The Genetic Architecture of Vascular Anomalies: Current Data and Future Therapeutic Perspectives Correlated with Molecular Mechanisms
Abstract
:1. Introduction
2. Vascular Anomalies: RAS/RAF/MAPK/ERK Signaling Pathways (RASopathies)
2.1. Venous Malformations (VMs) and RAS/RAF/MAPK/ERK Signaling Pathway
2.1.1. Verrucous Venous Malformation (VVM)
2.1.2. Cavernous Cerebral Malformation (CCM)
2.2. Capillary Malformations (CMs) and RAS/RAF/MAPK/ERK Signaling Pathway
2.2.1. Capillary Malformations (CMs)
2.2.2. Capillary Malformations (CM)—Arteriovenous Malformation (AVM)
2.3. Arteriovenous Malformations and RAS/RAF/MAPK/ERK Signaling Pathway
2.4. Lymphatic Malformations and RAS/RAF/MAPK/ERK Signaling Pathway
2.5. Vascular Tumors and RAS/RAF/MAPK/ERK Signaling Pathway
2.5.1. Pyogenic Granuloma
2.5.2. Congenital Hemangioma
3. Vascular Anomalies: PI3K/AKT/mTOR Signaling Pathways (Pikopathies)
3.1. Venous Malformations (VMs) and PI3K/AKT/mTOR Signaling Pathway
3.1.1. Focal and Multifocal Venous Malformations
3.1.2. Blue Rubber Bleb Nevus Syndrome (BRBN)
3.1.3. Venous Anomalies and PIK3CA-Related Overgrowth Syndrome
3.2. Arteriovenous Malformations and PI3K/AKT/mTOR Signaling Pathway
3.2.1. PTEN Hamartoma Tumor Syndrome (PHTS)
3.2.2. Hereditary Hemorrhagic Telangiectasia (HHT)
3.3. Lymphatic Malformations and PI3K/AKT/mTOR Signaling Pathways
4. Other Signaling Pathways
4.1. Vascular Tumors (Infantile Hemangioma): VEGF-A/VEGFR2 Signaling and PDGFB/PDGFRB Signaling Pathway
4.1.1. VEGF-A/VEGFR2 Signaling Pathway
4.1.2. PDGFB/PDGFRB Signaling Pathway
4.2. HGF [Hepatocyte Growth Factor])/c-Met Signaling in Glomuvenous Malformations (GVM)
5. Discussions and Future Therapeutic Perspectives Correlated with Molecular Mechanisms
5.1. Current Approaches and Future Challenges in The Treatment of Vascular Anomalies: New Molecular Targeted Therapies
5.2. Genetic Counseling in Vascular Anomalies: Inherited Versus Sporadic Vascular Anomalies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Greene, A.K. Vascular anomalies: Current overview of the field. Clin. Plast. Surg. 2011, 38, 1–5. [Google Scholar] [CrossRef] [PubMed]
- International Society For The Study Of Vascular Anomalies ISSVA. Available online: https://www.issva.org/classification (accessed on 29 August 2022).
- Wetzel-Strong, S.E.; Detter, M.R.; Marchuk, D.A. The pathobiology of vascular malformations: Insights from human and model organism genetics. J. Pathol. 2017, 241, 281–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queisser, A.; Seront, E.; Boon, L.M.; Vikkula, M. Genetic Basis and Therapies for Vascular Anomalies. Circ. Res. 2021, 129, 155–173. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.L.; Boon, L.M.; Vikkula, M. Vascular Anomalies Caused by Abnormal Signaling within Endothelial Cells: Targets for Novel Therapies. Semin. Intervent. Radiol. 2017, 34, 233–238. [Google Scholar] [CrossRef] [PubMed]
- OMIM—Online Mendelian Inheritance in Man. Available online: https://www.omim.org (accessed on 30 August 2022).
