Interferon Beta-1a versus Combined Interferon Beta-1a and Oligodendrocyte-Specific FGFR1 Deletion in Experimental Autoimmune Encephalomyelitis
Abstract
:1. Introduction
2. Results
2.1. Beneficial Effects in the Chronic Phase of EAE Are Due to the Conditional Deletion of FGFR1
2.2. Increased Expression of pERK and BDNF in Fgfr1ind−/− Mice
2.3. Inhibition of FGFR1 and Application of IFNβ-1a Reduced Proliferation of Oli-Neu Oligodendrocytes
2.4. IFNβ-1a Treatment along with FGFR1 Inhibition Results in Altered FGFR Downstream Signalling
3. Discussion
4. Materials and Methods
4.1. Ethics Statement and Housing Conditions
4.2. Generation of FGFR1 Conditional Knockout Mice
4.3. EAE Induction and Evaluation of Symptoms
4.4. Administration of IFNβ-1a
4.5. In Vitro Oli-Neu Oligodendrocyte Cultures
4.6. FGFR1 Inhibitor PD166866 and Application of Interferon Beta 1a in Oli-Neu Cells In Vitro
4.7. Protein Extraction and Western Blot Analysis
4.8. Proliferation Assays
4.9. Cytotoxicity Assay
4.10. Quantification and Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Franklin, R.J.M.; Ffrench-Constant, C. Regenerating CNS myelin—From mechanisms to experimental medicines. Nat. Rev. Neurosci. 2017, 18, 753–769. [Google Scholar] [CrossRef] [PubMed]
- Haghikia, A.; Hohlfeld, R.; Gold, R.; Fugger, L. Therapies for multiple sclerosis: Translational achievements and outstanding needs. Trends Mol. Med. 2013, 19, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Hauser, S.L.; Cree, B.A. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390.e2. [Google Scholar] [CrossRef]
- Kasper, L.H.; Reder, A.T. Immunomodulatory activity of interferon-beta. Ann. Clin. Transl. Neurol. 2014, 1, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Kieseier, B.C. The mechanism of action of interferon-beta in relapsing multiple sclerosis. CNS Drugs 2011, 25, 491–502. [Google Scholar] [CrossRef]
- Furusho, M.; Roulois, A.J.; Franklin, R.J.M.; Bansal, R. Fibroblast growth factor signaling in oligodendrocyte-lineage cells facilitates recovery of chronically demyelinated lesions but is redundant in acute lesions. Glia 2015, 63, 1714–1728. [Google Scholar] [CrossRef] [Green Version]
- Kamali, S.; Rajendran, R.; Stadelmann, C.; Karnati, S.; Rajendran, V.; Giraldo-Velasquez, M.; Berghoff, M. Oligodendrocyte-specific deletion of FGFR2 ameliorates MOG35-55-induced EAE through ERK and Akt signalling. Brain Pathol. 2021, 31, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.; Thümmler, K.; Arthur, A.; Brunner, S.; Elliott, C.; McElroy, D.; Mohan, H.; Williams, A.; Edgar, J.; Schuh, C.; et al. Fibroblast growth factor signalling in multiple sclerosis: Inhibition of myelination and induction of pro-inflammatory environment by FGF9. Brain 2015, 138, 1875–1893. [Google Scholar] [CrossRef] [Green Version]
- Mohan, H.; Friese, A.; Albrecht, S.; Krumbholz, M.; Elliott, C.L.; Arthur, A.; Menon, R.; Farina, C.; Junker, A.; Stadelmann, C.; et al. Transcript profiling of different types of multiple sclerosis lesions yields FGF1 as a promoter of remyelination. Acta Neuropathol.Commun. 2014, 2, 168. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, R.; Böttiger, G.; Stadelmann, C.; Karnati, S.; Berghoff, M. FGF/FGFR Pathways in Multiple Sclerosis and in Its Disease Models. Cells 2021, 10, 884. [Google Scholar] [CrossRef] [PubMed]
