Y.S.; Choi, K.Y.; Kim, H.; Kim, H.O.; Jeong, K.U.; et al. Is methylation analysis of SFRP2, TFPI2, NDRG4, and BMP3 promoters suitable for colorectal cancer screening in the Korean population? Intest. Res. 2017, 15, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Liu, J.; Hu, H.; Guo, P.; Shan, Z.; Yang, H.; Wang, J.; Xiao, W.; Zhou, X. A novel panel of stool-based DNA biomarkers for early screening of colorectal neoplasms in a Chinese population. J. Cancer Res. Clin. Oncol. 2019, 145, 2423–2432. [Google Scholar] [CrossRef]
- Liu, R.; Su, X.; Ling, Y.; Zhou, D.; Zhang, X.; Ye, Z.; Ma, J.; Tang, T.; Wang, F.; He, C. A systematic review and quantitative assessment of methylation biomarkers in fecal DNA and colorectal cancer and its precursor, colorectal adenoma. Mutat. Res. 2019, 779, 45–57. [Google Scholar] [CrossRef]
- Chen, J.; Sun, H.; Tang, W.; Zhou, L.; Zhan, X.X.; Chen, M.; Wang, S.; Yang, T.; Dai, Y.; Wang, Y.; et al. DNA methylation biomarkers in stool for early screening of colorectal cancer. J. Cancer 2019, 10, 5264–5271. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wen, J.; Li, C.; Wang, H.; Wang, J.; Zou, H. High-yield methylation markers for stool-based detection of colorectal cancer. Dig. Dis. Sci. 2020, 65, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Ye, Q.; Hong, Y.; Dai, W.; Zhang, C.; Liu, W.; Guo, Y.; Zhu, D.; Zhang, Z.; Chen, S.; et al. A systematic evaluation of stool DNA preparation protocols for colorectal cancer screening via analysis of DNA methylation biomarkers. Clin. Chem. Lab. Med. 2020, 59, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liu, X.; Liu, Y.; Li, H.; Ma, Y.; Li, S.; Zhu, Y.; Miao, J.; Xiong, S.; Fei, S.; et al. Aberrant DNA methylation of SEPT9 and SDC2 in stool specimens as an integrated biomarker for colorectal cancer early detection. Front. Genet. 2020, 11, 643. [Google Scholar] [CrossRef]
- Niedermaier, T.; Weigl, K.; Hoffmeister, M.; Brenner, H. Fecal immunochemical tests combined with other stool tests for colorectal cancer and advanced adenoma detection: A systematic review. Clin. Transl. Gastroenterol. 2016, 7, e175. [Google Scholar] [CrossRef]
- Mu, J.; Huang, Y.; Cai, S.; Li, Q.; Song, Y.; Yuan, Y.; Zhang, S.; Zheng, S. Plausibility of an extensive use of stool DNA test for screening advanced colorectal neoplasia. Clin. Chim. Acta 2020, 501, 42–47. [Google Scholar] [CrossRef]
- Levin, T.R.; Corley, D.A.; Jensen, C.D.; Marks, A.R.; Zhao, W.K.; Zebrowski, A.M.; Quinn, V.P.; Browne, L.W.; Taylor, W.R.; Ahlquist, D.A.; et al. Genetic biomarker prevalence is similar in fecal immunochemical test positive and negative colorectal cancer Tissue. Dig. Dis. Sci. 2017, 62, 678–688. [Google Scholar] [CrossRef]
- Laugsand, E.A.; Brenne, S.S.; Skorpen, F. DNA methylation markers detected in blood, stool, urine, and tissue in colorectal cancer: A systematic review of paired samples. Int. J. Color. Dis. 2021, 36, 239–252. [Google Scholar] [CrossRef]
- Oh, T.; Kim, N.; Moon, Y.; Kim, M.S.; Hoehn, B.D.; Park, C.H.; Kim, T.S.; Kim, N.K.; Chung, H.C.; An, S. Genome-wide identification and validation of a novel methylation biomarker, SDC2, for blood-based detection of colorectal cancer. J. Mol. Diagn. 2013, 15, 498–507. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ross, J.P.; Drew, H.R.; Ho, T.; Brown, G.S.; Saunders, N.F.; Duesing, K.R.; Buckley, M.J.; Dunne, R.; Beetson, I.; et al. A panel of genes methylated with high frequency in colorectal cancer. BMC Cancer 2014, 14, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, F.; Wen, J.; Fu, X.; Li, C.; Zhao, R.; Wu, S.; Yu, H.; Liu, X.; Zhao, X.; Liu, S.; et al. Stool DNA test of methylated Syndecan-2 for the early detection of colorectal neoplasia. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1411–1419. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.D.; Oh, T.J.; Chung, T.H.; Jang, H.W.; Kim, Y.N.; An, S.; Kim, N.K. Early detection of colorectal cancer based on presence of methylated syndecan-2 (SDC2) in stool DNA. Clin. Epigenetics 2019, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Su, W.C.; Kao, W.Y.; Chang, T.K.; Tsai, H.L.; Huang, C.W.; Chen, Y.C.; Li, C.C.; Hsieh, Y.C.; Yeh, H.J.; Chang, C.C.; et al. Stool DNA test targeting methylated syndecan-2 (SDC2) as a noninvasive screening method for colorectal cancer. Biosci. Rep. 2021, 41, BSR2021930. [Google Scholar] [CrossRef]
- Tang, D.; Liu, J.; Wang, D.R.; Yu, H.F.; Li, Y.K.; Zhang, J.Q. Diagnostic and prognostic value of the methylation status of secreted frizzled-related protein 2 in colorectal cancer. Clin. Investig. Med. 2011, 34, E88–E95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellin, M.E.; Sandblad, L.; Stenmark, S.; Gullberg, M. Deciphering the rules governing assembly order of mammalian septin complexes. Mol. Biol. Cell 2011, 22, 3152–3164. [Google Scholar] [CrossRef] [PubMed]
