Lipase Catalyzed Transesterification of Model Long-Chain Molecules in Double-Shell Cellulose-Coated Oil-in-Water Emulsion Particles as Microbioreactors
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Emulsion Fabrication and Characterization
4.3. Lipase Activity Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canet, A.; Bonet-Ragel, K.; Benaiges, M.D.; Valero, F. Lipase-catalysed transesterification: Viewpoint of the mechanism and influence of free fatty acids. Biomass Bioenergy 2016, 85, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Xu, H.; Li, F.; Zou, Y.; Ran, Y.; Ma, X.; Cao, Y.; Xu, Q.; Qiao, D.; Cao, Y. One-step direct transesterification of wet yeast for biodiesel production catalyzed by magnetic nanoparticle-immobilized lipase. Renew. Energy 2021, 171, 11–21. [Google Scholar] [CrossRef]
- Park, K.M.; Jo, S.K.; Yu, H.; Park, J.Y.; Choi, S.J.; Lee, C.J.; Chang, P.S. Erythorbyl laurate as a potential food additive with multi-functionalities: Antibacterial activity and mode of action. Food Control 2018, 86, 138–145. [Google Scholar] [CrossRef]
- Lue, B.M.; Karboune, S.; Yeboah, F.K.; Kermasha, S. Lipase-catalyzed esterification of cinnamic acid and oleyl alcohol in organic solvent media. J. Chem. Technol. Biotechnol. 2005, 80, 462–468. [Google Scholar] [CrossRef]
- Gunawan, E.R.; Basri, M.; Rahman, M.B.A.; Salleh, A.B.; Rahman, R.N.Z.A. Lipase-Catalyzed Synthesis of Palm-Based Wax Esters. J. Oleo Sci. 2004, 53, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, A.; Lohan, P.; Jha, P.N.; Mehrotra, R. Biodiesel production through lipase catalyzed transesterification: An overview. J. Mol. Catal. B Enzym. 2010, 62, 9–14. [Google Scholar] [CrossRef]
- Dossat, V.; Combes, D.; Marty, A. Lipase-catalysed transesterification of high oleic sunflower oil. Enzyme Microb. Technol. 2002, 30, 90–94. [Google Scholar] [CrossRef]
- Rein, D.M.; Cohen, Y.; Alfassi, G. Cellulose-Encapsulated Oil Emulsions and Methods for Cellulase Regeneration. U.S. Patent 17/282, 843, 9 April 2020. [Google Scholar]
- Vipin, V.C.; Sebastian, J.; Muraleedharan, C.; Santhiagu, A. Enzymatic Transesterification of Rubber Seed Oil Using Rhizopus Oryzae Lipase. Procedia Technol. 2016, 25, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Piradashvili, K.; Alexandrino, E.M.; Wurm, F.R.; Landfester, K. Reactions and polymerizations at the liquid-liquid interface. Chem. Rev. 2016, 116, 2141–2169. [Google Scholar] [CrossRef]
- Byun, H.G.; Eom, T.K.; Jung, W.K.; Kim, S.K. Lipase-catalyzed hydrolysis of fish oil in an optimum emulsion system. Biotechnol. Bioprocess Eng. 2007, 12, 484–490. [Google Scholar] [CrossRef]
- Piacentini, E.; Mazzei, R.; Giorno, L. Comparison between lipase performance distributed at the o/w interface by membrane emulsification and by mechanical stirring. Membranes 2021, 11, 137. [Google Scholar] [CrossRef]
- Li, Y.; McClements, D.J. Inhibition of lipase-catalyzed hydrolysis of emulsified triglyceride oils by low-molecular weight surfactants under simulated gastrointestinal conditions. Eur. J. Pharm. Biopharm. 2011, 79, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem.—Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Kamel, S.; Ali, N.; Jahangir, K.; Shah, S.M.; El-Gendy, A.A. Pharmaceutical significance of cellulose: A review. Express Polym. Lett. 2008, 2, 758–778. [Google Scholar] [CrossRef]
- Ullah, H.; Santos, H.A.; Khan, T. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 2016, 23, 2291–2314. [Google Scholar] [CrossRef]
