Sleep Modulates Alcohol Toxicity in Drosophila
Abstract
:1. Introduction
2. Results
2.1. Sleep Deprivation Increases Sensitivity to Alcohol-Induced Sedation
2.2. Sleep Deprivation Increases Acute and Chronic Alcohol Toxicity
2.3. Sleep Deprivation Does Not Affect the Rate of Alcohol Clearance
2.4. Chronic Sleep Deprivation Induces Increased Alcohol-Induced Mortality
2.5. Pharmacologically Increasing Sleep Ameliorates Alcohol-Induced Mortality in Populations with Sleep Phenotypes
2.6. Pharmacologically Increasing Sleep Independent of Circadian Rhythmicity Decreases Alcohol-Induced Mortality
2.7. Increasing Sleep Buffers Age-Related Susceptibility to Alcohol-Induced Mortality
2.8. Sleep Deprivation Inhibits Long-Term but Not Short-Term Tolerance
3. Materials and Methods
3.1. Fly Maintenance
3.2. Alcohol Exposure
3.3. Sleep Deprivation
3.4. Sedation
3.5. Tolerance
3.6. Mortality
3.7. Gaboxadol Treatment
3.8. Alcohol Absorbance
3.9. Locomotor Activity Rhythms
3.10. Statistics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esser, M.B.; Hedden, S.L.; Kanny, D.; Brewer, R.D.; Gfroerer, J.C.; Naimi, T.S. Prevalence of alcohol dependence among US adult drinkers, 2009–2011. Prev. Chronic Dis. 2014, 11, E206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esser, M.B.; Sherk, A.; Liu, Y.; Naimi, T.S.; Stockwell, T.; Stahre, M.; Kanny, D.; Landen, M.; Saitz, R.; Brewer, R.D. Deaths and Years of Potential Life Lost From Excessive Alcohol Use-United States, 2011–2015. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.F.; Dawson, D.A.; Stinson, F.S.; Chou, S.P.; Dufour, M.C.; Pickering, R.P. The 12-month prevalence and trends in DSM-IV alcohol abuse and dependence: United States, 1991–1992 and 2001–2002. Drug Alcohol Depend. 2004, 74, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.F.; Stinson, F.S.; Dawson, D.A.; Chou, S.P.; Ruan, W.J.; Pickering, R.P. Co-occurrence of 12-month alcohol and drug use disorders and personality disorders in the United States: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch. Gen. Psychiatry 2004, 61, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesmodel, U.; Wisborg, K.; Olsen, S.F.; Henriksen, T.B.; Secher, N.J. Moderate alcohol intake during pregnancy and the risk of stillbirth and death in the first year of life. Am. J. Epidemiol. 2002, 155, 305–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, K.E.; Rothbard, J.C. Alcohol and the marriage effect. J. Stud. Alcohol Suppl. 1999, 13, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Sacks, J.J.; Gonzales, K.R.; Bouchery, E.E.; Tomedi, L.E.; Brewer, R.D. 2010 National and State Costs of Excessive Alcohol Consumption. Am. J. Prev. Med. 2015, 49, e73–e79. [Google Scholar] [CrossRef] [PubMed]
- Stahre, M.; Roeber, J.; Kanny, D.; Brewer, R.D.; Zhang, X. Contribution of excessive alcohol consumption to deaths and years of potential life lost in the United States. Prev. Chronic Dis. 2014, 11, E109. [Google Scholar] [CrossRef] [Green Version]
- SAMSHA. Results from the 2013 National Survey on Drug Use and Health. Summary of National Findings; NSDUH Series H-48; HHS Publication No. (SMA) 14-4863 (Substance Abuse and Mental Health Services Administration): Rockville, MD, USA, 2014.
- (HHS) UDoHaHS. Facing addiction in America: The surgeon general’s report on alcohol, drugs, and health. In General OotS; SMA 16-4991 (Substance Abuse and Mental Health Services Administration): Rockville, MD, USA, 2016. [Google Scholar]
- Blazer, D.G.; Wu, L.T. The epidemiology of at-risk and binge drinking among middle-aged and elderly community adults: National Survey on Drug Use and Health. Am. J. Psychiatry 2009, 166, 1162–1169. [Google Scholar] [CrossRef] [Green Version]
- Bushnell, P.T.; Colombi, A.; Caruso, C.C.; Tak, S. Work schedules and health behavior outcomes at a large manufacturer. Ind. Health 2010, 48, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Hasler, B.P.; Soehner, A.M.; Clark, D.B. Sleep and circadian contributions to adolescent alcohol use disorder. Alcohol 2015, 49, 377–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendler, K.S.; Ohlsson, H.; Sundquist, J.; Sundquist, K. Alcohol Use Disorder and Mortality Across the Lifespan: A Longitudinal Cohort and Co-relative Analysis. JAMA Psychiatry 2016, 73, 575–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Manousakis, J.; Fielding, J.; Anderson, C. Alcohol and sleep restriction combined reduces vigilant attention, whereas sleep restriction alone enhances distractibility. Sleep 2015, 38, 765–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novier, A.; Diaz-Granados, J.L.; Matthews, D.B. Alcohol use across the lifespan: An analysis of adolescent and aged rodents and humans. Pharmacol. Biochem. Behav. 2015, 133, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Novier, A.; Ornelas, L.C.; Diaz-Granados, J.L.; Matthews, D.B. Differences in Behavioral Responding in Adult and Aged Rats Following Chronic Ethanol Exposure. Alcohol. Clin. Exp. Res. 2016, 40, 1462–1472. [Google Scholar] [CrossRef] [PubMed]
- Swanson, G.R.; Gorenz, A.; Shaikh, M.; Desai, V.; Kaminsky, T.; Berg, J.V.D.; Murphy, T.; Raeisi, S.; Fogg, L.F.; Vitaterna, M.H.; et al. Night workers with circadian misalignment are susceptible to alcohol-induced intestinal hyperpermeability with social drinking. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G192–G201. [Google Scholar] [CrossRef] [Green Version]
