Development of a Sensitive Screening Method for Simultaneous Determination of Nine Genotoxic Nitrosamines in Active Pharmaceutical Ingredients by GC-MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Risk Assessment
2.2. Method Development
2.3. Validation Results
2.4. Application of the Method for Nitrosamine Determination in Selected APIs
3. Materials and Methods
3.1. Materials
3.2. Equipment and Method
3.3. Standard Solution Preparation
3.4. Sample Solution Preparation
3.5. Blank Preparation
3.6. Validation of the GC-MS Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- US Food and Drug Administration. FDA Announces Voluntary Recall of Several Medicines Containing Valsartan Following Detection of an Impurity. Available online: https://www.fda.gov/news-events/press-announcements/fda-announces-voluntary-recall-several-medicines-containing-valsartan-following-detection-impurity (accessed on 30 August 2022).
- US Food and Drug Administration. Recalls, Market Withdrawals, & Safety Alerts. Available online: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts (accessed on 30 August 2022).
- Tao, X.; Tian, Y.; Liu, W.-H.; Yao, S.; Yin, L. Trace Level Quantification of 4-Methyl-1-Nitrosopiperazin in Rifampicin Capsules by LC-MS/MS. Front Chem 2022, 10, 834124. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency; Committee for Medicinal Products for Human Use. ICH Guideline M7 on Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk-Addendum; European Medicines Agency: Amsterdam, The Netherlands, 2021; Volume 31. [Google Scholar]
- International Agency for Research on Cancer. IARC Publications Website-Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs; International Agency for Research on Cancer: Lyon, France, 1987; Volume 1–42. [Google Scholar]
- Wu, Y.; Levons, J.; Narang, A.S.; Raghavan, K.; Rao, V.M. Reactive Impurities in Excipients: Profiling, Identification and Mitigation of Drug–Excipient Incompatibility. AAPS PharmSciTech 2011, 12, 1248–1263. [Google Scholar] [CrossRef] [Green Version]
- Yokoo, H.; Yamamoto, E.; Masada, S.; Uchiyama, N.; Tsuji, G.; Hakamatsuka, T.; Demizu, Y.; Izutsu, K.I.; Goda, Y. N-Nitrosodimethylamine (Ndma) Formation from Ranitidine Impurities: Possible Root Causes of the Presence of Ndma in Ranitidine Hydrochloride. Chem. Pharm. Bull. 2021, 69, 872–876. [Google Scholar] [CrossRef]
- Sedlo, I.; Kolonić, T.; Tomić, S. Presence of Nitrosamine Impurities in Medicinal Products. Arh. Hig. Rada Toksikol. 2021, 72, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bharate, S.S. Critical Analysis of Drug Product Recalls Due to Nitrosamine Impurities. J. Med. Chem. 2021, 64, 2923–2936. [Google Scholar] [CrossRef] [PubMed]
- Parr, M.K.; Joseph, J.F. NDMA Impurity in Valsartan and Other Pharmaceutical Products: Analytical Methods for the Determination of N-Nitrosamines. J. Pharm. Biomed. Anal. 2019, 164, 536–549. [Google Scholar] [CrossRef]
- Liu, J.; Xie, B.; Mai, B.; Cai, Q.; He, R.; Guo, D.; Zhang, Z.; Fan, J.; Zhang, W. Development of a Sensitive and Stable GC-MS/MS Method for Simultaneous Determination of Four N-Nitrosamine Genotoxic Impurities in Sartan Substances. J. Anal. Sci. Technol. 2021, 12, 3. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Combined Headspace N-Nitrosodimethylamine (NDMA), N-Nitrosodiethylamine (NDEA), N-Nitrosoethylisopropylamine (NEIPA), and N-Nitrosodiisopropylamine (NDIPA) Impurity Assay by GC-MS/MS; US Food and Drug Administration: Silver Spring, MD, USA, 2019; pp. 1–7.
- Tsutsumi, T.; Akiyama, H.; Demizu, Y.; Uchiyama, N.; Masada, S.; Tsuji, G.; Arai, R.; Abe, Y.; Hakamatsuka, T.; Izutsu, K.; et al. Analysis of an Impurity, N-Nitrosodimethylamine, in Valsartan Drug Substances and Associated Products Using GC-MS. Biol. Pharm. Bull. 2019, 42, 547–551. [Google Scholar] [CrossRef] [Green Version]
- New OMCL Method for Simultaneous Determination of NDMA and NDEA in Sartan. Available online: https://www.edqm.eu/documents/52006/71923/Ad-hoc-projects-OMCL-Network-ranitidine.pdf/f775fbf3-705e-ce82-d1e1-8eb3c06002d4?t=1628667875462 (accessed on 30 August 2022).