- El Bairi, K.; Tariq, K.; Himri, I.; Jaafari, A.; Smaili, W.; Kandhro, A.H.; Gouri, A.; Ghazi, B. Decoding colorectal cancer epigenomics. Cancer Gene Ther. 2018, 220, 49–76. [Google Scholar] [CrossRef]
- Loh, K.; Chia, J.A.; Greco, S.; Cozzi, S.J.; Buttenshaw, R.L.; Bond, C.E.; Simms, L.A.; Pike, T.; Young, J.P.; Jass, J.R.; et al. Bone morphogenic protein 3 inactivation is an early and frequent event in colorectal cancer development. Genes Chromosom. Cancer 2008, 47, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Peacock, O.; Lee, A.C.; Larvin, M.; Tufarelli, C.; Lund, J.N. MicroRNAs: Relevant tools for a colorectal surgeon? World J. Surg. 2012, 36, 1881–1892. [Google Scholar] [CrossRef]
- Garofalo, M.; Croce, C.M. microRNAs: Master regulators as potential therapeutics in cancer. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 25–43. [Google Scholar] [CrossRef]
- Mendell, J.T.; Olson, E.N. MicroRNAs in stress signaling and human disease. Cell 2012, 148, 1172–1187. [Google Scholar] [CrossRef] [Green Version]
- Michael, M.Z.; O‘Conor, S.M.; van Holst Pellekaan, N.G.; Young, G.P.; James, R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 2003, 1, 882–891. [Google Scholar]
- Volinia, S.; Calin, G.A.; Liu, C.G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 2006, 103, 2257–2261. [Google Scholar] [CrossRef] [Green Version]
- Okugawa, Y.; Toiyama, Y.; Goel, A. An update on microRNAs as colorectal cancer biomarkers: Where are we and what’s next? Expert Rev. Mol. Diagn. 2014, 14, 999–1021. [Google Scholar] [CrossRef] [PubMed]
- Koga, Y.; Yasunaga, M.; Takahashi, A.; Kuroda, J.; Moriya, Y.; Akasu, T.; Fujita, S.; Yamamoto, S.; Baba, H.; Matsumura, Y. MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev. Res. 2010, 3, 1435–1442. [Google Scholar] [CrossRef] [Green Version]
- Kalimutho, M.; Del Vecchio Blano, G.; Di Cecilia, S.; Sileri, P.; Cretella, M.; Pallone, F.; Federici, G.; Bernardini, S. Differential expression of miR-144* as a novel fecal-based diagnostic marker for colorectal cancer. J. Gastroenterol. 2011, 46, 1391–1402. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.E.; Ahmed, N.C.; Vos, P.W.; Bonnerup, C.; Atkins, J.N.; Casey, M.; Nuovo, G.J.; Naziri, W.; Wiley, J.E.; Mota, H.; et al. Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of Principle. Cancer Genom. Proteomics 2013, 10, 93–113. [Google Scholar]
- Yau, T.O.; Wu, C.W.; Dong, Y.; Tang, C.M.; Ng, S.S.M.; Chan, F.K.L.; Sung, J.J.Y.; Yu, J. microRNA-221 and microRNA-18a identification in stool as potential biomarkers for the non-invasive diagnosis of colorectal carcinoma. Br. J. Cancer 2014, 111, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Phua, L.C.; Chue, X.P.; Koh, P.K.; Cheah, P.Y.; Chan, E.C.; Ho, H.K. Global fecal microRNA profiling in the identification of biomarkers for colorectal cancer screening among Asians. Oncol. Rep. 2014, 32, 97–104. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, A.; Li, J.; Fu, J.; Wang, G.; Yang, Y.; Cui, L.; Sun, J. Fecal miR-29a and miR-224 as the noninvasive biomarkers for colorectal cancer. Cancer Biomark. 2016, 16, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.O.; Wu, C.W.; Tang, C.M.; Chen, Y.; Fang, J.; Dong, Y.; Liang, Q.; Ng, S.S.M.; Chan, F.K.L.; Sung, J.J.Y.; et al. MicroRNA-20a in human faeces as a non-invasive biomarker for colorectal cancer. Oncotarget 2016, 7, 1559–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.W.; Cao, X.; Berger, C.K.; Foote, P.H.; Mahoney, D.W.; Simonson, J.A.; Anderson, B.W.; Yab, T.C.; Taylor, W.R.; Boardman, L.A.; et al. Novel approach to fecal Occult Blood Testing by Assay of Erythrocyte-Specific microRNA Markers. Dig. Dis. Sci. 2017, 62, 1985–1994. [Google Scholar] [CrossRef] [PubMed]
- Bastaminejad, S.; Taherikalani, M.; Ghanbari, R.; Akbari, A.; Shabab, N.; Saidijam, M. Investigation of microRNA-21 expression levels in serum and stool as a potential non-invasive biomarker for diagnosis of colorectal Cancer. Iran. Biomed. J. 2017, 21, 106–113. [Google Scholar] [CrossRef]
- Choi, H.H.; Cho, Y.S.; Choi, H.; Kim, H.K.; Lim, S.S.; Chae, H.S. Stool-based miR-92a and miR-144* as noninvasive biomarkers for colorectal cancer screening. Oncology 2019, 97, 173–179. [Google Scholar] [CrossRef]
- Li, L.; Wang, A.; Cai, M.; Tong, M.; Chen, F.; Huang, L. Identification of stool miR-135b-5p as a non-invasive diaognostic biomarker in later tumor stage of colorectal cancer. Life Sci. 2020, 260, 118417. [Google Scholar] [CrossRef] [PubMed]
- Duran-Sanchon, S.; Moreno, L.; Auge, J.M.; Serra-Burrel, M.; Cuatrecasas, M.; Moreira, L.; Martin, A.; Serradesanferm, A.; Pozo, A.; Costa, R.; et al. Identification and validation of microRNA profiles in fecal samples for detection of colorectal cancer. Gastroenterology 2020, 158, 947–954. [Google Scholar] [CrossRef]