- Chakravorty, S.; Chaudhary, N.S.; Brower, K.J. Alcohol Dependence and Its Relationship With Insomnia and Other Sleep Disorders. Alcohol. Clin. Exp. Res. 2016, 40, 2271–2282. [Google Scholar] [CrossRef]
- Colrain, I.M.; Nicholas, C.L.; Baker, F.C. Alcohol and the sleeping brain. Handb. Clin. Neurol. 2014, 125, 415–431. [Google Scholar]
- Ebrahim, I.O.; Shapiro, C.M.; Williams, A.J.; Fenwick, P.B. Alcohol and sleep I: Effects on normal sleep. Alcohol. Clin. Exp. Res. 2013, 37, 539–549. [Google Scholar] [CrossRef]
- Brower, K.J.; Aldrich, M.S.; Hall, J.M. Polysomnographic and subjective sleep predictors of alcoholic relapse. Alcohol. Clin. Exp. Res. 1998, 22, 1864–1871. [Google Scholar] [CrossRef]
- Brower, K.J.; Hall, J.M. Effects of age and alcoholism on sleep: A controlled study. J. Stud. Alcohol. 2001, 62, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Hartwell, E.E.; Bujarski, S.; Glasner-Edwards, S.; Ray, L.A. The Association of Alcohol Severity and Sleep Quality in Problem Drinkers. Alcohol Alcohol. 2015, 50, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.; Hill, R.; Marshall, J.; Keaney, F.; Wanigaratne, S. Sleep related beliefs and their association with alcohol relapse following residential alcohol detoxification treatment. Behav. Cogn. Psychother. 2014, 42, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Buxton, O.M.; Marcelli, E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc. Sci. Med. 2010, 71, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, S.; Lanteri, P.; Durando, P.; Magnavita, N.; Sannita, W.G. Co-Morbidity, Mortality, Quality of Life and the Healthcare/Welfare/Social Costs of Disordered Sleep: A Rapid Review. Int. J. Environ. Res. Public Health 2016, 13, 831. [Google Scholar] [CrossRef] [PubMed]
- Strine, T.W.; Chapman, D.P. Associations of frequent sleep insufficiency with health-related quality of life and health behaviors. Sleep Med. 2005, 6, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Wheaton, A.G.; Olsen, E.O.; Miller, G.F.; Croft, J.B. Sleep Duration and Injury-Related Risk Behaviors Among High School Students—United States, 2007–2013. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Knutson, K.L.; Van Cauter, E.; Rathouz, P.J.; DeLeire, T.; Lauderdale, D.S. Trends in the prevalence of short sleepers in the USA: 1975–2006. Sleep 2010, 33, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Roenneberg, T. Chronobiology: The human sleep project. Nature 2013, 498, 427–428. [Google Scholar] [CrossRef] [PubMed]
- Landayan, D.; Wolf, F.W. Shared neurocircuitry underlying feeding and drugs of abuse in Drosophila. Biomed. J. 2015, 38, 496–509. [Google Scholar] [CrossRef] [Green Version]
- Park, A.; Ghezzi, A.; Wijesekera, T.P.; Atkinson, N.S. Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology 2017, 122, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Tomita, J.; Ban, G.; Kume, K. Genes and neural circuits for sleep of the fruit fly. Neurosci. Res. 2017, 118, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Andretic, R.; Shaw, P.J. Essentials of sleep recordings in Drosophila: Moving beyond sleep time. Methods Enzymol. 2005, 393, 759–772. [Google Scholar] [PubMed]
- Donlea, J.M. Neuronal and molecular mechanisms of sleep homeostasis. Curr. Opin. Insect Sci. 2017, 24, 51–57. [Google Scholar] [CrossRef]
- Hendricks, J.C.; Finn, S.M.; Panckeri, K.A.; Chavkin, J.; Williams, J.A.; Sehgal, A.; Pack, A. Rest in Drosophila is a sleep-like state. Neuron 2000, 25, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Huber, R.; Hill, S.L.; Holladay, C.; Biesiadecki, M.; Tononi, G.; Cirelli, C. Sleep homeostasis in Drosophila melanogaster. Sleep 2004, 27, 628–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaac, R.E.; Li, C.; Leedale, A.E.; Shirras, A.D. Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proc. Biol. Sci. 2010, 277, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Koh, K.; Evans, J.M.; Hendricks, J.C.; Sehgal, A. A Drosophila model for age-associated changes in sleep:wake cycles. Proc. Natl. Acad. Sci. USA 2006, 103, 13843–13847. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.; Keene, A.C. Molecular mechanisms of age-related sleep loss in the fruit fly—A mini-review. Gerontology 2013, 59, 334–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, P.J.; Cirelli, C.; Greenspan, R.J.; Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 2000, 287, 1834–1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Alphen, B.; Yap, M.H.; Kirszenblat, L.; Kottler, B.; van Swinderen, B. A dynamic deep sleep stage in Drosophila. J. Neurosci. 2013, 33, 6917–6927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vienne, J.; Spann, R.; Guo, F.; Rosbash, M. Age-Related Reduction of Recovery Sleep and Arousal Threshold in Drosophila. Sleep 2016, 39, 1613–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganguly-Fitzgerald, I.; Donlea, J.; Shaw, P.J. Waking experience affects sleep need in Drosophila. Science 2006, 313, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Devineni, A.V.; McClure, K.; Guarnieri, D.; Corl, A.; Wolf, F.; Eddison, M.; Heberlein, U. The genetic relationships between ethanol preference, acute ethanol sensitivity, and ethanol tolerance in Drosophila melanogaster. Fly 2011, 5, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodan, A.R.; Rothenfluh, A. The genetics of behavioral alcohol responses in Drosophila. Int. Rev. Neurobiol. 2010, 91, 25–51. [Google Scholar] [PubMed] [Green Version]