- Yamane, C.; Aoyagi, T.; Ago, M.; Sato, K.; Okajima, K.; Takahashi, T. Two different surface properties of regenerated cellulose due to structural anisotropy. Polym. J. 2006, 38, 819–826. [Google Scholar] [CrossRef] [Green Version]
- Medronho, B.; Duarte, H.; Alves, L.; Antunes, F.; Romano, A.; Lindman, B. Probing cellulose amphiphilicity. Nord. Pulp Pap. Res. J. 2015, 30, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Nsor-Atindana, J.; Chen, M.; Goff, H.D.; Zhong, F.; Sharif, H.R.; Li, Y. Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydr. Polym. 2017, 172, 159–174. [Google Scholar] [CrossRef]
- Napso, S.; Rein, D.M.; Fu, Z.; Radulescu, A.; Cohen, Y. Structural Analysis of Cellulose-Coated Oil-in-Water Emulsions Fabricated from Molecular Solution. Langmuir 2018, 34, 8857–8865. [Google Scholar] [CrossRef]
- Rein, D.M.; Khalfin, R.; Cohen, Y. Cellulose as a novel amphiphilic coating for oil-in-water and water-in-oil dispersions. J. Colloid Interface Sci. 2012, 386, 456–463. [Google Scholar] [CrossRef]
- Costa, C.; Rosa, P.; Filipe, A.; Medronho, B.; Romano, A.; Liberman, L.; Talmon, Y.; Norgren, M. Cellulose-stabilized oil-in-water emulsions: Structural features, microrheology, and stability. Carbohydr. Polym. 2021, 252, 117092. [Google Scholar] [CrossRef] [PubMed]
- Hamal, E.K.; Alfassi, G.; Khalfin, R.; Rein, D.M.; Cohen, Y. Structural Insights into Cellulose-Coated Oil in Water Emulsions. Langmuir 2022, 38, 11171–11179. [Google Scholar] [CrossRef] [PubMed]
- Alfassi, G.; Rein, D.M.; Cohen, Y. Cellulose emulsions and their hydrolysis. J. Chem. Technol. Biotechnol. 2019, 94, 178–184. [Google Scholar] [CrossRef]
- Hoffman, S.M.; Alvarez, M.; Alfassi, G.; Rein, D.M.; Garcia-Echauri, S.; Cohen, Y.; Avalos, J.L. Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts. Biotechnol. Biofuels 2021, 14, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Rein, D.M.; Cohen, Y.; Vaikhanski, L.; Alfassi, G. Method for Combined Preparation of Biodiesel. U.S. Patent 10,815,507; filed 7 September 2016, and issued 27 October 2020,
- Bisht, D.; Yadav, S.K.; Darmwal, N.S. An oxidant and organic solvent tolerant alkaline lipase by P. aeruginosa mutant: Downstream processing and biochemical characterization. Braz. J. Microbiol. 2013, 44, 1305–1314. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Dhar, K.; Kanwar, S.S.; Arora, P.K. Lipase catalysis in organic solvents: Advantages and applications. Biol. Proced. Online 2016, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ogino, H.; Yasui, K.; Shiotani, T.; Ishihara, T.; Ishikawa, H. Organic solvent-tolerant bacterium which secretes an organic solvent- stable proteolytic enzyme. Appl. Environ. Microbiol. 1995, 61, 4258–4262. [Google Scholar] [CrossRef] [Green Version]
- Hamal, E.K.; Alfassi, G.; Rein, D.M.; Cohen, Y. Towards one-pot consolidated bioprocessing of cellulose to biodiesel: Lipase-catalyzed transesterification at cellulose-coated oil-in-water emulsions as micro-reactors. J. Chem. Technol. Biotechnol. 2022, 97, 2607–2612. [Google Scholar] [CrossRef]
- Watanabe, T.; Shimizu, M.; Sugiura, M.; Sato, M.; Kohori, J.; Yamada, N.; Nakanishi, K. Optimization of Reaction Conditions for the Production of DAG Using Immobilized 1,3-Regiospecific Lipase Lipozyme RM IM. JAOCS J. Am. Oil Chem. Soc. 2003, 80, 1201–1207. [Google Scholar] [CrossRef]
- Hirata, H.; Higuchi, K.; Yamashina, T. Lipase-catalyzed transesterification in organic solvent: Effects of water and solvent, thermal stability and some applications. J. Biotechnol. 1990, 14, 157–167. [Google Scholar] [CrossRef]