- Sobhani, I.; Amiot, A.; le Baleur, Y.; Levy, M.; Auriault, M.; van Nhieu, J.T.; Delchier, J.C. Microbial dysbiosis and colon carcinogenesis: Could colon cancer be considered a bacteria-related disease? Ther. Adv. Gastroenterol. 2013, 6, 215–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tjalsma, H.; Boleij, A.; Marchesi, J.R.; Dutilh, B.E. A bacterial driver-passenger model for colorectal cancer: Beyond the usual suspects. Nat. Rev. Microbiol. 2012, 10, 575–582. [Google Scholar] [CrossRef]
- Chenard, T.; Malick, M.; Dube, J.; Masse, E. The influence of blood on the human gut microbiome. BMC Microbiol. 2020, 20, 44. [Google Scholar] [CrossRef] [Green Version]
- Rezasoltani, S.; Sharafkhah, M.; Asadzadeh Aghdaei, H.; Nazemalhosseini Mojarad, E.; Dabiri, H.; Akhavan Sepahi, A.; Modarressi, M.H.; Feizabadi, M.M.; Zali, M.R. Applying simple linear combination, multiple logistic and factor analysis methods for candidate fecal bacteria as novel biomarkers for early detection of adenomatous polyps and colon cancer. J. Microbiol. Methods 2018, 155, 82–88. [Google Scholar] [CrossRef]
- Chen, J.; Pitmon, E.; Wang, K. Microbiome, inflammation and colorectal cancer. Semin. Immunol. 2017, 32, 43–53. [Google Scholar] [CrossRef]
- Amitay, E.L.; Krilaviciute, A.; Brenner, H. Systematic review: Gut microbiota in fecal samples and detection of colorectal neoplasms. Gut Microbes 2018, 9, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.W. Fusobacterium nucleatum: A commensal-turned pathogen. Curr. Opin. Microbiol. 2015, 23, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith Tunsjo, H.; Gundersen, G.; Rangnes, F.; Noone, J.C.; Endres, A.; Bemanian, V. Detection of Fusobacterium nucleatum in stool and colonic tissues from Norwegian colorectal cancer patients. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1367–1376. [Google Scholar] [CrossRef]
- Clos-Garcia, M.; Garcia, K.; Alonso, C.; Iruarrizaga-Lejarreta, M.; D’Amato, M.; Crespo, A.; Iglesias, A.; Cubiella, J.; Bujanda, L.; Falcon-Perez, J.M. Integrative analysis of fecal metagenomics and metabolomics in colorectal cancers. Cancers 2020, 12, 1142. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, M.R.; Wang, X.; Liu, W.; Hao, Y.; Cai, G.; Han, Y.W. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 2013, 14, 195–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suehiro, Y.; Sakai, K.; Nishioka, M.; Hashimoto, S.; Takami, T.; Higaki, S.; Shindo, Y.; Hazama, S.; Oka, M.; Nagano, H.; et al. Highly sensitive stool DNA testing of Fusobacterium nucleatum as a marker for detection of colorectal tumours in a Japanese population. Ann. Clin. Biochem. 2017, 54, 86–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eklöf, V.; Löfgren-Burström, A.; Zingmark, C.; Edin, S.; Larsson, P.; Karling, P.; Alexeyev, O.; Rutegård, J.; Wikberg, M.L.; Palmqvist, R. Cancer-associated fecal microbial markers in colorectal cancer detection. Int. J. Cancer 2017, 141, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Li, L.; Xu, B.; Li, M.; Zeng, Q.; Xiao, H.; Xue, Y.; Wu, Y.; Wang, Y.; Liu, W.; et al. A simple and novel fecal biomarker for colorectal cancer: Ratio of Fusobacterium nucleatum to probiotics populations, based on their antagonistic effect. Clin. Chem. 2018, 64, 1327–1337. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.; Chiu, J.; Chen, Y.; Huang, Y.; Higashimori, A.; Fang, J.; Brim, H.; Ashktorab, H.; Ng, S.C.; Man Ng, S.S.; et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin. Cancer Res. 2017, 23, 2061–2070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, S.H.; Kwong, T.N.Y.; Chow, T.C.; Luk, A.K.C.; Dai, R.Z.W.; Nakatsu, G.; Lam, T.Y.T.; Zhang, L.; Wu, J.C.Y.; Chan, F.K.L.; et al. Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut 2017, 66, 1441–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.H.; Gao, Q.Y.; Cai, G.X.; Sun, X.M.; Sun, X.M.; Zou, T.H.; Chen, H.M.; Yu, S.Y.; Qiu, Y.W.; Gu, W.Q.; et al. Fecal Clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: Test and validation studies. Ebiomedicine 2017, 25, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Tarallo, S.; Ferrero, G.; Gallo, G.; Francavilla, A.; Clerico, G.; Luc, A.R.; Manghi, P.; Maltez Thomas, A.; Vineis, P.; Segata, N.; et al. Altered fecal small RNA profiles in colorectal cancer reflect gut microbiome composition in stool samples. mSystems 2019, 4, e00289-19. [Google Scholar] [CrossRef] [Green Version]
- Mjelle, R.; Sjursen, W.; Thommesen, L.; Sætrom, P.; Hofsli, E. Small RNA expression from viruses, bacteria and human miRNAs in colon cancer tissue and its association with microsatellite instability and tumor location. BMC Cancer 2019, 19, 161. [Google Scholar] [CrossRef]