- De Nobrega, A.K.; Lyons, L.C. Circadian Modulation of Alcohol-Induced Sedation and Recovery in Male and Female Drosophila. J. Biol. Rhythm. 2016, 31, 142–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, M.S.; DeZazzo, J.; Luk, A.Y.; Tully, T.; Singh, C.M.; Heberlein, U. Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 1998, 93, 997–1007. [Google Scholar] [CrossRef] [Green Version]
- Scholz, H.; Ramond, J.; Singh, C.M.; Heberlein, U. Functional ethanol tolerance in Drosophila. Neuron 2000, 28, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Van der Linde, K.; Lyons, L.C. Circadian modulation of acute alcohol sensitivity but not acute tolerance in Drosophila. Chronobiol. Int. 2011, 28, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Cowmeadow, R.B.; Krishnan, H.R.; Atkinson, N.S. The slowpoke gene is necessary for rapid ethanol tolerance in Drosophila. Alcohol. Clin. Exp. Res. 2005, 29, 1777–1786. [Google Scholar] [CrossRef]
- Ghezzi, A.; Al-Hasan, Y.M.; Krishnan, H.R.; Wang, Y.; Atkinson, N.S. Functional mapping of the neuronal substrates for drug tolerance in Drosophila. Behav Genet. 2013, 43, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, A.; Li, X.; Lew, L.K.; Wijesekera, T.P.; Atkinson, N.S. Alcohol-Induced Neuroadaptation Is Orchestrated by the Histone Acetyltransferase CBP. Front. Mol. Neurosci. 2017, 10, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, H.R.; Li, X.; Ghezzi, A.; Atkinson, N.S. A DNA element in the slo gene modulates ethanol tolerance. Alcohol 2016, 51, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Devineni, A.V.; Heberlein, U. Preferential ethanol consumption in Drosophila models features of addiction. Curr. Biol. 2009, 19, 2126–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaun, K.R.; Azanchi, R.; Maung, Z.; Hirsh, J.; Heberlein, U. A Drosophila model for alcohol reward. Nat. Neurosci. 2011, 14, 612–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaun, K.R.; Devineni, A.V.; Heberlein, U. Drosophila melanogaster as a model to study drug addiction. Hum. Genet. 2012, 131, 959–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Chan, T.; Shah, V.; Zhang, S.; Pletcher, S.D.; Roman, G. The propensity for consuming ethanol in Drosophila requires rutabaga adenylyl cyclase expression within mushroom body neurons. Genes Brain Behav. 2012, 11, 727–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peru Y Colón de Portugal, R.L.; Ojelade, S.A.; Penninti, P.S.; Dove, R.J.; Nye, M.J.; Acevedo, S.F.; Lopez, A.; Rodan, A.R.; Rothenfluh, A. Long-lasting, experience-dependent alcohol preference in Drosophila. Addict. Biol. 2014, 19, 392–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorrian, J.; Heath, G.; Sargent, C.; Banks, S.; Coates, A. Alcohol use in shiftworkers. Accid. Anal. Prev. 2017, 99 Pt B, 395–400. [Google Scholar] [CrossRef]
- Dorrian, J.; Skinner, N. Alcohol consumption patterns of shiftworkers compared with dayworkers. Chronobiol. Int. 2012, 29, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Kenney, S.R.; LaBrie, J.W.; Hummer, J.F.; Pham, A.T. Global sleep quality as a moderator of alcohol consumption and consequences in college students. Addict. Behav. 2012, 37, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, Y.; Sakurai, M.; Nakamura, K.; Nagasawa, S.-Y.; Ishizaki, M.; Kido, T.; Naruse, Y.; Nakagawa, H. Correlation between shift-work-related sleep problems and heavy drinking in Japanese male factory workers. Alcohol Alcohol. 2013, 48, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.M.; Brower, K.J.; Nigg, J.T.; Zucker, R.A. Childhood sleep problems, response inhibition, and alcohol and drug outcomes in adolescence and young adulthood. Alcohol. Clin. Exp. Res. 2010, 34, 1033–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.M.; Robertson, G.C.; Dyson, R.B. Prospective relationship between poor sleep and substance-related problems in a national sample of adolescents. Alcohol. Clin. Exp. Res. 2015, 39, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donlea, J.M.; Shaw, P.J. Sleeping together using social interactions to understand the role of sleep in plasticity. Adv. Genet. 2009, 68, 57–81. [Google Scholar] [PubMed]
- Eddison, M.; Guarnieri, D.J.; Cheng, L.; Liu, C.-H.; Moffat, K.G.; Davis, G.; Heberlein, U. Arouser reveals a role for synapse number in the regulation of ethanol sensitivity. Neuron 2011, 70, 979–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Nobrega, A.K.; Mellers, A.P.; Lyons, L.C. Aging and circadian dysfunction increase alcohol sensitivity and exacerbate mortality in Drosophila melanogaster. Exp. Gerontol. 2017, 97, 49–59. [Google Scholar] [CrossRef]
- Kanny, D.; Brewer, R.D.; Mesnick, J.B.; Paulozzi, L.J.; Naimi, T.S.; Lu, H. Vital signs: Alcohol poisoning deaths-United States, 2010–2012. MMWR Morb. Mortal. Wkly. Rep. 2015, 63, 1238–1242. [Google Scholar] [PubMed]