- Thümmler, K.; Rom, E.; Zeis, T.; Lindner, M.; Brunner, S.; Cole, J.J.; Arseni, D.; Mücklisch, S.; Edgar, J.M.; Schaeren-Wiemers, N.; et al. Polarizing receptor activation dissociates fibroblast growth factor 2 mediated inhibition of myelination from its neuroprotective potential. Acta Neuropathol. Commun. 2019, 7, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rottlaender, A.; Villwock, H.; Addicks, K.; Kuerten, S. Neuroprotective role of fibroblast growth factor-2 in experimental autoimmune encephalomyelitis. Immunology 2011, 133, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, R.; Velásquez, M.G.; Stadelmann, C.; Berghoff, M. Oligodendroglial fibroblast growth factor receptor 1 gene targeting protects mice from experimental autoimmune encephalomyelitis through ERK/AKT phosphorylation. Brain Pathol. 2017, 28, 212–224. [Google Scholar] [CrossRef]
- Rajendran, R.; Rajendran, V.; Giraldo-Velasquez, M.; Megalofonou, F.F.; Gurski, F.; Stadelmann, C.; Karnati, S.; Berghoff, M. Oligodendrocyte-Specific Deletion of FGFR1 Reduces Cerebellar Inflammation and Neurodegeneration in MOG35-55-Induced EAE. Int. J. Mol. Sci. 2021, 22, 9495. [Google Scholar] [CrossRef] [PubMed]
- Flores, A.I.; Narayanan, S.P.; Morse, E.N.; Shick, H.E.; Yin, X.; Kidd, G.; Avila, R.L.; Kirschner, D.A.; Macklin, W.B. Constitutively Active Akt Induces Enhanced Myelination in the CNS. J. Neurosci. 2008, 28, 7174–7183. [Google Scholar] [CrossRef] [Green Version]
- Mi, S.; Hu, B.; Hahm, K.; Luo, Y.; Hui, E.S.K.; Yuan, Q.; Wong, W.M.; Wang, L.; Su, H.; Chu, T.-H.; et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat. Med. 2007, 13, 1228–1233. [Google Scholar] [CrossRef] [PubMed]
- Maddaluno, L.; Urwyler, C.; Rauschendorfer, T.; Meyer, M.; Stefanova, D.; Spörri, R.; Wietecha, M.; Ferrarese, L.; Stoycheva, D.; Bender, D.; et al. Antagonism of interferon signaling by fibroblast growth factors promotes viral replication. EMBO Mol. Med. 2020, 12, e11793. [Google Scholar] [CrossRef]
- Prince, L.S.; Karp, P.H.; Moninger, T.O.; Welsh, M.J. KGF alters gene expression in human airway epithelia: Potential regulation of the inflammatory response. Physiol. Genom. 2001, 6, 81–89. [Google Scholar] [CrossRef]
- Limonta, D.; Jovel, J.; Kumar, A.; Lu, J.; Hou, S.; Airo, A.M.; Lopez-Orozco, J.; Wong, C.P.; Saito, L.; Branton, W.; et al. Fibroblast Growth Factor 2 Enhances Zika Virus Infection in Human Fetal Brain. J. Infect. Dis. 2019, 220, 1377–1387. [Google Scholar] [CrossRef]
- Komatsu, Y.; Christian, S.L.; Ho, N.; Pongnopparat, T.; Licursi, M.; Hirasawa, K. Oncogenic Ras inhibits IRF1 to promote viral oncolysis. Oncogene 2014, 34, 3985–3993. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Ma, Y.; Barrett, J.W.; Gao, X.; Loh, J.; Barton, E.; Virgin, H.W.; McFadden, G. Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nat. Immunol. 2004, 5, 1266–1274. [Google Scholar] [CrossRef]
- Singh, R.K.; Gutman, M.; Bucana, C.D.; Sanchez, R.; Llansa, N.; Fidler, I.J. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc. Natl. Acad. Sci. USA 1995, 92, 4562–4566. [Google Scholar] [CrossRef] [Green Version]
- Clemente, D.; Ortega, M.C.; Arenzana, F.J.; De Castro, F. FGF-2 and Anosmin-1 Are Selectively Expressed in Different Types of Multiple Sclerosis Lesions. J. Neurosci. 2011, 31, 14899–14909. [Google Scholar] [CrossRef] [Green Version]
