Radiovaccination Strategy for Cancer Treatment Integrating Photodynamic Therapy-Generated Vaccines with Radiotherapy
Abstract
:1. Introduction
2. Photodynamic Therapy-(PDT)
3. PDT-Induced Anti-Tumor Immune Response
4. PDT-Generated Cancer Vaccines
- Resistance against re-challenge with a vaccine-cured tumor;
- Failure of protecting against different mismatched tumors;
- Effective control of tumors growing distantly from the vaccination site;
- Mobilization of dendritic cells (DCs) to vaccination area and their functional maturation;
- Induction of vaccinated tumor-specific interferon-γ-secreting T cells with enhanced selective tumoricidal activity;
- Appearance post-vaccination of elevated numbers of degranulating CD8+ T cells in regressing lesions, but not in the poor responders;
- Absence of the vaccine effect in cytotoxic T cell-depleted hosts [33].
5. Cancer Radiotherapy Combined with Vaccines
- Surface calreticulin expression on tumor cells induced by radiation treatment was also connected to the observed enhanced T cell killing [62].
- Increased expression of costimulatory molecules for T cells, including OX-40L and 4-1BBL, in irradiated tumor cells has also been reported and suggested to promote antitumor immune interaction [63]. Positive effects from elevated expression of these costimulatory molecules could also result from their negative impact on immunosuppression mediated by tumor-mobilized Tregs and other immunoregulatory cells [64,65].
- Radiotherapy can alter (sometimes reduce) viability of both Tregs and MDSC populations in the tumor microenvironment [68].
- Synergy of radiotherapy and cancer vaccine based on B subunit of the Shiga toxin (STxB) coupled with HPV16 E7 oncoprotein was demonstrated on a pre-clinical mouse model of head and neck tumor [70]. The non-replicative vector STxB targets dendritic cells, and when coupled to various tumor antigens elicits a strong specific CTL-based antitumor immune response [71]. The therapeutic efficacy against head and neck tumor of the vaccine was found to be strongly enhanced by local radiation. This was linked to the induction of a more potent antitumor immune response in the combined therapy group that could at least in part be attributed to increased tumor vascular permeability promoting migration of immune effector cells into the tumor [70].
- Combining a recombinant cancer vaccine with standard radiotherapy in patients with localized prostate cancer was examined in phase II clinical trial [72]. The used poxviral vaccine encoding prostate-specific antigen (PSA) effectively induced a PSA-specific T cell response when combined with radiotherapy, and this procedure was safe. Such a response was not detectable in the radiotherapy-only arm.
- A clinical trial evaluated responses to autologous DC-based vaccine in combination with conformal radiotherapy from 40 patients with recurrent metastatic or locally advanced tumors of the pancreas, lung, esophagus, uterus, or head and neck [73]. For the vaccine, matured DCs pulsed with autologous tumor cell lysates or tumor-specific peptides were administered every other week after radiotherapy, up to seven times. A response rate of 61% was documented for patients receiving full-dose radiotherapy. In overall, the results suggested that the combination of DC-based vaccine and RT induces evaluable clinical responses [64,73].
6. Radiovaccination with PDT Vaccines
- De-bulking the tumors by RT (cytoreduction) that allows the PDT vaccine-activated immune mechanisms to engage with more easily eradicated smaller malignant deposits;
- Induction of ICD signaling not only by PDT vaccine but also by RT allowing the presentation of a much wider range of tumor antigens/neoantigens for a much broader antitumor immune attack [69];
7. Conclusions
Funding
Conflicts of Interest
References
- Song, Q.; Zhang, C.-D.A.; Wu, X.-H. Therapeutic cancer vaccines: From initial findings to prospects. Immunol. Lett. 2018, 196, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Saxena, M.; van der Berg, S.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov (accessed on 15 July 2022).