- White, A.M.; Slater, M.E.; Ng, G.; Hingson, R.; Breslow, R. Trends in Alcohol-Related Emergency Department Visits in the United States: Results from the Nationwide Emergency Department Sample, 2006 to 2014. Alcohol. Clin. Exp. Res. 2018, 42, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Pasch, K.E.; Latimer, L.A.; Cance, J.D.; Moe, S.G.; Lytle, L.A. Longitudinal bi-directional relationships between sleep and youth substance use. J. Youth Adolesc. 2012, 41, 1184–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consensus Conference Panel; Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. J. Clin. Sleep Med. 2015, 11, 591–592. [Google Scholar] [CrossRef] [PubMed]
- Wheaton, A.G.; Chapman, D.P.; Croft, J.B. School Start Times, Sleep, Behavioral, Health, and Academic Outcomes: A Review of the Literature. J. Sch. Health 2016, 86, 363–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavropoulos, N.; Young, M.W. Insomniac and Cullin-3 regulate sleep and wakefulness in Drosophila. Neuron 2011, 72, 964–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, X.; Wang, H.; Liu, Z.; He, C.; An, C.; Zhao, Z. Regulation of Sleep by Insulin-like Peptide System in Drosophila melanogaster. Sleep 2015, 38, 1075–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grönke, S.; Clarke, D.F.; Broughton, S.; Andrews, T.D.; Partridge, L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 2010, 6, e1000857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dissel, S.; Angadi, V.; Kirszenblat, L.; Suzuki, Y.; Donlea, J.; Klose, M.; Koch, Z.; English, D.; Winsky-Sommerer, R.; van Swinderen, B.; et al. Sleep restores behavioral plasticity to Drosophila mutants. Curr. Biol. 2015, 25, 1270–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, J.A.; Cervantes-Sandoval, I.; Chakraborty, M.; Davis, R.L. Sleep Facilitates Memory by Blocking Dopamine Neuron-Mediated Forgetting. Cell 2015, 161, 1656–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tainton-Heap, L.A.; Kirszenblat, L.C.; Notaras, E.T.; Grabowska, M.J.; Jeans, R.; Feng, K.; Shaw, P.J.; van Swinderen, B. A Paradoxical Kind of Sleep in Drosophila melanogaster. Curr. Biol. 2021, 31, 578–590.e576. [Google Scholar] [CrossRef] [PubMed]
- Vashchinkina, E.; Panhelainen, A.; Vekovischeva, O.Y.; Aitta-Aho, T.; Ebert, B.; Ator, N.A.; Korpi, E.R. GABA site agonist gaboxadol induces addiction-predicting persistent changes in ventral tegmental area dopamine neurons but is not rewarding in mice or baboons. J. Neurosci. 2012, 32, 5310–5320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, L.C.; Roman, G. Circadian modulation of short-term memory in Drosophila. Learn. Mem. 2009, 16, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewer, J.; Frisch, B.; Hamblen-Coyle, M.J.; Rosbash, M.; Hall, J.C. Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells’ influence on circadian behavioral rhythms. J. Neurosci. 1992, 12, 3321–3349. [Google Scholar] [CrossRef] [PubMed]
- Konopka, R.J.; Pittendrigh, C.; Orr, D. Reciprocal behaviour associated with altered homeostasis and photosensitivity of Drosophila clock mutants. J. Neurogenet. 1989, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Price, J.L.; Dembinska, M.E.; Young, M.W.; Rosbash, M. Suppression of PERIOD protein abundance and circadian cycling by the Drosophila clock mutation timeless. EMBO J. 1995, 14, 4044–4049. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, T.; Heshiki, Y.; Ibuki-Ishibashi, T.; Matsumoto, A.; Tanimura, T.; Tomioka, K. Temperature cycles drive Drosophila circadian oscillation in constant light that otherwise induces behavioural arrhythmicity. Eur. J. Neurosci. 2005, 22, 1176–1184. [Google Scholar] [CrossRef]
- Power, J.; Ringo, J.; Dowse, H. The role of light in the initiation of circadian activity rhythms of adult Drosophila melanogaster. J. Neurogenet. 1995, 9, 227–238. [Google Scholar] [CrossRef]
- Arellanes-Licea, E.; Caldelas, I.; De Ita-Pérez, D.; Díaz-Muñoz, M. The circadian timing system: A recent addition in the physiological mechanisms underlying pathological and aging processes. Aging Dis. 2014, 5, 406–418. [Google Scholar]
- Bah, T.M.; Goodman, J.; Iliff, J.J. Sleep as a Therapeutic Target in the Aging Brain. Neurotherapeutics 2019, 16, 554–568. [Google Scholar] [CrossRef]
- Mander, B.A.; Winer, J.R.; Walker, M.P. Sleep and Human Aging. Neuron 2017, 94, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Tevy, M.F.; Giebultowicz, J.; Pincus, Z.; Mazzoccoli, G.; Vinciguerra, M. Aging signaling pathways and circadian clock-dependent metabolic derangements. Trends Endocrinol. Metab. 2013, 24, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Yu, B.; Luo, D.; Yang, L.-Y.; Zhang, J.; Jiang, S.-S.; Hu, S.-J.; Luo, Y.-Y.; Yang, M.-W.; Hong, F.-F.; et al. Roles of aging in sleep. Neurosci. Biobehav. Rev. 2019, 98, 177–184. [Google Scholar] [CrossRef]
- Han, B.H.; Moore, A.A.; Ferris, R.; Palamar, J.J. Binge Drinking Among Older Adults in the United States, 2015 to 2017. J. Am. Geriatr. Soc. 2019, 67, 2139–2144. [Google Scholar] [CrossRef] [Green Version]
- Han, B.H.; Moore, A.A.; Sherman, S.E.; Palamar, J.J. Prevalence and correlates of binge drinking among older adults with multimorbidity. Drug Alcohol Depend. 2018, 187, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Goodkind, D.; Kowal, P. An Aging World: 2015. US Census Bureau, International Population Reports; US Census Bureau: Suitland, MD, USA, 2015; p. 95.
