High-Accuracy Relative Biological Effectiveness Values Following Low-Dose Thermal Neutron Exposures Support Bimodal Quality Factor Response with Neutron Energy
Abstract
:1. Introduction
2. Results
2.1. Dicentric Chromosome Assay
2.2. Cytokinesis-Block Micronucleus Assay
2.3. Relative Biological Effectiveness
3. Discussion
3.1. DNA Aberration Clustering
3.2. Bimodal Neutron RBE Values
3.3. RBE Accuracy
3.4. Limitations
4. Materials and Methods
4.1. Blood Donors
4.2. Irradiation Conditions
4.3. Assays
4.3.1. Dicentric Chromosome Assay
4.3.2. Cytokinesis-Block Micronucleus Assay
4.4. Statistics
4.5. Dose and RBE Calculations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Maglieri, R.; Licea, A.; Evans, M.D.C.; Seuntjens, J.; Kildea, J. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer. Med. Phys. 2015, 42, 6162–6169. [Google Scholar] [CrossRef] [PubMed]
- Newhauser, W.D.; Durante, M. Assessing the risk of second malignancies after modern radiotherapy. Nat. Cancer 2011, 11, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Kildea, J. The Canadian Neutron-Induced Carcinogenic Effects Research Program—A research program to investigate neutron relative biological effectiveness for carcinogenesis with a particular focus on secondary (by-product) neutrons in high-energy radiation therapy. Radiat. Environ. Med. 2017, 6, 55–61. [Google Scholar]
- Nunes, J.; Cross, W.; Waker, A. Feasibility of creating “CANDU-Like” workplace neutron fields in an existing irradiation facility. Radiat. Prot. Dosim. 1997, 72, 11–20. [Google Scholar] [CrossRef]
- El-Jaby, S.; Lewis, B.J.; Tomi, L. On the decision making criteria for cis-lunar reference mission scenarios. Life Sci. Space Res. 2019, 21, 25–39. [Google Scholar] [CrossRef]
- El-Jaby, S.; Richardson, R.B. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit. Life Sci. Space Res. 2015, 6, 1–9. [Google Scholar] [CrossRef]
- Goldhagen, P.; Clem, J.M.; Wilson, J.W. The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude. Radiat. Prot. Dosim. 2004, 110, 387–392. [Google Scholar] [CrossRef]
- Zhang, S.; Wimmer-Schweingruber, R.F.; Yu, J.; Wang, C.; Fu, Q.; Zou, Y.; Sun, Y.; Wang, C.; Hou, D.; Böttcher, S.I.; et al. First measurements of the radiation dose on the lunar surface. Sci. Adv. 2020, 6, eaaz1334. [Google Scholar] [CrossRef]
- IAEA. Current Status of Neutron Capture Therapy; IAEA: Vienna, Austria, 2001. [Google Scholar]
- ICRP. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (wR): ICRP publication 92. Ann. ICRP 2003, 33, 1–121. [Google Scholar]
- Schuhmacher, H.; Seibert, B. Quality factors and ambient dose equivalent for neutrons based on the new ICRP recommendations. Radiat. Prot. Dosim. 1992, 40, 85–98. [Google Scholar] [CrossRef]
- Ali, F.; Atanackovic, J.; Boyer, C.; Festarini, A.; Kildea, J.; Paterson, L.; Rogge, R.; Stuart, M.; Richardson, R.B. Dosimetric and microdosimetric analyses for blood exposed to reactor-derived thermal neutrons. J. Radiol. Prot. 2018, 38, 1037–1052. [Google Scholar] [CrossRef]
- Cross, W.; Ing, H. Conversion and quality factors relating neutron fluence and dosimetric quantities. Radiat. Prot. Dosim. 1985, 10, 29–42. [Google Scholar] [CrossRef]