- Couto, J.A.; Vivero, M.P.; Kozakewich, H.P.; Taghinia, A.H.; Mulliken, J.B.; Warman, M.L.; Greene, A.K. A somatic MAP3K3 mutation is associated with verrucous venous malformation. Am. J. Hum. Genet. 2015, 96, 480–486. [Google Scholar] [CrossRef] [Green Version]
- Colmenero, I.; Knöpfel, N. Venous Malformations in Childhood: Clinical, Histopathological and Genetics Update. Dermatopathology 2021, 8, 477–493. [Google Scholar] [CrossRef]
- Eerola, I.; Plate, K.H.; Spiegel, R.; Boon, L.M.; Mulliken, J.B.; Vikkula, M. KRIT1 is mutated in hyperkeratotic cutaneous capillary-venous malformation associ ated with cerebral capillary malformation. Hum. Mol. Genet. 2000, 9, 1351–1355. [Google Scholar] [CrossRef] [Green Version]
- Hirota, K.; Akagawa, H.; Kikuchi, A.; Oka, H.; Hino, A.; Mitsuyama, T.; Sasaki, T.; Onda, H.; Kawamata, T.; Kasuya, H. KRIT1 mutations in three Japanese pedigrees with hereditary cavernous malformation. Hum. Genome Var. 2016, 3, 16032. [Google Scholar] [CrossRef]
- Yang, L.; Wu, J.; Zhang, J. A Novel CCM2 Gene Mutation Associated With Cerebral Cavernous Malformation. Front. Neurol. 2020, 11, 70. [Google Scholar] [CrossRef]
- Cigoli, M.S.; Avemaria, F.; De Benedetti, S.; Gesu, G.P.; Accorsi, L.G.; Parmigiani, S.; Corona, M.F.; Capra, V.; Mosca, A.; Giovannini, S.; et al. PDCD10 gene mutations in multiple cerebral cavernous malformations. PLoS ONE 2014, 9, e110438. [Google Scholar] [CrossRef]
- Weng, J.; Yang, Y.; Song, D.; Huo, R.; Li, H.; Chen, Y.; Nam, Y.; Zhou, Q.; Jiao, Y.; Fu, W.; et al. Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation. Am. J. Hum. Genet. 2021, 108, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M.D.; Tang, H.; Gallione, C.J.; Baugher, J.D.; Frelin, L.P.; Cohen, B.; North, P.E.; Marchuk, D.A.; Comi, A.M.; Pevsner, J. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N. Engl. J. Med. 2013, 368, 1971–1979. [Google Scholar] [CrossRef] [Green Version]
- Galeffi, F.; Snellings, D.A.; Wetzel-Strong, S.E.; Kastelic, N.; Bullock, J.; Gallione, C.J.; North, P.E.; Marchuk, D.A. A novel somatic mutation in GNAQ in a capillary malformation provides insight into molecular pathogenesis. Angiogenesis 2022, 25, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Lapinski, P.E.; Doosti, A.; Salato, V.; North, P.; Burrows, P.E.; King, P.D. Somatic second hit mutation of RASA1 in vascular endothelial cells in capillary malformation-arteriovenous malformation. Eur. J. Med. Genet. 2018, 61, 11–16. [Google Scholar] [CrossRef]
- Brouillard, P.; Vikkula, M. Genetic causes of vascular malformations. Hum. Mol. Genet. 2007, 16, R140–R149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ustaszewski, A.; Janowska-Głowacka, J.; Wołyńska, K.; Pietrzak, A.; Badura-Stronka, M. Genetic syndromes with vascular malformations—Update on molecular background and diagnostics. Arch. Med. Sci. 2020, 17, 965–991. [Google Scholar] [CrossRef] [PubMed]
- Revencu, N.; Boon, L.M.; Mendola, A.; Cordisco, M.R.; Dubois, J.; Clapuyt, P.; Hammer, F.; Amor, D.J.; Irvine, A.D.; Baselga, E.; et al. RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum. Mutat. 2013, 34, 1632–1641. [Google Scholar] [CrossRef] [PubMed]
- Amyere, M.; Revencu, N.; Helaers, R.; Pairet, E.; Baselga, E.; Cordisco, M.R.; Chung, W.K.; Dubois, J.; Lacour, J.P.; Martorell, L.; et al. Germline Loss-of-Function Mutations in EPHB4 Cause a Second Form of Capillary Malformation-Arteriovenous Malformation (CM-AVM2) Deregulating RAS-MAPK Signaling. Circulation 2017, 136, 1037–1048. [Google Scholar] [CrossRef] [Green Version]
- Couto, J.A.; Huang, A.Y.; Konczyk, D.J.; Goss, J.A.; Fishman, S.J.; Mulliken, J.B.; Warman, M.L.; Greene, A.K. Somatic MAP2K1 mutations are associated with extracranial arteriovenous malformation. Am. J. Hum. Genet. 2017, 100, 546–554. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, R.; Hampton, O.A.; Shen, X.; Simko, S.J.; Shih, A.; Abhyankar, H.; Lim, K.P.; Covington, K.R.; Trevino, L.; Dewal, N.; et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 2014, 124, 3007–3015. [Google Scholar] [CrossRef]
- Nikolaev, S.I.; Vetiska, S.; Bonilla, X.; Boudreau, E.; Jauhiainen, S.; Rezai Jahromi, B.; Khyzha, N.; DiStefano, P.V.; Suutarinen, S.; Kiehl, T.R.; et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain. N. Engl. J. Med. 2018, 378, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Al-Olabi, L.; Polubothu, S.; Dowsett, K.; Andrews, K.A.; Stadnik, P.; Joseph, A.P.; Knox, R.; Pittman, A.; Clark, G.; Baird, W.; et al. Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy. J. Clin. Investig. 2018, 128, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Angelini, A.; Mosele, N.; Pagliarini, E.; Ruggieri, P. Current concepts from diagnosis to management in Gorham-Stout disease: A systematic narrative review of about 350 cases. EFORT Open Rev. 2022, 7, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Homayun-Sepehr, N.; McCarter, A.L.; Helaers, R.; Galant, C.; Boon, L.M.; Brouillard, P.; Vikkula, M.; Dellinger, M.T. KRAS-driven model of Gorham-Stout disease effectively treated with trametinib. JCI Insight 2021, 6, e149831. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=en&Expert=464329 (accessed on 5 September 2022).