- Liu, S.; da Cunha, A.P.; Rezende, R.M.; Cialic, R.; Wei, Z.; Bry, L.; Comstock, L.E.; Gandhi, R.; Weiner, H.L. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 2016, 19, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- Altomare, D.F.; Di Lena, M.; Porcelli, F.; Trizio, L.; Travaglio, E.; Tutino, M.; Dragonieri, S.; Memeo, V.; dr Gennaro, G. Exhaled volatile organic compounds identify patients with colorectal cancer. Br. J. Surg. 2013, 100, 144–150. [Google Scholar] [CrossRef]
- Haick, H.; Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 2014, 43, 1423–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batty, C.A.; Cauchi, M.; Lourenco, C.; Hunter, J.O.; Turner, C. Use of the analysis of the volatile faecal metabolome in screening for colorectal cancer. PLoS ONE 2015, 10, e0130301. [Google Scholar] [CrossRef] [Green Version]
- McFarlane, M.; Millard, A.; Hall, H.; Savage, R.; Constantinidou, C.; Arasaradnam, R.; Nwokolo, C. Urinary volatile organic compounds and faecal microbiome profiles in colorectal cancer. Color. Dis. 2019, 21, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Mozdiak, E.; Wicaksono, A.N.; Covington, J.A.; Arasaradnam, R.P. Colorectal cancer and adenoma screening using urinary volatile organic compound (VOC) detection: Early results from a single-centre bowel screening population (UK BCSP). Tech. Coloproctol. 2019, 23, 343–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Lena, M.; Porcelli, F.; Altomare, D.F. Volatile organic compounds as new biomarkers for colorectal cancer: A review. Color. Dis. 2016, 18, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Widlak, M.M.; Neal, M.; Daulton, E.; Thomas, C.L.; Tomkins, C.; Singh, B.; Harmston, C.; Wicaksono, A.; Evans, C.; Smith, S.; et al. Risk stratification of symptomatic patients suspected of colorectal cancer using faecal and urinary markers. Color. Dis. 2018, 20, O335–O342. [Google Scholar] [CrossRef] [PubMed]
- Bosch, S.; Berkhout, D.J.; Ben Larbi, I.; de Meij, T.G.; de Boer, N.K. Fecal volatile organic compounds for early detection of colorectal cancer: Where are we now? J. Cancer Res. Clin. Oncol. 2019, 145, 223–234. [Google Scholar] [CrossRef]
- Bond, A.; Greenwood, R.; Lewis, S.; Corfe, B.; Sarkar, S.; O’Toole, P.; Rooney, P.; Burkitt, M.; Hold, G.; Probert, C. Volatile organic compounds emitted from faeces as a biomarker for colorectal cancer. Aliment. Pharmacol. Ther. 2019, 49, 1005–1012. [Google Scholar] [CrossRef]
- Nakano, Y.; Yoshimura, M.; Koga, T. Methyl mercaptan production by periodontal bacteria. Int. Dent. J. 2002, 52, 217–220. [Google Scholar] [CrossRef]
- Ishibe, A.; Ota, M.; Takeshita, A.; Tsuboi, H.; Kizuka, S.; Oka, H.; Suwa, Y.; Suzuki, S.; Nakagawa, K.; Suwa, H.; et al. Detection of gas components as a novel diagnostic method for colorectal cancer. Ann. Gastroenterol. Surg. 2018, 2, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Amal, H.; Leja, M.; Funka, K.; Lasina, I.; Skapars, R.; Sivins, A.; Ancans, G.; Kikuste, I.; Vanags, A.; Tolmanis, I.; et al. Breath testing as potential colorectal cancer screening tool. Int. J. Cancer 2016, 138, 229–236. [Google Scholar] [CrossRef]
- Wang, C.; Ke, C.; Wang, X.; Chi, C.; Guo, L.; Luo, S.; Guo, Z.; Xu, G.; Zhang, F.; Li, E. Noninvasive detection of colorectal cancer by analysis of exhaled breath. Anal. Bioanal. Chem. 2014, 406, 4757–4763. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://interactiveguidelines.esmo.org/esmo-web-app/gl_toc/index.php?GL_id=74 (accessed on 5 December 2021).
- Dockter, A.G.; Angelos, G.C. Molecular-based alternatives for colorectal cancer screening during the COVID-19 pandemic. Surg. Technol. Int. 2020, 36, 143–147. [Google Scholar] [PubMed]
- Dockter, A.G.; Angelos, G.C. Stool-based DNA testing versus colon capsule endoscopy for colorectal cancer screening during the COVID-19 pandemic: A response to ‘Colon capsule endoscopy: An innovative method for detecting colorectal pathology during the COVID-19 pandemic? Color. Dis. 2020, 22, 1027–1028. [Google Scholar] [CrossRef]
- MacLeod, C.; Wilson, P.; Watson, A.J.M. Colon capsule endoscopy: An innovative method for detecting colorectal pathology during the COVID-19 pandemic? Color. Dis. 2020, 22, 621–624. [Google Scholar] [CrossRef]
- Rex, D.K.; Adler, S.N.; Aisenberg, J.; Burch, W.C., Jr.; Carretero, C.; Chowers, Y.; Fein, S.A.; Fern, S.E.; Fernandez-Urien Sainz, I.; Fich, A.; et al. Accuracy of capsule colonoscopy in detecting colorectal polyps in a screening population. Gastroenterology 2015, 148, 948–957. [Google Scholar] [CrossRef]