- Abrahao, K.P.; Salinas, A.G.; Lovinger, D.M. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 2017, 96, 1223–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberto, M.; Varodayan, F.P. Synaptic targets: Chronic alcohol actions. Neuropharmacology 2017, 122, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Berger, K.H.; Heberlein, U.; Moore, M.S. Rapid and chronic: Two distinct forms of ethanol tolerance in Drosophila. Alcohol. Clin. Exp. Res. 2004, 28, 1469–1480. [Google Scholar] [CrossRef] [PubMed]
- Cowmeadow, R.B.; Krishnan, H.R.; Ghezzi, A.; Al’Hasan, Y.M.; Wang, Y.Z.; Atkinson, N.S. Ethanol tolerance caused by slowpoke induction in Drosophila. Alcohol. Clin. Exp. Res. 2006, 30, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Engel, G.L.; Taber, K.; Vinton, E.; Crocker, A.J. Studying alcohol use disorder using Drosophila melanogaster in the era of ‘Big Data’. Behav. Brain Funct. 2019, 15, 7. [Google Scholar] [CrossRef] [Green Version]
- Heyne, A.; May, T.; Goll, P.; Wolffgramm, J. Persisting consequences of drug intake: Towards a memory of addiction. J. Neural Transm. 2000, 107, 613–638. [Google Scholar] [CrossRef] [PubMed]
- Van Skike, C.E.; Goodlett, C.; Matthews, D.B. Acute alcohol and cognition: Remembering what it causes us to forget. Alcohol 2019, 79, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Havekes, R.; Park, A.J.; Tudor, J.C.; Luczak, V.G.; Hansen, R.T.; Ferri, S.L.; Bruinenberg, V.M.; Poplawski, S.G.; Day, J.P.; Aton, S.J.; et al. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1. Elife 2016, 5, e13424. [Google Scholar] [CrossRef]
- Krishnan, H.C.; Gandour, C.E.; Ramos, J.L.; Wrinkle, M.C.; Sanchez-Pacheco, J.J.; Lyons, L.C. Acute Sleep Deprivation Blocks Short- and Long-Term Operant Memory in. Sleep 2016, 39, 2161–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saygin, M.; Ozguner, M.F.; Onder, O.; Doguc, D.K.; Ilhan, I.; Peker, Y. The impact of sleep deprivation on hippocampal-mediated learning and memory in rats. Bratisl. Lek. Listy 2017, 118, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Van der Linde, K.; Fumagalli, E.; Roman, G.; Lyons, L.C. The FlyBar: Administering alcohol to flies. J. Vis. Exp. 2014, 87, e50442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishehsari, F.; Saadalla, A.; Khazaie, K.; Engen, P.A.; Voigt, R.M.; Shetuni, B.B.; Forsyth, C.; Shaikh, M.; Vitaterna, M.H.; Turek, F.; et al. Light/Dark Shifting Promotes Alcohol-Induced Colon Carcinogenesis: Possible Role of Intestinal Inflammatory Milieu and Microbiota. Int. J. Mol. Sci. 2016, 17, 2017. [Google Scholar] [CrossRef]
- Voigt, R.M.; Forsyth, C.B.; Shaikh, M.; Zhang, L.; Raeisi, S.; Aloman, C.; Preite, N.Z.; Donohue, T.M.; Fogg, L.; Keshavarzian, A. Diurnal variations in intestinal barrier integrity and liver pathology in mice: Implications for alcohol binge. Am. J. Physiol. Gastrointest. Liver Physiol. 2018, 314, G131–G141. [Google Scholar] [CrossRef]
- Reid, K.J.; Abbott, S.M. Jet Lag and Shift Work Disorder. Sleep Med. Clin. 2015, 10, 523–535. [Google Scholar] [CrossRef]
- Haynie, D.L.; Lewin, D.; Luk, J.; Lipsky, L.; O’Brien, F.; Iannotti, R.J.; Liu, D.; Simons-Morton, B. Beyond Sleep Duration: Bidirectional Associations Among Chronotype, Social Jetlag, and Drinking Behaviors in a Longitudinal Sample of US High School Students. Sleep 2018, 41, zsx202. [Google Scholar] [CrossRef] [PubMed]
- Hasler, B.P.; Wallace, M.L.; White, S.J.; Molina, B.S.G.; Pedersen, S.L. Preliminary Evidence That Real World Sleep Timing and Duration are Associated With Laboratory-Assessed Alcohol Response. Alcohol. Clin. Exp. Res. 2019, 43, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.M.; Mindell, J.A. Sleep and risk-taking behavior in adolescents. Behav. Sleep Med. 2005, 3, 113–133. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, C.A.; Hoggatt, K.J.; Washington, D.L.; Bean-Mayberry, B.; Yano, E.M.; Mitchell, M.N.; Alessi, C.A.; Martin, J.L. Use of alcohol as a sleep aid, unhealthy drinking behaviors, and sleeping pill use among women veterans. Sleep Health 2019, 5, 495–500. [Google Scholar] [CrossRef]
- Dorrian, J.; Baulk, S.D.; Dawson, D. Work hours, workload, sleep and fatigue in Australian Rail Industry employees. Appl. Ergon. 2011, 42, 202–209. [Google Scholar] [CrossRef]
- Buchvold, H.V.; Pallesen, S.; Øyane, N.M.; Bjorvatn, B. Associations between night work and BMI, alcohol, smoking, caffeine and exercise—A cross-sectional study. BMC Public Health 2015, 15, 1112. [Google Scholar] [CrossRef] [PubMed]
- Giannotti, F.; Cortesi, F.; Sebastiani, T.; Ottaviano, S. Circadian preference, sleep and daytime behaviour in adolescence. J. Sleep Res. 2002, 11, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Pieters, S.; Van Der Vorst, H.; Burk, W.J.; Wiers, R.W.; Engels, R.C. Puberty-dependent sleep regulation and alcohol use in early adolescents. Alcohol. Clin. Exp. Res. 2010, 34, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Pieters, S.; van der Vorst, H.; Engels, R.C.; Wiers, R.W. Implicit and explicit cognitions related to alcohol use in children. Addict. Behav. 2010, 35, 471–478. [Google Scholar] [CrossRef]
- Robinson, D.; Gelaye, B.; Tadesse, M.G.; Williams, M.A.; Lemma, S.; Berhane, Y. Daytime Sleepiness, Circadian Preference, Caffeine Consumption and Khat Use among College Students in Ethiopia. J. Sleep Disord. Treat. Care. 2013, 3. [Google Scholar] [CrossRef]