- Choi, N.; No, D.S.; Kim, H.; Kim, B.H.; Kwak, J.; Lee, J.S.; Kim, I.H. In situ lipase-catalyzed transesterification in rice bran for synthesis of fatty acid methyl ester. Ind. Crops Prod. 2018, 120, 140–146. [Google Scholar] [CrossRef]
- Lv, Y.; Sun, S.; Liu, J. Biodiesel Production Catalyzed by a Methanol-Tolerant Lipase A from Candida antarctica in the Presence of Excess Water. ACS Omega 2019, 4, 20064–20071. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Du, X.; Meng, X.; Qiu, D.; Qiao, Y. A three-tiered colloidosomal microreactor for continuous flow catalysis. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Feng, N.; Li, Y.; Fei, X.; Tian, J.; Xu, L.; Wang, Y. Hydrogen-bonded lipase-hydrogel microspheres for esterification application. J. Colloid Interface Sci. 2022, 606, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Weng, M.; Xia, C.; Xu, S.; Liu, Q.; Liu, Y.; Liu, H.; Huo, C.; Zhang, R.; Zhang, C.; Miao, Z. Lipase/chitosan nanoparticle-stabilized pickering emulsion for enzyme catalysis. Colloid Polym. Sci. 2022, 300, 41–50. [Google Scholar] [CrossRef]
- Intasian, P.; Prakinee, K.; Phintha, A.; Trisrivirat, D.; Weeranoppanant, N.; Wongnate, T.; Chaiyen, P. Enzymes, in Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem. Rev. 2021, 121, 10367–10451. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, S.; Bornscheuer, U.T. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chem. Commun. 2021, 57, 10661–10674. [Google Scholar] [CrossRef]
- Park, J.Y.; Myeong, J.; Choi, Y.; Yu, H.; Kwon, C.W.; Park, K.M.; Chang, P.S. Erythorbyl fatty acid ester as a multi-functional food emulsifier: Enzymatic synthesis, chemical identification, and functional characterization of erythorbyl myristate. Food Chem. 2021, 353, 129459. [Google Scholar] [CrossRef]
- Gihaz, S.; Weiser, D.; Dror, A.; Sátorhelyi, P.; Jerabek-Willemsen, M.; Poppe, L.; Fishman, A. Creating an Efficient Methanol-Stable Biocatalyst by Protein and Immobilization Engineering Steps towards Efficient Biosynthesis of Biodiesel. ChemSusChem 2016, 9, 3161–3170. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meir, I.; Alfassi, G.; Arazi, Y.; Rein, D.M.; Fishman, A.; Cohen, Y. Lipase Catalyzed Transesterification of Model Long-Chain Molecules in Double-Shell Cellulose-Coated Oil-in-Water Emulsion Particles as Microbioreactors. Int. J. Mol. Sci. 2022, 23, 12122. https://doi.org/10.3390/ijms232012122
Meir I, Alfassi G, Arazi Y, Rein DM, Fishman A, Cohen Y. Lipase Catalyzed Transesterification of Model Long-Chain Molecules in Double-Shell Cellulose-Coated Oil-in-Water Emulsion Particles as Microbioreactors. International Journal of Molecular Sciences. 2022; 23(20):12122. https://doi.org/10.3390/ijms232012122
Chicago/Turabian StyleMeir, Itzhak, Gilad Alfassi, Yael Arazi, Dmitry M. Rein, Ayelet Fishman, and Yachin Cohen. 2022. "Lipase Catalyzed Transesterification of Model Long-Chain Molecules in Double-Shell Cellulose-Coated Oil-in-Water Emulsion Particles as Microbioreactors" International Journal of Molecular Sciences 23, no. 20: 12122. https://doi.org/10.3390/ijms232012122
APA StyleMeir, I., Alfassi, G., Arazi, Y., Rein, D. M., Fishman, A., & Cohen, Y. (2022). Lipase Catalyzed Transesterification of Model Long-Chain Molecules in Double-Shell Cellulose-Coated Oil-in-Water Emulsion Particles as Microbioreactors. International Journal of Molecular Sciences, 23(20), 12122. https://doi.org/10.3390/ijms232012122