- Stinchcomb, T.G.; Borak, T.B. Neutron quality parameters versus energy below 4 MeV from microdosimetric calculations. Radiat. Res. 1983, 93, 1–18. [Google Scholar] [CrossRef]
- Stricklin, D.L.; VanHorne-Sealy, J.; Rios, C.I.; Carnell, L.A.S.; Taliaferro, L.P. Neutron radiobiology and dosimetry. Radiat. Res. 2021, 195, 480–496. [Google Scholar] [CrossRef] [PubMed]
- Sevan’kaev, A.V.; Zherbin, E.A.; Luchnik, N.V.; Obaturov, G.M.; Kozlov, V.M. Cytogenetic effects induced by neutrons in human peripheral blood lymphocytes in vitro. I. Dose-effect relationship for different types of chromosome aberrations when exposed to neutrons with different energies. Генетика 1979, 15, 1046–1060. [Google Scholar]
- Wojcik, A.; Obe, G.; Lisowska, H.; Czub, J.; Nievaart, V.; Moss, R.; Huiskamp, R.; Sauerwein, W. Chromosomal aberrations in peripheral blood lymphocytes exposed to a mixed beam of low energy neutrons and gamma radiation. J. Radiol. Prot. 2012, 32, 261–274. [Google Scholar] [CrossRef]
- Schmid, E.; Wagner, F.M.; Canella, L.; Romm, H.; Schmid, T.E. RBE of thermal neutrons for induction of chromosome aberrations in human lymphocytes. Radiat. Environ. Biophys. 2012, 52, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.S.; Endo, S.; Ejima, Y.; Saito, I.; Okamura, K.; Oka, Y.; Hoshi, M. Effective dose of A-bomb radiation in Hiroshima and Nagasaki as assessed by chromosomal effectiveness of spectrum energy photons and neutrons. Radiat. Environ. Biophys. 2006, 45, 79–91. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies; IAEA: Vienna, Austria, 2011. [Google Scholar]
- Flegal, F.N.; DeVantier, Y.; Marro, L.; Wilkins, R. Validation of QuickScan dicentric chromosome analysis for high throughput radiation biological dosimetry. Health Phys. 2012, 102, 143–153. [Google Scholar] [CrossRef]
- Lloyd, D.C.; Edwards, A.A. Chromosome aberrations in human lymphocytes: Effect of radiation quality, dose, and dose rate. In Radiation-Induced Chromosome Damage in Man; Ishihara, T., Sasaki, M.S., Eds.; AR Liss: New York, NY, USA, 1983. [Google Scholar]
- Bauchinger, M.; Schmid, E.; Streng, S.; Dresp, J. Quantitative analysis of the chromosome damage at first division of human lymphocytes after 60Co gamma-irradiation. Radiat. Environ. Biophys. 1983, 22, 225–230. [Google Scholar] [CrossRef]
- Sasaki, M.; Kobayashi, K.; Hieda, K.; Yamada, T.; Ejima, Y.; Maezawa, H.; Furusawa, Y.; Ito, T.; Okada, S. Induction of chromosome aberrations in human lymphocytes by monochromatic X-rays of quantum energy between 4·8 and 14·6 keV. Int. J. Radiat. Biol. 1989, 56, 975–988. [Google Scholar] [CrossRef]
- Montgomery, L.; Lund, C.M.; Landry, A.; Kildea, J. Towards the characterization of neutron carcinogenesis through direct action simulations of clustered DNA damage. Phys. Med. Biol. 2021, 66, 205011. [Google Scholar] [CrossRef] [PubMed]
- Okumura, K.; Kinashi, Y.; Kubota, Y.; Kitajima, E.; Okayasu, R.; Ono, K.; Takahashi, S. Relative biological effects of neutron mixed-beam irradiation for boron neutron capture therapy on cell survival and DNA double-strand breaks in cultured mammalian cells. J. Radiat. Res. 2012, 54, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M.; Chang, W.; Kirsch-Volders, M.; Holland, N.; Bonassi, S.; Zeiger, E. HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat. Res. Toxicol. Environ. Mutagen. 2003, 534, 65–75. [Google Scholar] [CrossRef]