- Saxvig, I.W.; Pallesen, S.; Wilhelmsen-Langeland, A.; Molde, H.; Bjorvatn, B. Prevalence and correlates of delayed sleep phase in high school students. Sleep Med. 2012, 13, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavernier, R.; Willoughby, T. Bidirectional associations between sleep (quality and duration) and psychosocial functioning across the university years. Dev. Psychol. 2014, 50, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Urbán, R.; Magyaródi, T.; Rigó, A. Morningness-eveningness, chronotypes and health-impairing behaviors in adolescents. Chronobiol. Int. 2011, 28, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Morales, J.F.; Escribano, C.; Jankowski, K.S. Chronotype and time-of-day effects on mood during school day. Chronobiol. Int. 2015, 32, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, R.; Michaelsen, S.; Bergmame, L.; Frenette, S.; Bruni, O.; Fontil, L.; Carrier, J. Short sleep duration is associated with teacher-reported inattention and cognitive problems in healthy school-aged children. Nat. Sci. Sleep 2012, 4, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasler, B.P.; Sitnick, S.L.; Shaw, D.S.; Forbes, E.E. An altered neural response to reward may contribute to alcohol problems among late adolescents with an evening chronotype. Psychiatry Res. 2013, 214, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Sadeh, A.; Gruber, R.; Raviv, A. The effects of sleep restriction and extension on school-age children: What a difference an hour makes. Child Dev. 2003, 74, 444–455. [Google Scholar] [CrossRef]
- Short, M.A.; Gradisar, M.; Lack, L.C.; Wright, H.R. The impact of sleep on adolescent depressed mood, alertness and academic performance. J. Adolesc. 2013, 36, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Digdon, N.; Landry, K. University students’ motives for drinking alcohol are related to evening preference, poor sleep, and ways of coping with stress. Biol. Rhythm. Res. 2013, 44, 1–11. [Google Scholar] [CrossRef]
- Rique, G.L.; Fernandes Filho, G.M.; Ferreira, A.D.; de Sousa-Muñoz, R.L. Relationship between chronotype and quality of sleep in medical students at the Federal University of Paraiba, Brazil. Sleep Sci. 2014, 7, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.S.; Hébert, M.; Ledoux, E.; Gaudreault, M.; Laberge, L. Relationship of chronotype to sleep, light exposure, and work-related fatigue in student workers. Chronobiol. Int. 2012, 29, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Bixler, E.O.; Vgontzas, A.N.; Lin, H.M.; Liao, D.; Calhoun, S.; Vela-Bueno, A.; Fedok, F.; Vlasic, V.; Graff, G. Sleep disordered breathing in children in a general population sample: Prevalence and risk factors. Sleep 2009, 32, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Owens, J.; Adolescent Sleep Working Group; Committee on Adolescence; Au, R.; Carskadon, M.; Millman, R.; Wolfson, A.; Braverman, P.K.; Adelman, W.P.; Breuner, C.C.; et al. Insufficient sleep in adolescents and young adults: An update on causes and consequences. Pediatrics 2014, 134, e921–e932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paruthi, S.; Brooks, L.J.; D’Ambrosio, C.; Hall, W.; Kotagal, S.; Lloyd, R.M.; Malow, B.A.; Maski, K.; Nichols, C.; Quan, S.F.; et al. Recommended Amount of Sleep for Pediatric Populations: A Consensus Statement of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2016, 12, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Wheaton, A.G.; Ferro, G.A.; Croft, J.B. School Start Times for Middle School and High School Students-United States, 2011–2012 School Year. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 809–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knutson, K.L.; Van Cauter, E. Associations between sleep loss and increased risk of obesity and diabetes. Ann. N. Y. Acad. Sci. 2008, 1129, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Stone, C.R.; Haig, T.R.; Fiest, K.M.; McNeil, J.; Brenner, D.R.; Friedenreich, C.M. The association between sleep duration and cancer-specific mortality: A systematic review and meta-analysis. Cancer Causes Control 2019, 30, 501–525. [Google Scholar] [CrossRef] [PubMed]
- Van Egroo, M.; Narbutas, J.; Chylinski, D.; Villar González, P.; Maquet, P.; Salmon, E.; Vandewalle, G.; Bastin, C.; Collette, F. Sleep-wake regulation and the hallmarks of the pathogenesis of Alzheimer’s disease. Sleep 2019, 42, zsz017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Videnovic, A.; Lazar, A.S.; Barker, R.A.; Overeem, S. ‘The clocks that time us’—Circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol. 2014, 10, 683–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Videnovic, A.; Noble, C.; Reid, K.J.; Peng, J.; Turek, F.W.; Marconi, A.; Rademaker, A.W.; Simuni, T.; Zadikoff, C.; Zee, P.C. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol. 2014, 71, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, F.; Khan, M.I.; Zubair, M.; Dehpour, A.R. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomed. Pharmacother. 2018, 105, 1205–1222. [Google Scholar] [CrossRef]
- Evans, O.; Rodríguez-Borillo, O.; Font, L.; Currie, P.J.; Pastor, R. Alcohol Binge Drinking and Anxiety-Like Behavior in Socialized Versus Isolated C57BL/6J Mice. Alcohol. Clin. Exp. Res. 2020, 44, 244–254. [Google Scholar] [CrossRef]