- Sellars, M.C.; Wu, C.J.; Fritsch, E.F. Cancer vaccines: Building a bridge over troubled waters. Cell 2022, 185. in press. [Google Scholar] [CrossRef]
- Cuzzubbo, S.; Mangsbo, S.; Nagarajan, D.; Habra, K.; Pockley, A.G.; McArdle, S.E.B. Cancer vaccines; Adjuvant potency, importance of Age, Lifestyle, and treatments. Front. Immunol. 2021, 11, 615240. [Google Scholar] [CrossRef]
- Jensen, K.J.; Benn, C.S.; van Crevel, R. Unraveling the nature of non-specific effects of vaccines—a challenge for innate immunologists. Semin. Immunol. 2016, 28, 377–383. [Google Scholar] [CrossRef]
- Thomas, S.; Prendergast, G.C. Cancer vaccines: A brief overview. Methods Mol. Biol. 2016, 1403, 755–761. [Google Scholar] [PubMed]
- Hammerich, L.; Bhardwaj, N.; Kohrt, H.E.; Brody, J.D. In situ vaccination for the treatment of cancer. Immunotherapy 2016, 8, 315–330. [Google Scholar] [PubMed]
- Zhang, F.; Zheng, Z.; Barman, A.K.; Wang, Z.; Wang, L.; Zeng, W.; Wang, L.; Qin, Y.; Pandey, A.; Zhang, C.; et al. Optimal combination treatment regimens of vaccine and radiotherapy augment tumor-bearing host immunity. Commun. Biol. 2021, 4, 78. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, I.B.; Yu, Y.; Ossendorp, F.; Korbelik, M.; Oliveira, S. Preclinical and clinical evidence of immune responses triggered in oncologic photodynamic therapy: Clinical recommendations. J. Clin. Med. 2020, 9, 333. [Google Scholar]
- Khanam, H.; Dar, A.M.; Dar, B.A.; Shamsuzzaman, M. Photodynamic therapy in the treatment of cancer: A review. J. Integ. Med. 2019, 8, 780. [Google Scholar] [CrossRef]
- Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knavel, E.M.; Brace, C.L. Tumor ablation: Common modalities and general practices. Tech. Vasc. Interr. Radiol. 2013, 16, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Keisari, Y. Tumor abolition and antitumor immunostimulation by physico-chemical tumor ablation. Front. Biosci. Landmark 2017, 22, 310–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansur, A.; Garg, T.; Shrigiriwar, A.; Etazadi, V.; Georgiades, C.; Habibollahi, P.; Huber, T.C.; Camacho, J.C.; Nour, S.G.; Sag, A.A.; et al. Image-guided percutaneous ablation for primary and metastatic tumors. Diagnostics 2022, 12, 1300. [Google Scholar] [CrossRef] [PubMed]
- Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part three—Photosensitizer Pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn. Ther. 2005, 2, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Korbelik, M. Induction of tumor immunity by photodynamic therapy. J. Clin. Laser Med. Surg. 1996, 14, 329–334. [Google Scholar]
- Castano, A.P.; Mroz, P.; Hamblin, M.R. Photodynamic therapy and anti-tumor immunity. Nat. Rev. Cancer 2006, 6, 535–545. [Google Scholar]
- Gomer, C.J.; Luna, M.; Ferrario, A.; Wong, S.; Fisher, A.M.R. Cellular targets and molecular responses associated with photodynamic therapy. J. Clin. Laser Surg. Med. 1996, 14, 315–321. [Google Scholar] [CrossRef]
- Moserova, I.; Kralova, J. Role of ER stress in photodynamic therapy: ROS generated in different subcellular compartments trigger diverse cell death pathways. PLoS ONE 2012, 7, e32972. [Google Scholar] [CrossRef]
- Korbelik, M. Role of stress signaling networks in cancer cell death and antitumor immune response following proteotoxic injury inflicted by photodynamic therapy. Lasers Surg. Med. 2018, 50, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Korbelik, M. The outcome of tumor ablation therapies is determined by stress signaling networks. J. Cell Signal 2022, 3, 1–4. [Google Scholar]
- Diaz-Villanueva, J.F.; Diaz-Molina, R.; Garcia-Gonzales, V. Protein folding and mechanisms of proteostasis. Int. J. Mol. Sci. 2015, 16, 17193–17230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotamisligil, G.S.; Davis, R.J. Cell signaling and stress responses. Cold Spring Harb. Perspect. Biol. 2016, 8, a006072. [Google Scholar] [CrossRef] [PubMed]