- Barclay, S.F.; Inman, K.W.; Luks, V.L.; McIntyre, J.B.; Al-Ibraheemi, A.; Church, A.J.; Perez-Atayde, A.R.; Mangray, S.; Jeng, M.; Kreimer, S.R.; et al. A somatic activating NRAS variant associated with kaposiform lymphangiomatosis. Genet. Med. 2019, 21, 1517–1524. [Google Scholar] [CrossRef]
- Groesser, L.; Peterhof, E.; Evert, M.; Landthaler, M.; Berneburg, M.; Hafner, C. BRAF and RAS mutations in sporadic and secondary pyogenic granuloma. J. Investig. Dermatol. 2016, 136, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.H.; Douglas, S.R.; Ko, C.J.; Antaya, R.J.; McNiff, J.M.; Zhou, J.; Choate, K.A.; Narayan, D. Somatic activating RAS mutations cause vascular tumors including pyogenic granuloma. J. Investig. Dermatol. 2015, 135, 1698–1700. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.H.; Bacchiocchi, A.; Qiu, J.; Straub, R.; Bruckner, A.; Bercovitch, L.; Narayan, D.; McNiff, J.; Ko, C.; Robinson-Bostom, L.; et al. GNA14 somatic mutation causes congenital and sporadic vascular tumors by MAPK activation. Am. J. Hum. Genet. 2016, 99, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Pereira, T.D.S.F.; de Amorim, L.S.D.; Pereira, N.B.; Vitório, J.G.; Duarte-Andrade, F.F.; Guimarães, L.M.; Diniz, M.G.; Gomes, C.C.; Gomez, R.S. Oral pyogenic granulomas show MAPK/ERK signaling pathway activation, which occurs independently of BRAF, KRAS, HRAS, NRAS, GNA11, and GNA14 mutations. J. Oral. Pathol. Med. 2019, 48, 906–910. [Google Scholar] [CrossRef]
- Ayturk, U.M.; Couto, J.A.; Hann, S.; Mulliken, J.B.; Williams, K.L.; Huang, A.Y.; Fishman, S.J.; Boyd, T.K.; Kozakewich, H.P.W.; Bischoff, J.; et al. Somatic activating mutations in GNAQ and GNA11 are associated with congenital hemangioma. Am. J. Hum. Genet. 2016, 98, 1271. [Google Scholar] [CrossRef]
- Funk, T.; Lim, Y.; Kulungowski, A.M.; Prok, L.; Crombleholme, T.M.; Choate, K.; Bruckner, A.L. Symptomatic congenital hemangioma and congenital hemangiomatosis associated with a somatic activating mutation in GNA11. JAMA Dermatol. 2016, 152, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- Podda, S.; Caputi, G.G. Venous Malformations. Available online: https://emedicine.medscape.com/article/1296303-overview (accessed on 20 September 2022).
- Limaye, N.; Wouters, V.; Uebelhoer, M.; Tuominen, M.; Wirkkala, R.; Mulliken, J.B.; Eklund, L.; Boon, L.M.; Vikkula, M. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat. Genet. 2009, 41, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Zheng, J.; Zhang, Z.; Wang, Y. Review of the endothelial pathogenic mechanism of TIE2-related venous malformation. J. Vasc. Surg. Venous Lymphat. Disord. 2017, 5, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Nätynki, M.; Kangas, J.; Miinalainen, I.; Sormunen, R.; Pietilä, R.; Soblet, J.; Boon, L.M.; Vikkula, M.; Limaye, N.; Eklund, L. Common and specific effects of TIE2 mutations causing venous malformations. Hum. Mol. Genet. 2015, 24, 6374–6389. [Google Scholar] [CrossRef] [Green Version]
- Soblet, J.; Kangas, J.; Nätynki, M.; Mendola, A.; Helaers, R.; Uebelhoer, M.; Kaakinen, M.; Cordisco, M.; Dompmartin, A.; Enjolras, O.; et al. Blue rubber bleb nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations. J. Investig. Dermatol. 2017, 137, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Si, Y.; Huang, J.; Li, X.; Fu, Y.; Xu, R.; Du, Y.; Cheng, J.; Jiang, H. AKT/FOXO1 axis links cross-talking of endothelial cell and pericyte in TIE2-mutated venous malformations. Cell Commun. Signal. 2020, 18, 139. [Google Scholar] [CrossRef]
- Limaye, N.; Kangas, J.; Mendola, A.; Godfraind, C.; Schlögel, M.J.; Helaers, R.; Eklund, L.; Boon, L.M.; Vikkula, M. Somatic Activating PIK3CA Mutations Cause Venous Malformation. Am. J. Hum. Genet. 2015, 97, 914–921. [Google Scholar] [CrossRef] [Green Version]