- Hong, S.N.; Kang, S.; Jang, H.J.; Wallace, M.B. Recent advance in colon capsule endoscopy: What’s new? Clin. Endosc. 2018, 51, 334–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author/Year | Detection Method/ Biomarkers | Sensitivity [%] | Specificity [%] | HR/OS/ p Value |
---|---|---|---|---|
Tsai/2019 [13] | CellMax biomimetic platform (CMx)/CTC | Precancerous lesions: 76.6 CRC: Sn 86.9 | Precancerous lesions: 97.3 CRC: Sp 97.3 | |
Flamini/2006 [14] | qPCR/ctDNA | ctDNA alone: 81.3 ctDNA + CEA: 84.0 | ctDNA alone: 73.3 ctDNA + CEA: Sp 88.0 | |
Sun/2019 [15] | Epigenomics AG for Epi proColon 2.0/mSEPT9 DNA | Precancarous lesions: 17.1 CRC: Sn 73.0 | Precancerous lesions: 94.5 CRC: 94.5 | |
Link/2010 [16] | TaqMan qRT-PCR */ fecal miRNAs | Increased expression of miR-21 and miR-106a in CRC and adenomas vs. normal controls (p < 0.05) | p < 0.05 | |
Wang/2017 [17] | real-time PCR/ Serum miR-31, miR-141, miR-224-3p, miR-576-5p, and miR-4669 | AUC = 0.995 (microarrays) AUC = 0.964 (double-blind validation test) | ||
Koga/2013 [18] | real-time RT-PCR/ fecal miR-106a | FmiRT: 34.2 iFOBT + FmiRT: 70.9 | FmiRT: 97.2. iFOBT + FmiRT: 96.3 | |
Sazanov/2017 [19] | real-time qRT-PCR */plasma and saliva miR-21 | plasma: 65 saliva: 97 | plasma: 85 saliva: 91 | |
Yan/2018 [20] | qRT-PCR*/exosomal miR-6803-5p | OS: HR 2.93 (95% CI 1.35–6.37, p < 0.007) DFS: HR 3.26 (95% CI 1.56–6.81, p < 0.002) AUC = 0.7399 | ||
Peng/2018 [21] | real-time qPCR */ exosomal miR-548c-5p | OS: HR 3.40 (95% CI 1.02–11.27, p = 0.046) | ||
Liu/2016 [22] | qRT-PCR */ exosomal lncRNA CRNDE-h | 70.3 | 94.4 | |
Liu/2018 [23] | qRT-PCR */ exosomal miR-27a and miR-130a | miR-27a: AUC = 0.773 75 in the training phase, AUC = 0.82 80.0 in the validation phase, AUC = 0.746 80.0 in the external validation phase miR-130a: AUC = 0.742 82.5 in the training phase, AUC = 0.787 70.0 in the validation phase, AUC = 0.697 70.0 in the external validation phase miR-27a + miR-130a: training phase AUC = 0.846 82.5, validation phase AUC = 0.898, 80.0 and external validation phase AUC = 0.801 80.0 | miR-27a: AUC = 0.773 77.5 in the training phase, AUC = 0.82 77.5 in the validation phase, and AUC = 0.746 77.5 in the external validation phase miR-130a: AUC = 0.742 62.5 in the training phase, AUC = 0.787 80.0 in the validation phase, AUC = 0.697 80.0 in the external validation phase miR-27a + miR-130a: training phase AUC = 0.846 75, validation phase AUC = 0.898, 90.0 and external validation phase AUC = 0.801 90.0 |
Author/Year | Change | miRNA |
---|---|---|
Yin/2016 [69] | upregulation | miR-18a, miR-18b, miR-31, miR-142-5p, miR-212 |
Uratani/2016 [70] | upregulation | miRNA-21, miRNA-92a, miRNA-135b |
Imaoka/2016 [71] | upregulation | miRNA-1290 |
Ho/2015 [72] | upregulation | miRNA-486 |
De Groen/2015 [73] | upregulation | miRNA-15a, miRNA-17. miRNA-20a |
Wu CW/2014 [74] | upregulation | miRNA-31, miRNA-135 b |
Wu CW/2012 [75] | upregulation | miRNA-92a |
Tsikitis/201 [76] | downregulation | miRNA-143, miRNA-145, miRNA -30a |
Tadano/2016 [77] | downregulation | miRNA-320 family |
Yin/2016 [69] | downregulation | miR-145, miR-451, miR-638 |
Chen T/2017 [78] | downregulation | miRNA-137 |
Ho/2015 [72] | downregulation | miRNA-30 |
Hibino/2015 [79] | downregulation | miRNA148a |
Fang/2015 [80] | downregulation | miRNA24, miRNA-320a, miRNA-423-5p |
Author/Year | Sample Type | Biomarker/Detection Method | Sensitivity [%] | Specificity [%] |
---|---|---|---|---|
Kanaan/2013 [88] | plasma | miR-532-3p, miR-331, miR-195, miR-17, miR-142-3p, miR-15b, miR-532, miR-652 | polyps from controls [area under curve (AUC) = 0.868 (95% confidence interval [CI]: 0.76–0.98)]. stage IV CRC from controls with an [AUC = 0.896 (95% CI: 0.78–1.0)]. Receiver-operating-characteristic curves of miRNA panels for all CRC versus controls and polyps versus all CRC AUC values of 0.829 (95% CI: 0.73–0.93) and 0.856 (95% CI: 0.75–0.97) | |
Giraldez/2013 [89] | plasma | miRNA-18a, miRNA-19a, miRNA-19b, miRNA-15b, miRNA-29a, miRNA-335/ up-regulated | areas under the receiver operating characteristic curve (AUROC) ranging from 0.80 (95% confidence interval [CI], 0.71–0.89) to 0.70 (95% CI, 0.59–0.80) | |
Wang/2014 [90] | serum | miRNA-21, let-7g, miRNA-31, miRNA-92a, miRNA-181b, miRNA-203/ up-regulated | 93 | 91 |
Slaby/2016 [91] | plasma | miR-20a/upregulated miR-155/upregulated | 46 58.2 | 73.4 95 |
Slaby/2016 [91] Carter/2017 [92] Chen/2019 [93] Sabry/2019 [94] | plasma/serum | miR-21/upregulated | 65–91.4 | 74.4–95 |
Carter/2017 [92] | plasma | miR-24/downregulated miR-29a/upregulated miR-92/upregulated miR-29b/downregulated miR-106a/upregulated miR-194/downregulated miR-200c/upregulated miR-320a/downregulated miR-372/upregulated miR-375/downregulated miR-423-5p/downregulated miR-601/downregulated miR-760/downregulated | 78.4 69% 89% 61.4–77 74 72 64.1 92.8 81.9 76.9 91.9 69.2 80 | 83.8 89.1 70 72.5–75 44.4 80 73.3 73.1 73.3 64.6 70.8 72.4 72.4 |