- Janssens, S.; Pulendran, B.; Lambrecht, B.N. Emerging functions of the unfolded protein response in immunity. Nat. Immunol. 2014, 15, 910–919. [Google Scholar] [CrossRef] [Green Version]
- Korbelik, M.; Hode, T.; Lam, S.S.K.; Chen, W.R. Novel immune stimulant amplifies direct tumoricidal effect of cancer ablation therapies and their systemic antitumor immune efficacy. Cells 2021, 10, 492. [Google Scholar] [CrossRef]
- Lu, P.D.; Harding, H.P.; Ron, D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol. 2004, 167, 27–33. [Google Scholar] [CrossRef]
- Starck, S.R.; Shastri, N. Nowhere to hide: Unconventional translation yields cryptic peptides for immune surveillance. Immunol. Rev. 2016, 272, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Gollnick, S.O.; Vaughan, L.A.; Henderson, B.W. Generation of effective anti-tumor vaccines using photodynamic therapy. Cancer Res. 2002, 62, 1604–1608. [Google Scholar]
- Korbelik, M.; Cecic, I. Mechanism of tumor destruction by photodynamic therapy. In Handbook of Photochemistry and Photobiology; Nalwa, H.S., Ed.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2003; Volume 4, pp. 39–77. [Google Scholar]
- Korbelik, M. Impact of cell death manipulation on the efficacy of photodynamic therapy-generated cancer vaccines. World J. Immunol. 2015, 5, 95–98. [Google Scholar] [CrossRef]
- Korbelik, M. Cancer vaccines generated by photodynamic therapy. Photochem. Photobiol. Sci. 2011, 10, 654–669. [Google Scholar] [CrossRef] [PubMed]
- Korbelik, M.; Sun, J. Photodynamic therapy-generated vaccine for cancer therapy. Cancer Immunol. Immunother. 2005, 55, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Korbelik, M.; Stott, B.; Sun, J. Photodynamic therapy-generated vaccine: Relevance of tumor cell death epression. Br. J. Cancer 2007, 97, 1381–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korbelik, M.; Merchant, S. Photodynamic therapy-generated vaccine elicits acute phase and hormonal response in treated mice. Cancer Immunol. Immunother. 2012, 61, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Korbelik, M. Optimization of whole tumor cell vaccines by interaction with phagocytic receptors. Vaccines 2011, 9, 904. [Google Scholar] [CrossRef]
- Zheng, Y.; Yin, G.; Le, V.; Zhang, A.; Chen, S.; Liang, X.; Liu, J. Photodynamic therapy activates immune response by disrupting immunity homeostasis of tumor cells, which generates vaccine for cancer therapy. Int. J. Biol. Sci. 2016, 12, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Jung, N.C.; Kim, H.J.; Kang, M.S.; Lee, J.H.; Song, J.Y.; Seao, H.G.; Bae, Y.S.; Lim, D.S. Photodynamic therapy-mediated DC immunotherapy is highly effective for the inhibition of established solid tumors. Cancer Lett. 2012, 324, 58–65. [Google Scholar] [CrossRef]
- Garg, A.D.; Vandenberk, L.; Koks, C.; Verschuere, T.; Boon, L.; Van Gool, S.W.; Agostinis, P. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high grade glioma. Sci. Transl. Med. 2016, 8, 320ra27. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, W.; Li, Y. Generation of effective vaccines against liver cancer by using photodynamic therapy. Lasers Med. Sci. 2008, 24, 549–552. [Google Scholar] [CrossRef]
- Friedberg, J. A photodynamic therapy generated tumor vaccine in an orthotopic murine malignant mesothelioma model. In Proceedings of the 8th International Conference of the Mesothelioma Interest Group, Chicago, IL, USA, 19–22 October 2006. [Google Scholar]
- Bae, S.-M.; Kim, Y.-W.; Kwak, S.-Y.; Kim, Y.-W.; Ro, D.-Y.; Shin, J.-C.; Park, C.-H.; Han, S.-J.; Oh, C.-H.; Kim, C.-K.; et al. Photodynamic therapy-generated tumor cell lysates with CpG-oligodeoxynucleotide enhance immunotherapy efficacy in human papillomavirus 16 (E6/E7) immortalized tumor cells. Cancer Sci. 2007, 98, 747–752. [Google Scholar] [CrossRef]