- Canaud, G.; Hammill, A.M.; Adams, D.; Vikkula, M.; Keppler-Noreuil, K.M. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J. Rare Dis. 2021, 16, 306. [Google Scholar] [CrossRef]
- Mirzaa, G.; Timms, A.E.; Conti, V.; Boyle, E.A.; Girisha, K.M.; Martin, B.; Kircher, M.; Olds, C.; Juusola, J.; Collins, S.; et al. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight 2016, 1, e87623. [Google Scholar] [CrossRef] [Green Version]
- Kurek, K.C.; Luks, V.L.; Ayturk, U.M.; Alomari, A.I.; Fishman, S.J.; Spencer, S.A.; Mulliken, J.B.; Bowen, M.E.; Yamamoto, G.L.; Kozakewich, H.P.; et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am. J. Hum. Genet. 2012, 90, 1108–1115. [Google Scholar] [CrossRef]
- Le Cras, T.D.; Goines, J.; Lakes, N.; Pastura, P.; Hammill, A.M.; Adams, D.M.; Boscolo, E. Constitutively active PIK3CA mutations are expressed by lymphatic and vascular endothelial cells in capillary lymphatic venous malformation. Angiogenesis 2020, 23, 425–442. [Google Scholar] [CrossRef] [PubMed]
- Yehia, L.; Eng, C. PTEN Hamartoma Tumor Syndrome. 2001 Nov 29 [Updated 2021 Feb 11]. In GeneReviews® [Internet]; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Eds.; University of Washington: Seattle, WA, USA, 1993–2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1488/ (accessed on 9 September 2022).
- Fusco, N.; Sajjadi, E.; Venetis, K.; Gaudioso, G.; Lopez, G.; Corti, C.; Rocco, E.G.; Criscitiello, C.; Malapelle, U.; Invernizzi, M. PTEN Alterations and Their Role in Cancer Management: Are We Making Headway on Precision Medicine? Genes 2020, 11, 719. [Google Scholar] [CrossRef] [PubMed]
- Ngeow, J.; Stanuch, K.; Mester, J.L.; Barnholtz-Sloan, J.S.; Eng, C. Second malignant neoplasms in patients with Cowden syndrome with underlying germline PTEN mutations. J. Clin. Oncol. 2014, 32, 1818–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, J.; Stevenson, D.A. Hereditary Hemorrhagic Telangiectasia. 2000 Jun 26 [Updated 2021 Nov 24]. In GeneReviews® [Internet]; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Eds.; University of Washington: Seattle, WA, USA, 1993–2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1351/ (accessed on 9 September 2022).
- Gariballa, N.; Kizhakkedath, P.; Akawi, N.; John, A.; Ali, B.R. Endoglin Wild Type and Variants Associated With Hereditary Hemorrhagic Telangiectasia Type 1 Undergo Distinct Cellular Degradation Pathways. Front. Mol. Biosci. 2022, 9, 828199. [Google Scholar] [CrossRef] [PubMed]
- Errasti Díaz, S.; Peñalva, M.; Recio-Poveda, L.; Vilches, S.; Casado-Vela, J.; Pérez Pérez, J.; Botella, L.M.; Albiñana, V.; Cuesta, A.M. A Novel Splicing Mutation in the ACVRL1/ALK1 Gene as a Cause of HHT2. J. Clin. Med. 2022, 11, 3053. [Google Scholar] [CrossRef]
- Salmon, R.M.; Guo, J.; Wood, J.H.; Tong, Z.; Beech, J.S.; Lawera, A.; Yu, M.; Grainger, D.J.; Reckless, J.; Morrell, N.W.; et al. Molecular basis of ALK1-mediated signalling by BMP9/BMP10 and their prodomain-bound forms. Nat. Commun. 2020, 11, 1621. [Google Scholar] [CrossRef] [Green Version]
- Cole, S.G.; Begbie, M.E.; Wallace, G.M.; Shovlin, C.L. A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J. Med. Genet. 2005, 42, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Bayrak-Toydemir, P.; McDonald, J.; Akarsu, N.; Toydemir, R.M.; Calderon, F.; Tuncali, T.; Tang, W.; Miller, F.; Mao, R. A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am. J. Med. Genet. A 2006, 140, 2155–2162. [Google Scholar] [CrossRef]
- Wooderchak-Donahue, W.L.; McDonald, J.; O’Fallon, B.; Upton, P.D.; Li, W.; Roman, B.L.; Young, S.; Plant, P.; Fülöp, G.T.; Langa, C.; et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am. J. Hum. Genet. 2013, 93, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Gallione, C.J.; Repetto, G.M.; Legius, E.; Rustgi, A.K.; Schelley, S.L.; Tejpar, S.; Mitchell, G.; Drouin, E.; Westermann, C.J.; Marchuk, D.A. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 2004, 363, 852–859. [Google Scholar] [CrossRef]