Slaby/2016 [91] Carter/2017 [92] | plasma/serum | miR-92a/upregulated miR-96/upregulated miR-221/upregulated | 65.5–74 65.4 86 | 71.2–82.5 73.3 41 |
Ng/2017 [95] | serum | miR-139-3p/downregulated | 96.6 | 97.8 |
Wang/2017 [96] | serum | miR-139a-5p/upregulated | 76.7 | 88 |
Liu/2018 [97] | plasma | miR-182/upregulated | 78 | 91 |
Bilegsaikham/2018 [98] | serum | miR-196b/upregulated miR-338-5p/upregulated | 63 76.30 | 87.4 92.50 |
Carter/2017 [92] Sabry/2019 [94] | serum | miR-210/upregulated | 74.6–88.6 | 73.5–90.10 |
Krawczyk/2017 [99] | plasma | miR-506/upregulated miR-4316/upregulated | 76.8 76.8 | 60.7 75 |
Imaoka/2016 [71] | serum | miR-1290/upregulated | 70.1 | 91.2 |
Nonaka/2015 [100] | serum | miR-103/upregulated miR-720/upregulated | 55.9 58.3 | 75 56.3 |
Sarlinova/2013 [101] | whole blood | miR-21/upregulated miR-221/upregulated miR-150/downregulated | 80 (three markers) | 74 (three markers) |
Chang/2016 [102] | plasma | miR-92a/upregulated miR-223/upregulated | 0.75 0.707 (AUC values) | |
Slaby/2016 [91] Carter/2017 [92] | serum | miR-21 and miR-92a/both upregulated | 68 (whole panel) | 91.2 (whole panel) |
Slaby/2016 [91] Carter/2017 [92] | plasma | miR-29a and miR-92a/both upregulated | 83 (whole panel) | 84.7 (whole panel) |
Nikolaou/2018 [103] Carter/2017 [92] | plasma | miR-200c and miR- 18a/both upregulated | 84.6 (whole panel) | 75.6 (whole panel) |
Slaby/2016 [91] | plasma | miR-223 and miR- 92a/both upregulated | 76 (whole panel) | 71 (whole panel) |
Liu/2019 [104] | plasma | miR-320d/downregulated miR-1290/upregulated | 81.2 (whole panel) | 90.7 (whole panel) |
Carter/2017 [92] | plasma | miR-431 and miR- 139-p3/ both upregulated | 91 (whole panel) | 57 (whole panel) |
Slaby/2016 [91] Carter/2017 [92] | plasma | miR-601 and miR-760/both downregulated | 83.3 (whole panel) | 69.1 (whole panel) |
Carter/2017 [92] | plasma | miR-19a, miR-19b and miR-15b/all upregulated | 78.6 (whole panel) | 79.2 (whole panel) |
Nikolaou/2018 [103] Carter/2017 [92] | plasma | miR-24, miR-320a and miR-423-5p/ all downregulated | 92.8 (whole panel) | 70.8 (whole panel) |
Slaby/2016 [91] Carter/2017 [92] | serum | miR-145/downregulated, miR-106a and miR-17-3p/upregulated | 78.5 (whole panel) | 82.8 (whole panel) |
Slaby/2016 [91] Carter/2017 [92] | plasma | miR-409-3p/upregulated miR-7 and miR-93/ downregulated | 82 (whole panel) | 89 (whole panel) |
Wikberg/2018 [105] | plasma | miR-18a, miR-21, miR-22 and miR-25/ all upregulated | 67 (whole panel) | 90 (whole panel) |
Nikolaou/2018 [103] | serum | miR-23a-3p, miR-27a-3p, miR-142-5p and miR-376c-3p/all upregulated | 89 (whole panel) | 81 (whole panel) |
Carter/2017 [92] | plasma | miR-29a, miR-92a/ upregulated, miR-601, miR-760/ downregulated | 83.3 (whole panel) | 93.1 (whole panel) |
Chen/2019 [93] | serum | miR-21, miR-29, miR-92, miR-125, miR-223/all upregulated | 84.7 (whole panel) | 98.7 (whole panel) |
Herreros-Villanueva/2019 [106] | plasma | miR-19a, miR-19b, miR-15b, miR-29a, miR-335, miR-18a/ all upregulated | 91 (whole panel) | 90 (whole panel) |
Slaby/2016 [91] | plasma | miR-21, let-7g/ upregulated, miR-31, mir-92a, miR-181b, miR-203/ downregulated | 96 (whole panel) | 81 (whole panel) |
Zhang/2019 [107] | plasma | miR-103a-3p, miR- 127-3p, miR-151a-5p, miR-17-5p, miR- 181a-3p, miR-18a-5p, miR-18b-5p/all upregulated | 76.9 (whole panel) | 86.7% (whole panel) |
Liu/2018 [23] | plasma | exosomal miR-27a, miR-130a/both upregulated | 82.5 (whole panel) | 75 (whole panel) |
Tian/2019 [108] | plasma | hsa_circ_0004585/upregulated | 85.1% | 51.1% |
Marcuello/2019 [25] | plasma | miR-15b-5p/upregulated miR-18a-5p/upregulated miR-29a-3p/upregulated miR-335-5p/upregulated miR-19a-3p/upregulatedmiR-19b-3p/upregulated | 81 (whole panel with fecal hemoglobin) | 78 (whole panel with fecal hemoglobin) |
Karimi/2019 [109] | plasma | miR-23a/upregulated miR-301a/upregulated | 0.89 0.84 (AUC values) | |
Tan/2019 [110] | plasma | miR-144-3p, miR-425-5p, and miR-1260b | 93.8 (whole panel) | 91.3 (whole panel) |
Maminezdah/2020 [111] | serum | miR-143/downregulated miR-145/downregulated miR-19a/upregulated miR-20a/upregulated miR-150/upregulated let-7a/upregulated | 0.76 0.78 0.87 0.83 0.75 0.71 (area under the ROC curves) | |
Liu/2020 [112] | plasma | exosomal miR-139-3p/ downregulated miR-139-3p and CEA | 0.726 (AUC value) 0.868 (AUC value) | |
Jin/2020 [113] | serum | miR-4516/upregulated miR-21-5p/downregulated both of them | 94.4 90.63 92.11 | 89.8 86.2 87.9 |
Author/Year | CRC/Number of Cases | Assay Used | Sensitivity [%] | Specificity [%] |
---|---|---|---|---|
Grützmann/2008 [124] | 252/354 | research assay | 72 | 90 |
Lofton-Day/2008 [125] | 150/350 | research assay | 52 | 95 |