- Korbelik, M. Immunoregulatory cell populations obligatory targets with most cancer therapies. Austin J. Clin. Med. 2018, 5, 1032. [Google Scholar]
- Korbelik, M.; Banáth, J.; Saw, K.M. Immunoregulatory cell depletion improves the efficacy of photodynamic therapy-generated cancer vaccines. Int. J. Mol. Sci. 2015, 16, 27005–27014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korbelik, M.; Banáth, J.; Zhang, W. Mreg activity in tumor response to photodynamic therapy and photodynamic therapy-generated cancer vaccines. Cancers 2016, 8, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korbelik, M.; Banáth, J.; Zhang, W.; Saw, K.M.; Szulc, Z.M.; Bielawska, A.; Separovic, D. Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine. Int. J. Cancer 2016, 139, 1372–1378. [Google Scholar] [CrossRef]
- Korbelik, M.; Banáth, J.; Zhang, W.; Gallagher, P.; Hode, T.; Lam, S.S.K.; Chen, W.R. N-dihydrogalactochitosan as immune and direct antitumor agent amplifying the effects of photodynamic therapy and photodynamic therapy-generated vaccines. Int. Immunopharmacol. 2019, 75, 105764. [Google Scholar] [CrossRef] [PubMed]
- Klebanoff, C.A.; Acquavella, N.; Yu, Z.; Restifo, N.P. Therapeutic cancer vaccines: Are we there yet? Immunol. Rev. 2011, 239, 27–44. [Google Scholar] [CrossRef]
- Van der Burg, S.H.; Arens, R.; Ossendorp, F.; van Hall, T.; Melief, C.J. Vaccines for established cancer: Overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 2016, 16, 219–233. [Google Scholar] [CrossRef]
- Gatti-Mays, M.E.; Redman, J.M.; Collins, J.M.; Bilusic, M. Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations. Hum. Vaccin. Immunother. 2017, 13, 2561–2574. [Google Scholar] [CrossRef] [Green Version]
- Cadena, A.; Cushman, T.R.; Anderson, C.; Barsoumian, H.B.; Welsh, J.W.; Cortez, M.A. Radiation and anti-cancer vaccines: A winning combination. Vaccines 2018, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Formenti, S.C.; Demaria, S. Combining radiotherapy and cancer immunotherapy: A paradigm shift. J. Natl. Cancer Inst. 2013, 105, 256–265. [Google Scholar] [CrossRef] [Green Version]
- Tisch, M.; Heimlich, F.; Daniel, V.; Opelz, G.; Maier, H. Cellular immune defect caused by postsurgical radiation therapy in patients with head and neck cancer. Otolaryngol. Head Neck Surg. 1998, 119, 412–417. [Google Scholar] [CrossRef]
- Filatenkov, A.; Baker, J.; Mueller, A.M.; Kenkel, J.; Ahn, G.O.; Dutt, S.; Zhang, N.; Kohrt, H.; Jensen, K.; Dejbakhsh-Jones, S.; et al. Ablative tumor radiation can change tumor immune cell microenvironment to induce durable complete remissions. Clin. Cancer Res. 2015, 21, 3727–3739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belka, C.; Ottinger, H.; Kreuzfelder, E.; Weinmann, M.; Lindemann, M.; Lepple-Weinhues, A.; Budach, W.; Grosse-Wilde, H.; Bamberg, M. Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother. Oncol. 1999, 50, 199–204. [Google Scholar] [CrossRef]
- Vanpouille-Box, C.; Diamond, J.M.; Pilones, K.A.; Zavadil, J.; Babb, J.S.; Formenti, S.C.; Barcellos-Hoff, M.H.; Demaria, S. Tgfbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 2015, 5, 2232–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wennerberg, E.; Lhuillier, C.; Vanpouille-Box, C.; Pilones, K.A.; Garcia-Martinez, E.; Rudqvist, N.P.; Formenti, S.C.; Demaria, S. Barriers to radiation-induced in situ tumor vaccination. Front. Immunol. 2017, 8, 229. [Google Scholar] [CrossRef]
- Ma, Y.; Kepp, O.; Ghiringhelli, F.; Apetoh, L.; Aymeric, L.; Locher, C.; Tesniere, A.; Martins, I.; Ly, A.; Haynes, N.M.; et al. Chemotherapy and radiotherapy: Cryptic anticancer vaccines. Semin. Immunol. 2010, 22, 113–124. [Google Scholar] [CrossRef]