- Wain, K.E.; Ellingson, M.S.; McDonald, J.; Gammon, A.; Roberts, M.; Pichurin, P.; Winship, I.; Riegert-Johnson, D.L.; Weitzel, J.N.; Lindor, N.M. Appreciating the broad clinical features of SMAD4 mutation carriers: A multicenter chart review. Genet. Med. 2014, 16, 588–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leong, K.F. Genetics of Vascular Malformations: Current Perspectives. Indian J. Paediatr. Dermatol. 2021, 22, 267. [Google Scholar] [CrossRef]
- Liu, T.; Basseri, S.; Mussari, B.; DaBreo, D.; SenGupta, S.; Villalobos, D.; Awad, S. Generalized lymphatic anomalies and review of the current management landscape: A case report and review of the literature. J. Med. Case Rep. 2021, 15, 398. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Loll, E.G.; Hassan, A.S.; Cheng, M.; Wang, A.; Farmer, D.L. Genetic and Molecular Determinants of Lymphatic Malformations: Potential Targets for Therapy. J. Dev. Biol. 2022, 10, 11. [Google Scholar] [CrossRef]
- Rodriguez-Laguna, L.; Ibañez, K.; Gordo, G.; Garcia-Minaur, S.; Santos-Simarro, F.; Agra, N.; Vallespín, E.; Fernández-Montaño, V.E.; Martín-Arenas, R.; Del Pozo, Á.; et al. CLAPO syndrome: Identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype. Genet. Med. 2018, 20, 882–889. [Google Scholar] [CrossRef] [Green Version]
- Luks, V.L.; Kamitaki, N.; Vivero, M.P.; Uller, W.; Rab, R.; Bovée, J.V.M.G.; Rialon, K.L.; Guevara, C.J.; Alomari, A.I.; Greene, A.K.; et al. Lymphatic and Other Vascular Malformative/Overgrowth Disorders Are Caused by Somatic Mutations in PIK3CA. J. Pediatr. 2015, 166, 1048–1054.e5. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Corral, I.; Zhang, Y.; Petkova, M.; Ortsäter, H.; Sjöberg, S.; Castillo, S.D.; Brouillard, P.; Libbrecht, L.; Saur, D.; Graupera, M.; et al. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nat. Commun. 2020, 11, 2869. [Google Scholar] [CrossRef]
- Su, J.L.; Yen, C.J.; Chen, P.S.; Chuang, S.E.; Hong, C.C.; Kuo, I.H.; Chen, H.Y.; Hung, M.C.; Kuo, M.L. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br. J. Cancer 2007, 96, 541–545. [Google Scholar] [CrossRef]
- Available online: https://dermnetnz.org/topics/infantile-haemangioma-definition-and-pathogenesis (accessed on 10 September 2022).
- Soliman, Y.S.; Khachemoune, A. Infantile hemangiomas: Our current understanding and treatment options. Dermatol. Online J. 2018, 24, 13030/qt5jt8q9km. [Google Scholar] [CrossRef]
- Castrén, E.; Salminen, P.; Vikkula, M.; Pitkäranta, A.; Klockars, T. Inheritance Patterns of Infantile Hemangioma. Pediatrics 2016, 138, e20161623. [Google Scholar] [CrossRef]
- Bota, M.; Popa, G.; Blag, C.; Tataru, A. Infantile Hemangioma: A Brief Review. Clujul. Med. 2015, 88, 23–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinnin, M.; Medici, D.; Park, L.; Limaye, N.; Liu, Y.; Boscolo, E.; Bischoff, J.; Vikkula, M.; Boye, E.; Olsen, B.R. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat. Med. 2008, 14, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.W.; Blei, F.; Anderson, J.L.; Orlow, S.J.; Speer, M.C.; Marchuk, D.A. Genetic mapping of a novel familial form of infantile hemangioma. Am. J. Med. Genet. 1999, 82, 77–83. [Google Scholar] [CrossRef]
- Calicchio, M.L.; Collins, T.; Kozakewich, H.P. Identification of signaling systems in proliferating and involuting phase infantile hemangiomas by genome-wide transcriptional profiling. Am. J. Pathol. 2009, 174, 1638–1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Expert=83454&lng=EN (accessed on 12 September 2022).