- Sarchielli, P.; Di Filippo, M.; Ercolani, M.V.; Chiasserini, D.; Mattioni, A.; Bonucci, M.; Tenaglia, S.; Eusebi, P.; Calabresi, P. Fibroblast growth factor-2 levels are elevated in the cerebrospinal fluid of multiple sclerosis patients. Neurosci. Lett. 2008, 435, 223–228. [Google Scholar] [CrossRef]
- Ruffini, F.; Furlan, R.; Poliani, P.; Brambilla, E.; Marconi, P.; Bergami, A.; Desina, G.; Glorioso, J.; Comi, G.; Martino, G. Fibroblast growth factor-II gene therapy reverts the clinical course and the pathological signs of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice. Gene Ther. 2001, 8, 1207–1213. [Google Scholar] [CrossRef] [Green Version]
- Ishii, A.; Furusho, M.; Dupree, J.L.; Bansal, R. Role of ERK1/2 MAPK signaling in the maintenance of myelin and axonal integrity in the adult CNS. J. Neurosci. 2014, 34, 16031–16045. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.D.; Manadas, B.J.; Melo, C.V.; Gomes, J.R.; Mendes, C.S.; Graos, M.M.; Carvalho, R.F.; Carvalho, A.P.; Duarte, C.B. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ. 2005, 12, 1329–1343. [Google Scholar] [CrossRef] [Green Version]
- Kopec, B.M.; Kiptoo, P.; Zhao, L.; Rosa-Molinar, E.; Siahaan, T.J. Noninvasive Brain Delivery and Efficacy of BDNF to Stimulate Neuroregeneration and Suppression of Disease Relapse in EAE Mice. Mol. Pharm. 2020, 17, 404–416. [Google Scholar] [CrossRef]
- Azoulay, D.; Urshansky, N.; Karni, A. Low and dysregulated BDNF secretion from immune cells of MS patients is related to reduced neuroprotection. J. Neuroimmunol. 2008, 195, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Tian, B. Brain-derived neurotrophic factor in autoimmune inflammatory diseases (Review). Exp. Ther. Med. 2021, 22, 1292. [Google Scholar] [CrossRef] [PubMed]
- Azoulay, D.; Mausner-Fainberg, K.; Urshansky, N.; Fahoum, F.; Karni, A. Interferon-beta therapy up-regulates BDNF secretion from PBMCs of MS patients through a CD40-dependent mechanism. J. Neuroimmunol. 2009, 211, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Caggiula, M.; Batocchi, A.P.; Frisullo, G.; Angelucci, F.; Patanella, A.K.; Sancricca, C.; Nociti, V.; Tonali, P.A.; Mirabella, M. Neurotrophic factors in relapsing remitting and secondary progressive multiple sclerosis patients during interferon beta therapy. Clin. Immunol. 2006, 118, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Dhib-Jalbut, S.; Sumandeep, S.; Valenzuela, R.; Ito, K.; Patel, P.; Rametta, M. Immune response during interferon beta-1b treatment in patients with multiple sclerosis who experienced relapses and those who were relapse-free in the START study. J. Neuroimmunol. 2013, 254, 131–140. [Google Scholar] [CrossRef]
- Hamamcioglu, K.; Reder, A.T. Interferon-beta regulates cytokines and BDNF: Greater effect in relapsing than in progressive multiple sclerosis. Mult. Scler. 2007, 13, 459–470. [Google Scholar] [CrossRef]
- Mehrpour, M.; Akhoundi, F.H.; Delgosha, M.; Keyvani, H.; Motamed, M.R.; Sheibani, B.; Meysamie, A. Increased Serum Brain-derived Neurotrophic Factor in Multiple Sclerosis Patients on Interferon-beta and Its Impact on Functional Abilities. Neurologist 2015, 20, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Cauwels, A.; Van Lint, S.; Rogge, E.; Verhee, A.; Eeckhout, B.V.D.; Pang, S.; Prinz, M.; Kley, N.; Uzé, G.; Tavernier, J. Targeting IFN activity to both B cells and plasmacytoid dendritic cells induces a robust tolerogenic response and protection against EAE. Sci. Rep. 2021, 11, 21575. [Google Scholar] [CrossRef] [PubMed]