DeVos/2009 [126] | 97/172 | mSEPT9 assay | 72 | 93 |
He/2010 [127] | 182 | research assay | 75 | 96.47 |
Tanzer/2010 [128] | 73/128 | research assay | 73 | 91 |
Herbst/2011 [129] | 45/345 | research assay | 46.6 | 81.3 |
Warren/2011 [130] | 50/144 | Epi proColon 1.0 | 90 | 88.3 |
Toth/2012 [131] | 92/184 | Epi proColon 2.0 | 95.6 79.3 | 84.8 98.9 |
Alquist/2012 [132] | 30/52 | Epi proColon 1.0 | 39 | 79 |
Lee/2013 [133] | 101/197 | mS9 Colorectal Cancer Assay System | 36.6 | 90.6 |
Church/2014 [122] | 53/1516 | Epi proColon 1.0 | 48.2 | 91.5 |
Potter/2014 [134] | 44/1544 | Epi proColon 1.0 | 68 | 80 |
Su/2014 [135] | 172/234 | MSP-DHPLC | 88.4 | 93.5 |
Johnson/2014 [136] | 101/200 | Epi proColon 1.0 | 73.3 | 81.5 |
Jin/2015 [137] | 135/341 | Epi proColon 2.0 | 74.8 | 87.4 |
Kang/2014 [138] | 80/132 | Epi proColon 2.0 | 79.5 | 98.1 |
Toth/2014 [139] | 34/84 | Epi proColon 2.0 | 82.8 | 91.7 |
Song 2016 [121] | 369/1133 | Epi proColon 2.0 | 58–82.4 * | 82–98.8 * |
Ørntoft/2015 [140] | 150/150 | Epi proColon 1.0 | 73 | 82 |
Behrouz Sharif/2016 [141] | 45/45 | MS-HRM assay | 84.4 | 99 |
Wu/2016 [142] | 291/1031 | Epi proColon 2.0 new SEPT9 assay | 73.0 76.6 | 97.5 95.9 |
Nian/2016 [143] | 2975/6952 | Epi proColon 2.0 | 71 | 92 |
Fu/2018 [144] | 98/558 | Epi proColon 2.0 | 61.22 | 93.7 |
Xie/2018 [145] | 123/248 | research assay | 61.8 | 89.6 |
Arellano/2020 [146] | 10/10 | Epi proColon 2.0 | 88.9 | 100 |
Hariharan/2020 [118] | 7629 | mSEPT9 test | 69 | 92 |
Liu/2020 [147] | 38/124 | Epi proColon 2.0 | 85.6 | 90.1 |
Author/Year | Sample Type | Biomarker(S) | Sensitivity [%] | Specificity [%] |
---|---|---|---|---|
Zhao/2015 [174] | serum | CCAT1 and HOTAIR | 84.3 | 80.2 |
Wang/2016 [175] | serum | LOC285194, RP11-462C24.1 and Nbla12061 | 68.3 | 86.9 |
Dong/2016 [148] | serum | BCAR4, two mRNAs: KRTAP5-4 and MAGEA3 | 93.6 | 85.7 |
Dai/2017 [176] | serum | BLACAT1 | 83.3 | 76.7 |
Barbagallo/2018 [177] | serum | UCA1 | 100 | 43 |
Liu/2019 [178] | plasma | 91H, PVT-1 and MEG3 | 82.8 | 78.6 |
Abedini/2019 [179] | plasma | ATB, CCAT1 | 82.0 | 75.0 |
Nikolaou/2019 [103] | whole blood | NEAT1 variant 1 | 69.0 | 79.0 |
Nikolaou/2019 [103] | whole blood | NEAT1 variant 2 | 70.0 | 96.0 |
Author/Year | Material | Colon Cancer [%] |
---|---|---|
Engelhardt/1997 [303] | colon tissue | 90 |
Yoshida/1997 [304] | colon tissue | 92 |
Myung/2005 [305] | colon tissue | 97 |
Tatsumato/2000 [298] | colon tissue | 96 |
Kawanishi-Kabata/2002 [306] | colon tissue | 80 |
Myung/2005 * [305] | colon tissue | 94 |
Fang/1999 [307] | colon biopsy | 88.5 |
Yoshida/1997 [304] | colon washing | 60 |
Ishibashi/1999 [308] | colon washing | 58 |
Myung/2005 [305] | colon washing | 62 |
Author/Year of Publication | Marker Type/Method | Stool Biomarker | Sensitivity [%] | Specificity [%] |
---|---|---|---|---|
Muller/2004 [349] | DNA methylation | SFRP2 methylation | training set: 90 independent test set: 77 | training set:77 indepedent test set: 77 |
Petko/2005 [350] | DNA methylation | CDKN2A and MGMT methylation | CDKN2A:50 MGMT: 71 | |
Huang/2007 [351] | DNA methylation | SFRP2 methylation | CRC: 94.2 52.4 advanced adenomas: 52.4 | 93 |
Itzkowitz/2007 [352] | DNA integrity assay (DIA) | Vimentin methylation | vimentin methylation: 72.5 vimentin methylation + DIA: 87.5 | vimentin methylation: 86.9 vimentin methylation + DIA: 82 |
Wang/2008 [353] | DNA methylation | SFRP2 methylation | CRC: 87, advanced adenomas: 61, hyperplastic polyps: 42.3 overall: 76.8 | |
Itzkowitz/2008 [354] | DNA methylation | Vimentin methylation | 86 | 82 |
Oberwalder/2008 [355] | DNA methylation | SFRP2 methylation | adenomas: 46 | adenomas: 100 |
Glockner/2009 [356] | DNA methylation | tissue factor pathway inhibitor 2 (TFPI2) methylation | I–III stage of CRC: 76–89 | I–III stage of CRC: 79–93 |
Melotte/2009 [357] | DNA methylation | NDRG4 methylation | 61 | 93 |
Hellebrekers/2009 [358] | DNA methylation | GATA4/5 methylation | training set: 71 validation set: 51 | training set: 84 validation set: 93 |
Ausch/2009 [359] | DNA methylation | ITGA4 integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) methylation | adenomas: 69 | adenomas: 79 |
Nagasaka/2009 [360] | DNA methylation | SFRP2 methylation RASSF2 methylation | CRC: 86 adenomas: 41 CRC: 45.3 adenomas: 12.6 | 94.7 |
Chang/2010 [361] | DNA methylation | ITGA4, SFRP2 methylation | CRC: 70 adenomas:72 | panel: 96.8 |
Zhang/2011 [362] | DNA methylation | Vimentin, oncostatin M receptor (OMSR) and tissue factor pathway inhibitor 2 (TFPI2) methylation | CRC: 86.7 adenomas:76.5 | 86.7 |
Bosch/2012 [363] | DNA methylation | Phosphatase and Actin Regulator 3 (PHACTR3) methylation | training set: 55 CRC: 66 and adenomas (validation set): 32 | training set: 95 validation set: 100 |