- Fenech, M. The cytokinesis-block micronucleus technique: A detailed description of the method and its application to genotoxicity studies in human populations. Mutat. Res. Mol. Mech. Mutagen. 1993, 285, 35–44. [Google Scholar] [CrossRef]
- Paterson, L.C.; Yonkeu, A.; Ali, F.; Priest, N.D.; Boreham, D.R.; Seymour, C.B.; Norton, F.; Richardson, R.B. Relative biological effectiveness and non-Poissonian distribution of dicentric chromosome aberrations following californium-252 neutron exposures of human peripheral blood lymphocytess. Radiat. Res. 2020, 195, 211–217. [Google Scholar] [CrossRef] [PubMed]
- McNamee, J.P.; Flegal, F.N.; Greene, H.B.; Marro, L.; Wilkins, R. Validation of the cytokinesis-block micronucleus (CBMN) assay for use as a triage biological dosimetry tool. Radiat. Prot. Dosim. 2009, 135, 232–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romm, H.; Wilkins, R.C.; Coleman, C.N.; Lillis-Hearne, P.K.; Pellmar, T.C.; Livingston, G.K.; Awa, A.A.; Jenkins, M.S.; Yoshida, M.A.; Oestreicher, U.; et al. Biological dosimetry by the triage dicentric chromosome assay: Potential implications for treatment. Radiat. Res. 2011, 175, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Vral, A.; Verhaegen, F.; Thierens, H.; De Ridder, L. Micronuclei induced by fast neutrons versus 60Co gamma-rays in human peripheral blood lymphocytes. Int. J. Radiat. Biol. 1994, 65, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Lehman, R.R.; Archer, K.J. Penalized negative binomial models for modeling an overdispersed count outcome with a high-dimensional predictor space: Application predicting micronuclei frequency. PLoS ONE 2019, 14, e0209923. [Google Scholar] [CrossRef]
- Gajendiran, N.; Tanaka, K.; Kumaravel, T.S.; Kamada, N. Neutron-induced adaptive response studied in go human lymphocytes using the comet assay. J. Radiat. Res. 2001, 42, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rithidech, K.N.; Scott, B.R. Evidence for radiation hormesis after in vitro exposure of human lymphocytes to low doses of ionizing radiation. Dose-Response 2008, 6, 252–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, K.; Gajendiran, N.; Kamada, N. Relative biological effectiveness (RBE) and dose rate dependent ratio of translocation to dicentric chromosome yield in 252Cf neutrons. Indian J. Sci. Technol. 2009, 2, 1–11. [Google Scholar] [CrossRef]
- Schmid, E.; Regulla, D.; Guldbakke, S.; Schlegel, D.; Bauchinger, M. The effectiveness of monoenergetic neutrons at 565 keV in producing dicentric chromosomes in human lymphocytes at low doses. Radiat. Res. 2000, 154, 307–312. [Google Scholar] [CrossRef]
- Schmid, E.; Regulla, D.; Guldbakke, S.; Schlegel, D.; Roos, M. Relative biological effectiveness of 144 keV neutrons in producing dicentric chromosomes in human lymphocytes compared with 60Co gamma rays under head-to-head conditions. Radiat. Res. 2002, 157, 453–460. [Google Scholar] [CrossRef]
- Vral, A.; Cornelissen, M.; Thierens, H.; Louagie, H.; Philippe, J.; Strijckmans, K.; De Ridder, L. Apoptosis induced by fast neutrons versus 60Co gamma-rays in human peripheral blood lymphocytes. Int. J. Radiat. Biol. 1998, 73, 289–295. [Google Scholar] [PubMed]