- Platanias, L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- van Boxel-Dezaire, A.H.; Rani, M.S.; Stark, G.R. Complex Modulation of Cell Type-Specific Signaling in Response to Type I Interferons. Immunity 2006, 25, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, R.; Böttiger, G.; Dentzien, N.; Rajendran, V.; Sharifi, B.; Ergün, S.; Stadelmann, C.; Karnati, S.; Berghoff, M. Effects of FGFR Tyrosine Kinase Inhibition in OLN-93 Oligodendrocytes. Cells 2021, 10, 1318. [Google Scholar] [CrossRef] [PubMed]
- Strober, W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015, 111, A3.B.1–A3.B.3. [Google Scholar] [CrossRef]
Name | Host | Mol. Weight | Method | Art. No | Manufacturer |
---|---|---|---|---|---|
Primary Antibodies | |||||
Anti-pERK | Rabbit | 44, 42 kDa | WB | 4370s | Cell Signaling Tech., Danvers, MA, USA |
Anti-pAkt | Rabbit | 60 kDa | WB | 4060s | Cell Signaling Tech., Danvers, MA, USA |
Anti-pP38 | Rabbit | 43 kDa | WB | 9212s | Cell Signaling Tech., Danvers, MA, USA |
Anti-pSTAT1 | Rabbit | 84, 91 kDa | WB | 9171s | Cell Signaling Tech., Danvers, MA, USA |
Anti-pSTAT3 | Rabbit | 79, 86 | WB | 9145s | Cell Signaling Tech., Danvers, MA, USA |
Anti-FGFR1 | Rabbit | 110 kDa | WB | sc-57132 | Santa Cruz Biotech., Dallas, CA, USA |
Anti-Trk B | Rabbit | 145 kDa | WB | sc-377218 | Santa Cruz Biotech., Dallas, CA, USA |
Anti-BDNF | Rabbit | 14 kDa | WB | sc-65514 | Santa Cruz Biotech., Dallas, CA, USA |
Anti-GAPDH | Mouse | 37 kDa | WB | sc-365062 | Santa Cruz Biotech., Dallas, CA, USA |
Secondary Antibodies | |||||
Anti-rabbit-HRP | Goat | 7074 | Cell Signaling Tech., Danvers, MA, USA | ||
Anti-mouse-HRP | Horse | 7076 | Cell Signaling Tech., Danvers, MA, USA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendran, R.; Rajendran, V.; Gupta, L.; Shirvanchi, K.; Schunin, D.; Karnati, S.; Giraldo-Velásquez, M.; Berghoff, M. Interferon Beta-1a versus Combined Interferon Beta-1a and Oligodendrocyte-Specific FGFR1 Deletion in Experimental Autoimmune Encephalomyelitis. Int. J. Mol. Sci. 2022, 23, 12183. https://doi.org/10.3390/ijms232012183
Rajendran R, Rajendran V, Gupta L, Shirvanchi K, Schunin D, Karnati S, Giraldo-Velásquez M, Berghoff M. Interferon Beta-1a versus Combined Interferon Beta-1a and Oligodendrocyte-Specific FGFR1 Deletion in Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences. 2022; 23(20):12183. https://doi.org/10.3390/ijms232012183
Chicago/Turabian StyleRajendran, Ranjithkumar, Vinothkumar Rajendran, Liza Gupta, Kian Shirvanchi, Darja Schunin, Srikanth Karnati, Mario Giraldo-Velásquez, and Martin Berghoff. 2022. "Interferon Beta-1a versus Combined Interferon Beta-1a and Oligodendrocyte-Specific FGFR1 Deletion in Experimental Autoimmune Encephalomyelitis" International Journal of Molecular Sciences 23, no. 20: 12183. https://doi.org/10.3390/ijms232012183
APA StyleRajendran, R., Rajendran, V., Gupta, L., Shirvanchi, K., Schunin, D., Karnati, S., Giraldo-Velásquez, M., & Berghoff, M. (2022). Interferon Beta-1a versus Combined Interferon Beta-1a and Oligodendrocyte-Specific FGFR1 Deletion in Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 23(20), 12183. https://doi.org/10.3390/ijms232012183