- Lopez, M.F.; Doremus-Fitzwater, T.L.; Becker, H.C. Chronic social isolation and chronic variable stress during early development induce later elevated ethanol intake in adult C57BL/6J mice. Alcohol 2011, 45, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, M.F.; Laber, K. Impact of social isolation and enriched environment during adolescence on voluntary ethanol intake and anxiety in C57BL/6J mice. Physiol. Behav. 2015, 148, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Sanna, E.; Talani, G.; Obili, N.; Mascia, M.P.; Mostallino, M.C.; Secci, P.P.; Follesa, P.; Pisu, M.G.; Biggio, F.; Utzeri, C.; et al. Voluntary Ethanol Consumption Induced by Social Isolation Reverses the Increase of α(4)/δ GABA(A) Receptor Gene Expression and Function in the Hippocampus of C57BL/6J Mice. Front. Neurosci. 2011, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Clark, C.P.; Gillin, J.; Golshan, S.; Demodena, A.; Smith, T.L.; Danowski, S.; Irwin, M.; Schuckit, M. Increased REM sleep density at admission predicts relapse by three months in primary alcoholics with a lifetime diagnosis of secondary depression. Biol. Psychiatry 1998, 43, 601–607. [Google Scholar] [CrossRef]
- García-García, F.; Priego-Fernández, S.; López-Muciño, L.A.; Acosta-Hernández, M.E.; Peña-Escudero, C. Increased alcohol consumption in sleep-restricted rats is mediated by delta FosB induction. Alcohol 2021, 93, 63–70. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Hasler, B.P.; Chakravorty, S. Alcohol and sleep-related problems. Curr. Opin. Psychol. 2019, 30, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Roehrs, T.; Papineau, K.; Rosenthal, L.; Roth, T. Ethanol as a hypnotic in insomniacs: Self administration and effects on sleep and mood. Neuropsychopharmacology 1999, 20, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, N.P.; Andersen, M.L.; Abilio, V.; Gomes, D.C.; Carvalho, R.C.; Silva, R.; Ribeiro, R.D.A.; Tufik, S.; Frussa-Filho, R. Sleep deprivation abolishes the locomotor stimulant effect of ethanol in mice. Brain Res. Bull. 2006, 69, 332–337. [Google Scholar] [CrossRef] [PubMed]
- McKnight-Eily, L.R.; Eaton, D.K.; Lowry, R.; Croft, J.B.; Presley-Cantrell, L.; Perry, G.S. Relationships between hours of sleep and health-risk behaviors in US adolescent students. Prev. Med. 2011, 53, 271–273. [Google Scholar] [CrossRef]
- Sivertsen, B.; Skogen, J.C.; Jakobsen, R.; Hysing, M. Sleep and use of alcohol and drug in adolescence. A large population-based study of Norwegian adolescents aged 16 to 19 years. Drug Alcohol Depend. 2015, 149, 180–186. [Google Scholar] [CrossRef]
- Tynjälä, J.; Kannas, L.; Levälahti, E. Perceived tiredness among adolescents and its association with sleep habits and use of psychoactive substances. J. Sleep Res. 1997, 6, 189–198. [Google Scholar] [CrossRef]
- Du, C.; Zan, M.C.H.; Cho, M.J.; Fenton, J.I.; Hsiao, P.Y.; Hsiao, R.; Keaver, L.; Lai, C.-C.; Lee, H.; Ludy, M.-J.; et al. The Effects of Sleep Quality and Resilience on Perceived Stress, Dietary Behaviors, and Alcohol Misuse: A Mediation-Moderation Analysis of Higher Education Students from Asia, Europe, and North America during the COVID-19 Pandemic. Nutrients 2021, 13, 442. [Google Scholar] [CrossRef]
- Kenney, S.R.; Lac, A.; Labrie, J.W.; Hummer, J.F.; Pham, A. Mental health, sleep quality, drinking motives, and alcohol-related consequences: A path-analytic model. J. Stud. Alcohol Drugs 2013, 74, 841–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasler, B.P.; Bootzin, R.R.; Cousins, J.C.; Fridel, K.; Wenk, G.L. Circadian phase in sleep-disturbed adolescents with a history of substance abuse: A pilot study. Behav. Sleep Med. 2008, 6, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Hasler, B.P.; Kirisci, L.; Clark, D.B. Restless Sleep and Variable Sleep Timing During Late Childhood Accelerate the Onset of Alcohol and Other Drug Involvement. J. Stud. Alcohol Drugs 2016, 77, 649–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasler, B.P.; Martin, C.S.; Wood, D.S.; Rosario, B.; Clark, D.B. A longitudinal study of insomnia and other sleep complaints in adolescents with and without alcohol use disorders. Alcohol. Clin. Exp. Res. 2014, 38, 2225–2233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mike, T.B.; Shaw, D.S.; Forbes, E.E.; Sitnick, S.L.; Hasler, B.P. The hazards of bad sleep-Sleep duration and quality as predictors of adolescent alcohol and cannabis use. Drug Alcohol Depend. 2016, 168, 335–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.M.; Brower, K.J.; Fitzgerald, H.E.; Zucker, R.A. Sleep problems in early childhood and early onset of alcohol and other drug use in adolescence. Alcohol. Clin. Exp. Res. 2004, 28, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.O.; Breslau, N. Sleep problems and substance use in adolescence. Drug Alcohol Depend. 2001, 64, 1–7. [Google Scholar] [CrossRef]
- Hill, V.M.; O’Connor, R.M.; Sissoko, G.B.; Irobunda, I.S.; Leong, S.; Canman, J.C.; Stavropoulos, N.; Shirasu-Hiza, M. A bidirectional relationship between sleep and oxidative stress in Drosophila. PLoS Biol. 2018, 16, e2005206. [Google Scholar] [CrossRef]
- Broughton, S.J.; Piper, M.D.W.; Ikeya, T.; Bass, T.M.; Jacobson, J.; Driege, Y.; Martinez, P.; Hafen, E.; Withers, D.J.; Leevers, S.J.; et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. USA 2005, 102, 3105–3110. [Google Scholar] [CrossRef] [Green Version]
- Corl, A.B.; Rodan, A.R.; Heberlein, U. Insulin signaling in the nervous system regulates ethanol intoxication in Drosophila melanogaster. Nat. Neurosci. 2005, 8, 18–19. [Google Scholar] [CrossRef]
- McClure, K.D.; French, R.L.; Heberlein, U. A Drosophila model for fetal alcohol syndrome disorders: Role for the insulin pathway. Dis. Model Mech. 2011, 4, 335–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaccaro, A.; Dor, Y.K.; Nambara, K.; Pollina, E.A.; Lin, C.; Greenberg, M.E.; Rogulja, D. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020, 181, 1307–1328.e1315. [Google Scholar] [CrossRef] [PubMed]