- Amyere, M.; Aerts, V.; Brouillard, P.; McIntyre, B.A.; Duhoux, F.P.; Wassef, M.; Enjolras, O.; Mulliken, J.B.; Devuyst, O.; Antoine-Poirel, H.; et al. Somatic uniparental isodisomy explains multifocality of glomuvenous malformations. Am. J. Hum. Genet. 2013, 92, 188–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouillard, P.; Boon, L.M.; Mulliken, J.B.; Enjolras, O.; Ghassibé, M.; Warman, M.L.; Tan, O.T.; Olsen, B.R.; Vikkula, M. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations (“glomangiomas”). Am. J. Hum. Genet. 2002, 70, 866–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouillard, P.; Boon, L.M.; Revencu, N.; Berg, J.; Dompmartin, A.; Dubois, J.; Garzon, M.; Holden, S.; Kangesu, L.; Labrèze, C.; et al. Genotypes and phenotypes of 162 families with a glomulin mutation. Mol. Syndromol. 2013, 4, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Borst, A.J.; Nakano, T.A.; Blei, F.; Adams, D.M.; Duis, J. A Primer on a Comprehensive Genetic Approach to Vascular Anomalies. Front. Pediatr. 2020, 8, 579591. [Google Scholar] [CrossRef]
- Dillon, M.; Lopez, A.; Lin, E.; Sales, D.; Perets, R.; Jain, P. Progress on Ras/MAPK Signaling Research and Targeting in Blood and Solid Cancers. Cancers 2021, 13, 5059. [Google Scholar] [CrossRef]
- Antaya, R.; Elston, D.M. Capillary Malformation. Available online: https://emedicine.medscape.com/article/1084479-overview (accessed on 5 September 2022).
- Uebelhoer, M.; Boon, L.M.; Vikkula, M. Vascular anomalies: From genetics toward models for therapeutic trials. Cold Spring Harb. Perspect. Med. 2012, 2, a009688. [Google Scholar] [CrossRef]
- Available online: https://clinicaltrials.gov/ct2/show/NCT02638389) (accessed on 14 September 2022).
- Nadal, M.; Giraudeau, B.; Tavernier, E.; Jonville-Bera, A.P.; Lorette, G.; Maruani, A. Efficacy and safety of mammalian target of rapamycin inhibitors in vascular anomalies: A systematic review. Acta Derm. Venereol. 2016, 96, 448–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triana, P.; Dore, M.; Cerezo, V.N.; Cervantes, M.; Sánchez, A.V.; Ferrero, M.M.; González, M.D.; Lopez-Gutierrez, J.C. Sirolimus in the treatment of vascular anomalies. Eur. J. Pediatr. Surg. 2017, 27, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, V.E.R.; Keppler-Noreuil, K.M.; Faivre, L.; Luu, M.; Oden, N.L.; De Silva, L.; Sapp, J.C.; Andrews, K.; Bardou, M.; Chen, K.Y.; et al. Safety and efficacy of low-dose sirolimus in the PIK3CA- related overgrowth spectrum. Genet. Med. 2019, 21, 1189–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venot, Q.; Blanc, T.; Rabia, S.H.; Berteloot, L.; Ladraa, S.; Duong, J.P.; Blanc, E.; Johnson, S.C.; Hoguin, C.; Boccara, O.; et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 2018, 558, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Pagliazzi, A.; Oranges, T.; Traficante, G.; Trapani, C.; Facchini, F.; Martin, A.; Semeraro, A.; Perrone, A.; Filippeschi, C.; Giglio, S. PIK3CA-Related Overgrowth Spectrum From Diagnosis to Targeted Therapy: A Case of CLOVES Syndrome Treated With Alpelisib. Front. Pediatr. 2021, 9, 732836. [Google Scholar] [CrossRef]
- Leoni, C.; Gullo, G.; Resta, N.; Fagotti, A.; Onesimo, R.; Schwartz, B.; Kazakin, J.; Abbadessa, G.; Crown, J.; Collins, C.D.; et al. First evidence of a therapeutic effect of miransertib in a teenager with Proteus syndrome and ovarian carcinoma. Am. J. Med. Genet. A. 2019, 179, 1319–1324. [Google Scholar] [CrossRef]
- Forde, K.; Resta, N.; Ranieri, C.; Rea, D.; Kubassova, O.; Hinton, M.; Andrews, K.A.; Semple, R.; Irvine, A.D.; Dvorakova, V. Clinical experience with the AKT1 inhibitor miransertib in two children with PIK3CA-related overgrowth syndrome. Orphanet J. Rare Dis. 2021, 16, 109. [Google Scholar] [CrossRef]
- Li, D.; March, M.E.; Gutierrez-Uzquiza, A.; Kao, C.; Seiler, C.; Pinto, E.; Matsuoka, L.S.; Battig, M.R.; Bhoj, E.J.; Wenger, T.L.; et al. ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor. Nat. Med. 2019, 25, 1116–1122. [Google Scholar] [CrossRef]
- Ozeki, M.; Aoki, Y.; Nozawa, A.; Yasue, S.; Endo, S.; Hori, Y.; Matsuoka, K.; Niihori, T.; Funayama, R.; Shirota, M.; et al. Detection of NRAS mutation in cell-free DNA biological fluids from patients with kaposiform lymphangiomatosis. Orphanet J. Rare Dis. 2019, 14, 215. [Google Scholar] [CrossRef]
- Available online: https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-003573-26/BE (accessed on 14 September 2022).