- Wichitnithad, W.; Sudtanon, O.; Srisunak, P.; Cheewatanakornkool, K.; Nantaphol, S.; Rojsitthisak, P. Development of a Sensitive Headspace Gas Chromatography–Mass Spectrometry Method for the Simultaneous Determination of Nitrosamines in Losartan Active Pharmaceutical Ingredients. ACS Omega 2021, 6, 11048–11058. [Google Scholar] [CrossRef]
- Lee, D.H.; Hwang, S.H.; Park, S.; Lee, J.; Oh, H.B.; Han, S.B.; Liu, K.-H.; Lee, Y.-M.; Pyo, H.S.; Hong, J. A Solvent-Free Headspace GC/MS Method for Sensitive Screening of N-Nitrosodimethylamine in Drug Products. Anal. Methods 2021, 13, 3402–3409. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-H.; Chang, C.-C.; Wang, L.-J.; Chen, W.-C.; Fan, S.-Y.; Zang, C.-Z.; Hsu, Y.-H.; Lin, M.-C.; Tseng, S.-H.; Wang, D.-Y. A Multi-Analyte LC-MS/MS Method for Screening and Quantification of Nitrosamines in Sartans. J. Food Drug Anal. 2020, 28, 292–301. [Google Scholar] [CrossRef]
- Yang, J.; Marzan, T.A.; Ye, W.; Sommers, C.D.; Rodriguez, J.D.; Keire, D.A. A Cautionary Tale: Quantitative LC-HRMS Analytical Procedures for the Analysis of N-Nitrosodimethylamine in Metformin. AAPS J. 2020, 22, 89. [Google Scholar] [CrossRef]
- Schmaler-ripcke, J.; Hannes, C. Test Method for the Determination of NDMA by LC-MS/MS in Ranitidine Drug Substance and Film Coated Tablets; EDQM: Strasbourg, France, 2019; pp. 1–7. [Google Scholar]
- European Directorate for the Quality of Medicines and HealthCare. LC-MS/MS Method for the Determination of NDEA and NMDA in Valsartan, Irbesartan and Losartan APIs and Finished Dosage Forms. Available online: https://www.edqm.eu/sites/default/files/medias/fichiers/Sartans/de-by-lc-ms_ls.pdf (accessed on 30 August 2022).
- Schmidtsdorff, S.; Schmidt, A.H. Simultaneous Detection of Nitrosamines and Other Sartan-Related Impurities in Active Pharmaceutical Ingredients by Supercritical Fluid Chromatography. J. Pharm. Biomed. Anal. 2019, 174, 151–160. [Google Scholar] [CrossRef] [PubMed]
- French National Agency for Medicines and Health Products Safety. Determination of NDMA in Valsartan Active Substances and Finished Products by HPLC/UV. Available online: https://www.edqm.eu/sites/default/files/omcl-method-determination-ndma-valsartan-ansm-september2018.pdf (accessed on 30 August 2022).
- Maziarz, M.; Rainville, P. Reliable HPLC/UV Quantification of Nitrosamine Impurities in Valsartan and Ranitidine Drug Substances [TECHNOLOGY BRIEF]. Available online: https://www.waters.com/webassets/cms/library/docs/720006775en.pdf (accessed on 30 August 2022).