- Potdar, S.; Daniel, D.K.; Thomas, F.A.; Lall, S.; Sheeba, V. Sleep deprivation negatively impacts reproductive output in. J. Exp. Biol. 2018, 221 Pt 6, jeb.174771. [Google Scholar]
- Dong, L.; Martinez, A.J.; Buysse, D.J.; Harvey, A.G. A composite measure of sleep health predicts concurrent mental and physical health outcomes in adolescents prone to eveningness. Sleep Health 2019, 5, 166–174. [Google Scholar] [CrossRef]
- Killick, R.; Hoyos, C.M.; Melehan, K.L.; Dungan, G.C.; Poh, J.; Liu, P.Y. Metabolic and hormonal effects of ‘catch-up’ sleep in men with chronic, repetitive, lifestyle-driven sleep restriction. Clin. Endocrinol. 2015, 83, 498–507. [Google Scholar] [CrossRef] [Green Version]
- Leproult, R.; Deliens, G.; Gilson, M.; Peigneux, P. Beneficial impact of sleep extension on fasting insulin sensitivity in adults with habitual sleep restriction. Sleep 2015, 38, 707–715. [Google Scholar] [CrossRef]
- Sonni, A.; Spencer, R.M.C. Sleep protects memories from interference in older adults. Neurobiol. Aging 2015, 36, 2272–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fillmore, M.T.; Weafer, J. Acute tolerance to alcohol in at-risk binge drinkers. Psychol. Addict. Behav. 2012, 26, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Kong, E.C.; Allouche, L.; Chapot, P.A.; Vranizan, K.; Moore, M.S.; Heberlein, U.; Wolf, F.W. Ethanol-regulated genes that contribute to ethanol sensitivity and rapid tolerance in Drosophila. Alcohol. Clin. Exp. Res. 2010, 34, 302–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasek, A.W.; Giorgetti, F.; Berger, K.H.; Tayor, S.; Heberlein, U. Lmo genes regulate behavioral responses to ethanol in Drosophila melanogaster and the mouse. Alcohol. Clin. Exp. Res. 2011, 35, 1600–1606. [Google Scholar] [CrossRef] [Green Version]
- Lasek, A.W.; Lim, J.; Kliethermes, C.L.; Berger, K.H.; Joslyn, G.; Brush, G.; Xue, L.; Robertson, M.; Moore, M.S.; Vranizan, K.; et al. An evolutionary conserved role for anaplastic lymphoma kinase in behavioral responses to ethanol. PLoS ONE 2011, 6, e22636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrzykowski, A.Z.; Friesen, R.M.; Martin, G.E.; Puig, S.I.; Nowak, C.L.; Wynne, P.M.; Siegelmann, H.T.; Treistman, S.N. Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 2008, 59, 274–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savarese, A.; Zou, M.E.; Kharazia, V.; Maiya, R.; Lasek, A.W. Increased behavioral responses to ethanol in Lmo3 knockout mice. Genes Brain Behav. 2014, 13, 777–783. [Google Scholar] [CrossRef] [PubMed]
- LaFerriere, H.; Guarnieri, D.J.; Sitaraman, D.; Diegelmann, S.; Heberlein, U.; Zars, T. Genetic dissociation of ethanol sensitivity and memory formation in Drosophila melanogaster. Genetics 2008, 178, 1895–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.N.; Denome, S.; Davis, R.L. Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce+ gene, the structural gene for cAMP phosphodiesterase. Proc. Natl. Acad. Sci. USA 1986, 83, 9313–9317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.H.; Chen, C.N.; Malone, T.; Richter, L.; Beckendorf, S.K.; Davis, R.L. Characterization of the memory gene dunce of Drosophila melanogaster. J. Mol. Biol. 1991, 222, 553–565. [Google Scholar] [CrossRef]
- Dudai, Y.; Jan, Y.N.; Byers, D.; Quinn, W.G.; Benzer, S. Dunce, a mutant of Drosophila deficient in learning. Proc. Natl. Acad. Sci. USA 1976, 73, 1684–1688. [Google Scholar] [CrossRef] [Green Version]
- Nighorn, A.; Healy, M.J.; Davis, R.L. The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil. Neuron 1991, 6, 455–467. [Google Scholar] [CrossRef]
- Kirszenblat, L.; Ertekin, D.; Goodsell, J.; Zhou, Y.; Shaw, P.J.; van Swinderen, B. Sleep regulates visual selective attention in. J. Exp. Biol. 2018, 221 Pt 24, jeb191429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruppert, M.; Franz, M.; Saratsis, A.; Escarcena, L.V.; Hendrich, O.; Gooi, L.M.; Scholz, H.; Schwenkert, I.; Klebes, A. Hangover Links Nuclear RNA Signaling to cAMP Regulation via the Phosphodiesterase 4d Ortholog dunce. Cell Rep. 2017, 18, 533–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholz, H.; Franz, M.; Heberlein, U. The hangover gene defines a stress pathway required for ethanol tolerance development. Nature 2005, 436, 845–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graves, L.A.; Heller, E.A.; Pack, A.I.; Abel, T. Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn. Mem. 2003, 10, 168–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, T.M.; Wimmer, M.; Choi, J.; Havekes, R.; Aton, S.; Abel, T. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory. Neurobiol. Learn. Mem. 2014, 109, 122–130. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Nobrega, A.K.; Noakes, E.J.; Storch, N.A.; Mellers, A.P.; Lyons, L.C. Sleep Modulates Alcohol Toxicity in Drosophila. Int. J. Mol. Sci. 2022, 23, 12091. https://doi.org/10.3390/ijms232012091
De Nobrega AK, Noakes EJ, Storch NA, Mellers AP, Lyons LC. Sleep Modulates Alcohol Toxicity in Drosophila. International Journal of Molecular Sciences. 2022; 23(20):12091. https://doi.org/10.3390/ijms232012091
Chicago/Turabian StyleDe Nobrega, Aliza K., Eric J. Noakes, Natalie A. Storch, Alana P. Mellers, and Lisa C. Lyons. 2022. "Sleep Modulates Alcohol Toxicity in Drosophila" International Journal of Molecular Sciences 23, no. 20: 12091. https://doi.org/10.3390/ijms232012091
APA StyleDe Nobrega, A. K., Noakes, E. J., Storch, N. A., Mellers, A. P., & Lyons, L. C. (2022). Sleep Modulates Alcohol Toxicity in Drosophila. International Journal of Molecular Sciences, 23(20), 12091. https://doi.org/10.3390/ijms232012091