- Deschavanne, P.J.; Fertil, B. A review of human cell radiosensitivity in vitro. Int. J. Radiat. Oncol. 1996, 34, 251–266. [Google Scholar] [CrossRef]
- Schmid, E.; Schlegel, D.; Guldbakke, S.; Kapsch, R.-P.; Regulla, D. RBE of nearly monoenergetic neutrons at energies of 36 keV–14.6 MeV for induction of dicentrics in human lymphocytes. Radiat. Environ. Biophys. 2003, 42, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, R.C.; Beaton-Green, L.A.; Lachapelle, S.; Kutzner, B.C.; Ferrarotto, C.; Chauhan, V.; Marro, L.; Livingston, G.K.; Greene, H.B.; Flegal, F.N. Evaluation of the annual Canadian biodosimetry network intercomparisons. Int. J. Radiat. Biol. 2015, 91, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, D.; Purrott, R.; Reeder, E.; Edwards, A.; Dolphin, G. Chromosome aberrations induced in human lymphocytes by radiation from 252Cf. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1978, 34, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, D.C.; Edwards, A.A.; Prosser, J.S.; Bolton, D.; Sherwin, A.G. Chromosome aberrations induced in human lymphocytes by D-T neutrons. Radiat. Res. 1984, 98, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Szluinska, M.; Edwards, A.A.; Lloyd, D.C. Statistical Methods for Biological Dosimetry; HPA Radiation Protection Division: Chilton, WI, USA, 2005. [Google Scholar]
- Ainsbury, E.A.; Lloyd, D.C. Dose estimation software for radiation biodosimetry. Health Phys. 2010, 98, 290–295. [Google Scholar] [CrossRef] [PubMed]
Neutron Energy (meV) | Reference | Absorbed Dose Ranges (Gy) | # Dose Points | Regression | RBEM | |
---|---|---|---|---|---|---|
Neutron α ± SE (Gy-1) | Gamma α ± SE (Gy-1) | |||||
64 | This study | 0.006–0.082 | 7 | 0.789 ± 0.045 | 0.070 ± 0.0088 a | 11.3 ± 1.6 |
Thermal | Sevan’kaev et al. [16] | 0.16–0.64 | 3 | 0.745 ± 0.03 b | 0.069 ± 0.011 c | 10.8 ± 1.8 b |
Thermal | Wojcik et al. [17] | 6 | 0.669 ± 0.002 | 0.055 ± 0.023 | 12.16 | |
25.3 | Schmid et al. [18] | 0.375–1.875 | 5 | 0.400 ± 0.018 | 0.011 ± 0.004 d | 36.4 ± 13.3 |
25 | Sasaki et al. [19] | 0.073–2.19 | 7 | 0.920 ± 0.028 | 0.018 ± 0.011 e | 51.1 ± 31.3 |
Total Dose ± SE (mGy) | (n,p) Dose (mGy) | (n,γ) Dose (mGy) | Cells Scored | Total Aberr. (±SD) * | Distribution of Aberr. | Total Aberr. per Cell | (n,p) Aberr. per Cell | (n,γ) Aberr. per Cell | σ2/y | u | (n,p) + (n,γ) RBE | (n,p) RBE | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | ||||||||||||
0 ± 0 | 0 | 0 | 2800 | 1 ± 1 | 2799 | 1 | 0 | 0 | 0.0004 | 0.0004 | 0 | 1.00 | -. | -. | - |
6.0 ± 0.2 | 4.2 | 1.8 | 1500 | 7 ± 3 | 1494 | 5 | 1 | 0 | 0.0047 | 0.0046 | 0.0001 | 1.28 | 8.34 | 11 | 15 |
12.0 ± 0.3 | 8.5 | 3.5 | 1414 | 11 ± 3 | 1404 | 11 | 0 | 0 | 0.0067 | 0.0065 | 0.0002 | 0.99 | −0.20 | 7 | 10 |
21.0 ± 0.4 | 14.9 | 6.1 | 1500 | 26 ± 5 | 1478 | 18 | 4 | 0 | 0.0173 | 0.0169 | 0.0004 | 1.29 | 8.13 | 10 | 14 |
23.9 ± 0.6 | 16.9 | 7.0 | 1500 | 32 ± 6 | 1469 | 30 | 1 | 0 | 0.0213 | 0.0208 | 0.0005 | 1.04 | 1.16 | 10 | 14 |
42.2 ± 0.6 | 30.2 | 12.0 | 1500 | 50 ± 7 | 1456 | 39 | 4 | 1 | 0.0333 | 0.0325 | 0.0008 | 1.25 | 6.84 | 9 | 12 |
61.9 ± 0.7 | 43.8 | 18.1 | 2030 | 101 ± 10 | 1940 | 80 | 9 | 1 | 0.0498 | 0.0485 | 0.0013 | 1.19 | 6.03 | 8 | 11 |