- Giménez-Campillo, C.; Pastor-Belda, M.; Campillo, N.; Hernández-Córdoba, M.; Viñas, P. Development of a New Methodology for the Determination of N-Nitrosamines Impurities in Ranitidine Pharmaceuticals Using Microextraction and Gas Chromatography-Mass Spectrometry. Talanta 2021, 223, 121659. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, Y.M.; Alghamdi, T.S.; Aldawsari, F.S. HS-SPME-GC-MS as an Alternative Method for NDMA Analysis in Ranitidine Products. J. Pharm. Biomed. Anal. 2020, 191, 113582. [Google Scholar] [CrossRef]
- Lim, H.H.; Oh, Y.S.; Shin, H.S. Determination of N-Nitrosodimethylamine and N-Nitrosomethylethylamine in Drug Substances and Products of Sartans, Metformin and Ranitidine by Precipitation and Solid Phase Extraction and Gas Chromatography–Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2020, 189, 113460. [Google Scholar] [CrossRef]
- Kao, Y.-T.; Wang, S.-F.; Wu, M.-H.; Her, S.-H.; Yang, Y.-H.; Lee, C.-H.; Lee, H.-F.; Lee, A.-R.; Chang, L.-C.; Pao, L.-H. A Substructure-Based Screening Approach to Uncover N-Nitrosamines in Drug Substances. J. Food Drug Anal. 2022, 30, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Sieira, B.J.; Carpinteiro, I.; Rodil, R.; Quintana, J.B.; Cela, R. Determination of N-Nitrosamines by Gas Chromatography Coupled to Quadrupole–Time-of-Flight Mass Spectrometry in Water Samples. Separations 2020, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Jurado-Sánchez, B.; Ballesteros, E.; Gallego, M. Comparison of the Sensitivities of Seven N-Nitrosamines in Pre-Screened Waters Using an Automated Preconcentration System and Gas Chromatography with Different Detectors. J. Chromatogr. A 2007, 1154, 66–73. [Google Scholar] [CrossRef] [PubMed]
- ChaoYe, S.; HongQuan, C.; SaiFeng, P.; Yun, Z. Determination of Nine Nitrosamines in Water by Solid Phase Extraction and Gas Chromatography-Mass Spectrometry. J. Environ. Occup. Med. 2019, 36, 1060–1065. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Appendix F: Guidelines for Standard Method Performance Requirements; Association of Official Analytical Chemists: Rockville, MD, USA, 2016.
- European Pharmacopoeia. 2.5.42 N-Nitrosamines in Active Substances; European Pharmacopoeia: Strasbourg, France, 2020. [Google Scholar]
Analyte | Range (ng/mL) | *Y = ax + b (R2 ≥ 0.990) ** ta ** tb | LOD (ng/mL) | LOQ (ng/mL) | ||
---|---|---|---|---|---|---|
S/N ≥ 3 | (3.3× σ/S) | S/N ≥ 10 | (10× σ/S) | |||
NDMA | 0.45–21.6 | Y = 0.0127x + 0.0005 (R2 = 0.9996) 158.53 0.5695 | 0.15 | 0.47 | 0.45 | 1.43 |
NMEA | 1.5–21.6 | Y = 0.0104x + 0.0011 (R2 = 0.9997) 159.85 1.4050 | 0.50 | 0.40 | 1.50 | 1.20 |
NDEA | 1.0–21.6 | Y = 0.0088x + 0.0009 (R2 = 0.9997) 153.81 1.3608 | 0.30 | 0.45 | 1.00 | 1.37 |
NDPA | 3.0–21.6 | Y = 0.0029x + 0.0007 (R2 = 0.9988) 70.521 1.4061 | 1.00 | 0.78 | 3.00 | 2.38 |
NMOR | 3.0–21.6 | Y = 0.0039x−0.0002 (R2 = 0.9991) 83.655 0.7650 | 1.00 | 0.67 | 3.00 | 2.03 |
NPYR | 1.5–21.6 | Y = 0.0085x + 0.0007 (R2 = 0.9994) 105.24 0.7193 | 0.50 | 0.60 | 1.50 | 1.82 |
NPIP | 1.5–21.6 | Y = 0.0087x + 0.0005 (R2 = 0.9992) 91.615 0.4482 | 0.50 | 0.69 | 1.50 | 2.10 |
NDBA | 1.5–21.6 | Y = 0.0032x + 0.0002 (R2 = 0.9986) 71.346 0.4260 | 0.50 | 0.88 | 1.5 | 2.66 |
N-methyl-npz | 1.5–21.6 | Y = 0.0065x + 0.0013 (R2 = 0.9996) 137.02 2.2741 | 0.50 | 0.46 | 1.50 | 1.40 |
Analyte | Accuracy Mean Recovery 60–115% RSD ≤ 21% (n = 9) | ||
---|---|---|---|
Sunitinib Malate | Cilostazol | Olmesartan Medoxomil | |
NDMA | 94.45 | 98.26 | 104.66 |
1.98 | 2.11 | 5.68 | |
NMEA | 94.09 | 99.14 | 95.85 |