Ahlquist/2012 [132] | DNA methylation | BMP3, NDRG4, vimentin, TFPI2 methylation; mutant KRAS | adenomas: 82 CRC: 87 | |
Kisiel/2013 [364] | DNA methylation | BMP3 and NDRG4 methylation | CRC: 100 high grade dysplasia: 100 low grade dysplasia: 67 | 89 |
Amiot/2014 [365] | DNA methylation | Wif1, ALX4, vimentin methylation | Wif1:19 ALX4:11 vimentin:33 | Wif1 and ALX4: 99 vimentin: 100 |
Imperiale/2014 [334] | DNA mutation, DNA methylation, DNA amount and protein testing | K-ras mutation, BMP3 and NDRG4 promoter methylation, DNA measurement by β- actin assessment and test for haemoglobin (FIT) | 92.3 | 86.6 |
Zhang/2014 [366] | DNA methylation | SFRP2 methylation | CRC: 56.3 adenomas: 51.4 | 100 |
Wu/2014 [367] | DNA methylation | miR-34a methylation miR-34b/c methylation | 76.8 95 | 93.6 100 |
Xiao/2014 [368] | methylation-sensitive high-resolution melting (MS-HRM) | SNCA and FNB1 genes Vimentin (VIM) and SFRP2 genes | 84.3 92.5 | 93.30 91.2 |
Teixeira/2015 [369] | human DNA | total human DNA | 66 | 89.8 |
Li/2015 [370] | DNA methylation | hypermethylated SNCA and FBN1 | 84.3 | 93.3 |
Park/2017 [371] | DNA methylation | methylated SFRP2, TFPI2, NDRG4, BMP3 promoters | CRC: 94.3 adenomas: 72.2 | 55 |
Mojtabanezhad/2018 [347] | DNA methylation | SFRP1 and SFRP2 methylation | CRC: 56.5 adenomas:32.6 | 93.2 |
Sun/2019 [372] | DNA methylation | methylation of SDC2 and SFRP2, KRAS mutations and hemoglobin | 91.4 | 86.1 |
Liu/2019 [373] | DNA methylation | methylation levels of SFRP2, SFRP1, TFPI2, BMP3, NDRG4, SPG20, and BMP3 plus NDRG4 genes | 70 | 80 |
Bosch/2019 [337] | DNA methylation | K-ras mutation, BMP3 and NDRG4 promoter methylation, and hemogloblin | precancerous lesions: 46 | 89 |
Chen/2019 [374] | DNA methylation | SEPT9, NDRG4, SDC2 | CRC: 90 adenomas: 78 | |
Liu/2020 [375] | DNA methylation | COL4A1, COL4A2, TLX2, and ITGA4 | 82.5–92.5 | 88.0–96.4 |
Jin/2020 [376] | DNA methylation | NDRG4, SDC2 | 81.82 | 93.75 |
Zhao/2020 [377] | DNA methylation | SEPT9, SDC2 | 92.3 | 93.2 |
Author/Year | Marker and Detection Method | Sensitivity [%] | Specificity [%] |
---|---|---|---|
Koga/2010 [397] | miR-17-92 cluster, upregulated miRNA panel: miR-17-92 cluster (miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a), miR-21, and miR-135, upregulated | 69 74 | 81 79 |
Kalimutho/2011 [398] | miR-144 * | 74 | 87 |
Wu/2012 [75] | miR-92a, upregulated miR-21, upregulated | 71 (CRC) 56 (A) 55 | 73 73 |
Ahmed/2013 [399] | miR-7, miR-17, miR-20a, miR-21, miR-92a, miR-96, miR-106a, miR-134, miR-183, miR-196a, miR-199a-3p, miR214, miR-9, miR-29b, miR-127-5p, miR-138, miR-143, miR-146a, miR-222 and miR-938- findings: upregulated | N/A * | N/A * |
Koga/2013 [18] | miRNA -106a upregulated and iFOBT | 34.2 | 97.2 |
Wu/2014 [74] | miR-135b, upregulated | 78 (CRC), 73 (AA) 62 (A) | 68 |
Yau/2014 [400] | miR-221,upregulated miR-18a, upregulated | 62 61 | 74 69 |
Phua/2014 [401] | miR-223 miR-451 both upregulated | 77 88 | 96 100 |
Slaby/2016 [91] | miR-18a, upregulated miR-20a, upregulated miR-21, upregulated miR-92a, upregulated miR-106a, upregulated miR-135b, upregulated miR-144 *, upregulated miR-221, upregulated miR-223 and miR-92a, both upregulated panel miR-17-93 cluster and miR-135b, all upregulated | 61 55 56 72 34 78 74 62 97 74 | 69 82 73 73 97 68 87 74 75 79 |
Chang/2016 [102] | miR-223, upregulated miR-92a, upregulated | 73 71 | 82 79 |
Zhu/2016 [402] | miR-29a, miR-223, miR-224, finding: reduced expression in CRC stools | N/A | N/A |
Yau/2016 [403] | miR-20a, upregulated | 55 | 82 |
Wu/2017 [404] | miRNA panel: miR-144-5p, miR- 451a miR-20b- 5p, all upregulated | 66 | 95 |
Bastaminejad/2017 [405] | miR-21, upregulated | 86 | 81 |
Choi/2019 [406] | miR-21,upregulated miR-92a, upregulated miR-144 *, upregulated miR-17-3p, upregulated | 79 89 78 67 | 48 51 66 70 |
Li/2020 [407] | miR-135b-5p, upregulated | 96 | 74 |
Duran-Sanchon/2020 [408] | miR-421 and miR-27a-3p, both upregulated, finding: AUC -0.93 (for CRC) | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zygulska, A.L.; Pierzchalski, P. Novel Diagnostic Biomarkers in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 852. https://doi.org/10.3390/ijms23020852
Zygulska AL, Pierzchalski P. Novel Diagnostic Biomarkers in Colorectal Cancer. International Journal of Molecular Sciences. 2022; 23(2):852. https://doi.org/10.3390/ijms23020852
Chicago/Turabian StyleZygulska, Aneta L., and Piotr Pierzchalski. 2022. "Novel Diagnostic Biomarkers in Colorectal Cancer" International Journal of Molecular Sciences 23, no. 2: 852. https://doi.org/10.3390/ijms23020852
APA StyleZygulska, A. L., & Pierzchalski, P. (2022). Novel Diagnostic Biomarkers in Colorectal Cancer. International Journal of Molecular Sciences, 23(2), 852. https://doi.org/10.3390/ijms23020852