- Zhu, W.; Chen, W.; Zou, D.; Wang, L.; Bao, C.; Zhan, L.; Saw, D.; Wang, S.; Winkler, E.; Li, Z.; et al. Thalidomide Reduces Hemorrhage of Brain Arteriovenous Malformations in a Mouse Model. Stroke 2018, 49, 1232–1240. [Google Scholar] [CrossRef]
- Kim, J.S.; Hwang, S.K.; Chung, H.Y. The molecular pathophysiology of vascular anomalies: Genomic research. Arch. Plast. Surg. 2020, 47, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Guilhem, A.; Fargeton, A.E.; Simon, A.C.; Duffau, P.; Harle, J.R.; Lavigne, C.; Carette, M.F.; Bletry, O.; Kaminsky, P.; Leguy, V.; et al. Intra-venous bevacizumab in hereditary hemorrhagic telangiectasia (HHT): A retrospective study of 46 patients. PLoS ONE 2017, 12, e0188943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupuis-Girod, S. Intravenous Bevacizumab in Hereditary Hemorrhagic Telangiectasia: A Role That Is Still to Be Defined. Mayo Clin. Proc. 2020, 95, 1565–1566. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://clinicaltrials.gov/ct2/show/NCT03227263 (accessed on 14 September 2022).
- Diociaiuti, A.; Rotunno, R.; Pisaneschi, E.; Cesario, C.; Carnevale, C.; Condorelli, A.G.; Rollo, M.; Di Cecca, S.; Quintarelli, C.; Novelli, A.; et al. Clinical and Molecular Spectrum of Sporadic Vascular Malformations: A Single-Center Study. Biomedicines 2022, 10, 1460. [Google Scholar] [CrossRef]
- Ţarcă, E.; Cojocaru, E.; Roşu, S.T.; Butnariu, L.I.; Plămădeală, P.; Moisă, Ş. Differential diagnosis difficulties related to infantile hemangioma—Case report and literature review. Rom. J. Morphol. Embryol 2019, 60, 1375–1379. [Google Scholar]
- Setty, B.A.; Wusik, K.; Hammill, A.M. How we approach genetics in the diagnosis and management of vascular anomalies. Pediatr. Blood Cancer 2022, 69, e29320. [Google Scholar] [CrossRef]
Vascular Anomalies | |
---|---|
Vascular Tumors | Benign |
Locally aggressive or Borderline | |
Malignant | |
Vascular Malformations | |
Simple | CM/VM/LM/AVM */AVF * |
Combined | Defined as ≥2 vascular malformations found in one lesion |
Anomalies of major named vessels (“channel type” or “truncal” vascular malformations) | Abnormalities in the origin/course/number/lenght/diameter (aplasia, hypoplasia, stenosis, ectasia/aneurysm)/persistence (of embrional vessels)/communication (AVF) of major blood vessels that have anatomical names |
Associated with other anomalies | Syndromes that associate vascular malformations with non-vascular symptoms |
Vascular Anomalies | OMIM | Gene | Locus | Type of Mutation | Other Involved Pathway(s) | Reference |
---|---|---|---|---|---|---|
RAS/RAF/MEK/ERK Signaling | ||||||
Venous anomalies | ||||||
VVM | 602539 | MAP3K3 | 17q23.3 | ASM | [6,7] | |
CCM | 116860 | KRIT1 | 7q21.2 | LOF | ß-integrin signaling? | [8,9,10] |
603284 | CCM2 (Malcavernin) | 7q13 | LOF | Notch signaling | [11] | |
603285 | PDCD10 | 3q26.1 | LOF | Notch signaling | [12] | |
619538 | MAP3K3 | 3q26.3-27.2 | LOF | Notch signaling | [13] | |
Capillary anomalies | ||||||
CM/SWS | 185300 | GNAQ | 9q21.2 | ASM | [14,15] | |
CM-AVM1 | 608354 | RASA1 | 5q14.3 | LOF | FAK signaling | [16,17,18,19] |
CM-AVM2 | 618196 | EPHB4 | 7q22.1 | LOF | [20] | |
Arteriovenous anomalies | ||||||
Sporadic extracranial AVM | 176872 | MAP2K1 | 15q22.31 | ASM | [21,22,23] | |
190070 | KRAS | 12p12.1 | [24] | |||
164757 | BRAF | 7q34 | [24] | |||
Brain AVM | 108010 | KRAS | 12p12.1 | ASM | [23] | |
Lymphatic anomalies | ||||||
GSD | 123880 | KRAS | 12p12.1 | ASM | [25,26] | |