2.10 | 1.78 | 4.24 | |
NDEA | 97.97 | 97.15 | 97.34 |
3.57 | 2.02 | 4.44 | |
NDPA | 97.07 | 95.91 | 92.20 |
5.05 | 2.15 | 6.50 | |
NMOR | 111.22 | 97.10 | 103.60 |
2.89 | 3.66 | 5.16 | |
NPYR | 95.87 | 100.62 | 108.72 |
3.82 | 3.00 | 5.29 | |
NPIP | 99.37 | 96.66 | ND |
5.13 | 6.02 | ||
NDBA | 99.30 | 104.87 | 102.17 |
6.10 | 2.38 | 8.98 | |
N-methyl-npz | 102.94 | 99.90 | ND |
7.53 | 5.17 |
Matrix | Sunitinib | Cilostazol | Olmesartan Medoxomil | System Precision | |||||
---|---|---|---|---|---|---|---|---|---|
Analyte | Repeatability RSD (%) | Intermediate Precision RSD (%) | Repeatability RSD (%) | Intermediate Precision RSD (%) | Repeatability RSD (%) | Intermediate Precision RSD (%) | Area Nitrosamine/Area NDMA-d6 RSD (%) | Retention Time RSD (%) | |
NDMA | 2.12 | 2.05 | 0.76 | 1.13 | 3.07 | 2.51 | 1.31 | 0.03 | |
NMEA | 2.25 | 1.99 | 1.27 | 1.42 | 2.47 | 2.21 | 1.08 | 0.02 | |
NDEA | 2.48 | 3.37 | 1.10 | 1.37 | 3.00 | 4.04 | 1.31 | 0.02 | |
NDPA | 3.95 | 6.26 | 2.97 | 2.25 | 5.75 | 4.24 | 1.03 | 0.01 | |
NMOR | 3.18 | 5.55 | 2.73 | 4.49 | 3.07 | 3.97 | 3.52 | 0.01 | |
NPYR | 2.51 | 5.08 | 1.77 | 3.91 | 2.55 | 7.50 | 2.42 | 0.01 | |
NPIP | 3.67 | 4.06 | 3.91 | 4.60 | ND | ND | 2.01 | 0.01 | |
NDBA | 4.32 | 6.81 | 1.68 | 1.46 | 4.51 | 4.71 | 3.07 | 0.01 | |
N-methyl-npz | 2.22 | 6.45 | 5.60 | 7.65 | ND | ND | 3.65 | 0.01 |
GC Parameters | |
---|---|
Carrier gas | Helium |
Column flow rate | 2.1 mL/min |
Oven initial temperature | 75 °C (hold time: 2 min) |
First temperature ramp | 9.0 °C/min |
Second temperature | 200 °C/min (hold time: 2 min) |
Second temperature ramp | 15.0 °C/min |
Final temperature | 240 °C (hold time: 3 min) |
Pressure | 45.5 kPa |
Injection mode | Splitless, high-pressure injection 130 kPa |
Injection port temperature | 150 °C |
MS Parameters | |
Ion Source Temperature | 240 |
Interface Temperature | 240 |
Acquisition type | SIM |
Solvent delay | 6.5 min |
Compound | Quantification Ion (m/z) | Confirmation Ion (m/z) |
---|---|---|
NDMA | 74 | 44 |
NMEA | 88 | 56 |
NDEA | 102 | 56 |
NDPA | 130 | 70 |
NMOR | 116 | 56 |
NPYR | 100 | 68 |
NPIP | 114 | 55 |
NDBA | 116 | 158, 84 |
N-methyl-npz | 99 | 100, 56 |
NDMA-d6 | 80 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witkowska, A.B.; Giebułtowicz, J.; Dąbrowska, M.; Stolarczyk, E.U. Development of a Sensitive Screening Method for Simultaneous Determination of Nine Genotoxic Nitrosamines in Active Pharmaceutical Ingredients by GC-MS. Int. J. Mol. Sci. 2022, 23, 12125. https://doi.org/10.3390/ijms232012125
Witkowska AB, Giebułtowicz J, Dąbrowska M, Stolarczyk EU. Development of a Sensitive Screening Method for Simultaneous Determination of Nine Genotoxic Nitrosamines in Active Pharmaceutical Ingredients by GC-MS. International Journal of Molecular Sciences. 2022; 23(20):12125. https://doi.org/10.3390/ijms232012125
Chicago/Turabian StyleWitkowska, Anna B., Joanna Giebułtowicz, Magdalena Dąbrowska, and Elżbieta U. Stolarczyk. 2022. "Development of a Sensitive Screening Method for Simultaneous Determination of Nine Genotoxic Nitrosamines in Active Pharmaceutical Ingredients by GC-MS" International Journal of Molecular Sciences 23, no. 20: 12125. https://doi.org/10.3390/ijms232012125
APA StyleWitkowska, A. B., Giebułtowicz, J., Dąbrowska, M., & Stolarczyk, E. U. (2022). Development of a Sensitive Screening Method for Simultaneous Determination of Nine Genotoxic Nitrosamines in Active Pharmaceutical Ingredients by GC-MS. International Journal of Molecular Sciences, 23(20), 12125. https://doi.org/10.3390/ijms232012125