82.1 ± 1.8 | 58.1 | 24.0 | 1575 | 102 ± 10 | 1487 | 75 | 12 | 1 | 0.0648 | 0.0631 | 0.0017 | 1.23 | 6.49 | 7 | 10 |
Radiation | Regression | α [±SE] (Gy−1) | β [±SE] (Gy−2) | c [±SE] | χ2-Test Sig. | α z-Test Sig. | Pearson’s R2 Value |
---|---|---|---|---|---|---|---|
64 meV (n,p) + (n,γ) | A = 0.0003 + 0.789D | 0.789 ± 0.045 | - | 0.0003 ± 0.0017 | 0.9867 | 0.00001 | 0.998 |
64 meV (n,p) only | A = 0.0003 + 1.088D | 1.088 ± 0.063 | - | 0.0003 ± 0.0021 | 0.9948 | 0.00001 | 0.999 |
137Cs [21] | A = 0.070D + 0.061D2 | 0.070 ± 0.0088 | 0.061 ± 0.0043 | - | - | - | - |
Total Dose ± SE (mGy) | (n,p) Dose (mGy) | (n,γ) Dose (mGy) | Cells Scored | Total Aberr. (±SD *) | Distribution of Aberr. | Total Aberr. per Cell | σ2/y | u | (n,p) + (n,γ) RBE | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | |||||||||
0 ± 0 | 0 | 0 | 15000 | 243 ± 16 | 14757 | 216 | 12 | 1 | 0.0162 | 1.11 | 9.31 | - |
21.7 ± 0.3 | 15.4 | 6.3 | 15000 | 373 ± 19 | 14627 | 281 | 37 | 6 | 0.0249 | 1.27 | 23.42 | 8 |
43.5 ± 0.5 | 30.8 | 12.7 | 15000 | 687 ± 26 | 14313 | 499 | 82 | 8 | 0.0458 | 1.26 | 22.76 | 8 |
64.3 ± 1.1 | 45.5 | 18.8 | 15000 | 789 ± 28 | 14211 | 578 | 83 | 15 | 0.0526 | 1.27 | 23.53 | 7 |
85.0 ± 1.6 | 60.1 | 24.9 | 15000 | 1036 ± 32 | 13964 | 759 | 122 | 11 | 0.0691 | 1.23 | 19.89 | 7 |
Radiation | Regression | A [±SE] (Gy−1) | β [±SE] (Gy−2) | c [±SE] | χ2-Test Sig. | α z-Test Sig. | Pearson’s R2 Value |
---|---|---|---|---|---|---|---|
64 meV (n,p) + (n,γ) | A = 0.0153 + 0.6152D | 0.615 ± 0.052 | - | 0.0153 ± 0.0085 | 0.0013 | 0.0013 | 0.98 |
60Co [30] | A = 0.022 + 0.068D + 0.024D2 | 0.068 ± 0.006 | 0.024 ± 0.0020 | 0.022 ± 0.0020 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paterson, L.C.; Festarini, A.; Stuart, M.; Ali, F.; Costello, C.; Boyer, C.; Rogge, R.; Ybarra, N.; Kildea, J.; Richardson, R.B. High-Accuracy Relative Biological Effectiveness Values Following Low-Dose Thermal Neutron Exposures Support Bimodal Quality Factor Response with Neutron Energy. Int. J. Mol. Sci. 2022, 23, 878. https://doi.org/10.3390/ijms23020878
Paterson LC, Festarini A, Stuart M, Ali F, Costello C, Boyer C, Rogge R, Ybarra N, Kildea J, Richardson RB. High-Accuracy Relative Biological Effectiveness Values Following Low-Dose Thermal Neutron Exposures Support Bimodal Quality Factor Response with Neutron Energy. International Journal of Molecular Sciences. 2022; 23(2):878. https://doi.org/10.3390/ijms23020878
Chicago/Turabian StylePaterson, Laura C., Amy Festarini, Marilyne Stuart, Fawaz Ali, Christie Costello, Chad Boyer, Ronald Rogge, Norma Ybarra, John Kildea, and Richard B. Richardson. 2022. "High-Accuracy Relative Biological Effectiveness Values Following Low-Dose Thermal Neutron Exposures Support Bimodal Quality Factor Response with Neutron Energy" International Journal of Molecular Sciences 23, no. 2: 878. https://doi.org/10.3390/ijms23020878
APA StylePaterson, L. C., Festarini, A., Stuart, M., Ali, F., Costello, C., Boyer, C., Rogge, R., Ybarra, N., Kildea, J., & Richardson, R. B. (2022). High-Accuracy Relative Biological Effectiveness Values Following Low-Dose Thermal Neutron Exposures Support Bimodal Quality Factor Response with Neutron Energy. International Journal of Molecular Sciences, 23(2), 878. https://doi.org/10.3390/ijms23020878