KLA | 164790 | NRAS | 1p13.2 | ASM | [27,28] | |
Vascular tumors | ||||||
PG | 163000 | GNAQ (secondary PG) | 9q21.2 | ASM | [29] | |
190070 | KRAS | 12p12.1 | ASM | [29] | ||
190020 | HRAS | 11p15.5 | [30,31] | |||
164757 | BRAF (isolated PG) | 7q34 | SHM | [29,32] | ||
604397 | GNA14 | 9q21.2 | SHM | [27] | ||
Congenital hemangioma (RICH, NICH) | 600998, 139313 | GNAQ, GNA11 | 9q21.2, 19p13.3 | ASM | YAP signaling | [33,34] |
PI3K/AKT/mTOR Signaling | ||||||
Venous anomalies | ||||||
Sporadic VM | 600221 | TEK (L914F) | 9p21.2 | ASM | RAS/MAPK/ERK signaling? | [35,36] |
VMCM | 600195 | TEK (R849W) | 9p21.2 | ASM | RAS/MAPK/ERK signaling? | [37,38] |
MVM | 600221 | TEK | 9p21.2 | ASM | RAS/MAPK/ERK signaling? | [39] |
BRBN | 112200 | TEK | 9p21.2 | ASM | [39,40] | |
Venous anomalies and PIK3CA-related overgrowth syndrome | ||||||
MCAP | 602501 | PIK3CA | 3q26.32 | ASM | [41,42,43] | |
CLOVES | 612918 | PIK3CA | 3q26.32 | ASM | [44,45] | |
Arteriovenous anomalies | ||||||
PHTS | 601728 | PTEN | 10q23.31 | LOF | [46,47,48] | |
HHT | 187300 | ENG | 9q34.11 | LOF | BMP9/10/ALK signaling | [49,50] |
601284 | ACVRL1 (ALK1) | 12q13.13 | LOF | [51,52] | ||
601101 | HHT3 | 5q31.3-32 | LOF | [53] | ||
610655 | HHT4 | 7p14 | LOF | [54] | ||
605120 | GDF2 (BMP9) | 10q11.22 | LOF | [55] | ||
JPS/HHT (JPHT) | 175050 | SMAD4 | 18q21.2 | LOF | [49,56,57] | |
Lymphatic anomalies | ||||||
LM | 613089 | PIK3CA | 3q26.32 | ASM | [58,59,60,61,62,63,64] | |
Other Signaling Pathways | ||||||
Vascular tumors | ||||||
IH | 191306 | VEGFR2 | 4q12 | Variants | Increased VEGFR2 signaling; reduced VEGFR1 signaling | [65] |
606410 | ANTXR1 (TEM8) | 2p13.3 | [66,67,68,69] | |||
VEGFR3? PDGFRB? FGFR4? | 5q31-33 | [70,71] | ||||
Venous anomalies | ||||||
GVM | 138000 | GLMN | 1p22.1 | LOF | HGF/c-Met signaling; TGFB signaling? | [72,73,74,75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butnariu, L.I.; Gorduza, E.V.; Florea, L.; Țarcă, E.; Moisă, Ș.M.; Trandafir, L.M.; Stoleriu, S.; Bădescu, M.C.; Luca, A.-C.; Popa, S.; et al. The Genetic Architecture of Vascular Anomalies: Current Data and Future Therapeutic Perspectives Correlated with Molecular Mechanisms. Int. J. Mol. Sci. 2022, 23, 12199. https://doi.org/10.3390/ijms232012199
Butnariu LI, Gorduza EV, Florea L, Țarcă E, Moisă ȘM, Trandafir LM, Stoleriu S, Bădescu MC, Luca A-C, Popa S, et al. The Genetic Architecture of Vascular Anomalies: Current Data and Future Therapeutic Perspectives Correlated with Molecular Mechanisms. International Journal of Molecular Sciences. 2022; 23(20):12199. https://doi.org/10.3390/ijms232012199
Chicago/Turabian StyleButnariu, Lăcrămioara Ionela, Eusebiu Vlad Gorduza, Laura Florea, Elena Țarcă, Ștefana Maria Moisă, Laura Mihaela Trandafir, Simona Stoleriu, Minerva Codruța Bădescu, Alina-Costina Luca, Setalia Popa, and et al. 2022. "The Genetic Architecture of Vascular Anomalies: Current Data and Future Therapeutic Perspectives Correlated with Molecular Mechanisms" International Journal of Molecular Sciences 23, no. 20: 12199. https://doi.org/10.3390/ijms232012199
APA StyleButnariu, L. I., Gorduza, E. V., Florea, L., Țarcă, E., Moisă, Ș. M., Trandafir, L. M., Stoleriu, S., Bădescu, M. C., Luca, A. -C., Popa, S., Radu, I., & Cojocaru, E. (2022). The Genetic Architecture of Vascular Anomalies: Current Data and Future Therapeutic Perspectives Correlated with Molecular Mechanisms. International Journal of Molecular Sciences, 23(20), 12199. https://doi.org/10.3390/ijms232012199