- Chakraborty, M.; Abrams, S.I.; Camphausen, K.; Liu, K.; Scott, T.; Coleman, C.N.; Hodge, J.W. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J. Immunol. 2003, 170, 6338–6347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnett, C.T.; Palena, C.; Chakraborty, M.; Tsang, K.Y.; Schlom, J.; Hodge, J.W. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 2004, 64, 7085–7994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gameiro, S.R.; Jammeh, M.L.; Wattenberg, M.M.; Tsang, K.Y.; Ferrone, S.; Hodge, J.W. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in Enhanced T-cell killing. Oncotarget 2014, 5, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Vu, M.D.; Xiao, X.; Gao, W.; Degauque, N.; Chen, M.; Kroemer, A.; Killeen, N.; Ishii, N.; Li, X.C. OX40 costimulation turns off Foxp3+ Tregs. Blood 2007, 110, 2501–2510. [Google Scholar] [CrossRef] [Green Version]
- Garnett-Benson, C.; Hodge, J.W.; Gameiro, S.R. Combination regimens of radiation therapy and therapeutic cancer vaccines: Mechanisms and opportunities. Semin. Radiat. Oncol. 2015, 25, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Cacan, E.; Greer, S.; Garnett-Benson, C. Turning T cells on: Epigenetically enhanced expression of effector T-cell costimulatory molecules on irradiated human tumor cells. J. Immunother. Cancer 2013, 1, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumura, S.; Wang, B.; Kawashima, N.; Braunstein, S.; Badura, M.; Cameron, T.O.; Babb, J.S.; Schneider, R.J.; Formenti, S.C.; Dustin, M.L.; et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J. Immunol. 2008, 181, 3099–3107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Goel, S.; Duda, D.G.; Fukumura, D.; Jain, R.K. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 2013, 73, 2943–2948. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.X. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014, 124, 687–695. [Google Scholar] [CrossRef]
- Kroemer, G.; Galuzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72. [Google Scholar] [CrossRef] [PubMed]
- Mondini, M.; Nizard, M.; Tran, T.; Mauge, L.; Loi, M.; Clemenson, C.; Dugue, D.; Maroun, P.; Louvet, E.; Adam, J.; et al. Synergy of radiotherapy and a cancer vaccine for treatment of HPV-associated head and neck cancer. Mol. Cancer Ther. 2015, 14, 1336–1345. [Google Scholar] [CrossRef] [Green Version]
- Adotevi, O.; Vingert, B.; Freyburger, L.; Shrikant, P.; Lone, Y.C.; Quintin-Colonna, F.; Quintin-Colonna, F.; Haicheur, N.; Amessou, M.; Herbalin, A.; et al. B subunit of Shiga toxin-based vaccines synergize with alphagalactosylceramide to break tolerance against self antigen and elicit antiviral immunity. J. Immunol. 2007, 179, 3371–3379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulley, J.L.; Arlen, P.M.; Bastian, A.; Morin, S.; Marte, J.; Beetham, P.; Tsang, K.-Y.; Yokokawa, J.; Hodge, J.W.; Menard, C.; et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin. Cancer Res. 2005, 11, 3353–3362. [Google Scholar] [CrossRef] [Green Version]
- Shibamoto, Y.; Okamoto, M.; Kobayashi, M.; Ayakawa, S.; Iwata, H.; Sugie, C.; Mitsuishi, Y.; Takahashi, H. Immune-maximizing (IMAX) therapy for cancer: Combination of dendritic cell vaccine and intensity-modulated radiation. Mol. Clin. Oncol. 2013, 1, 649–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurana, D.; Martin, E.A.; Kaspbauer, J.L.; O’Malley, B.W., Jr.; Salomao, D.R.; Chen, L.; Strome, S.E. Characterization of a spontaneously arising murine squamous cell carcinoma (SCC VII) as a prerequisite for head and neck cancer immunotherapy. Head Neck 2001, 23, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Bakos, O.; Lawson, C.; Rouleau, S.; Tai, L.-H. Combining surgery and immunotherapy: Turning and immunosuppressive effect into a therapeutic opportunity. J. Immunother. Cancer 2018, 6, 86. [Google Scholar] [CrossRef] [PubMed]
Tumor Models | Vaccine Format | Reference |
---|---|---|
Mammary; mastocytoma | Cell lysates | Gollnick et al., 2002 [30] |
Head and neck carcinoma | Whole cell suspension | Korbelik et al., 2006&2007 [34,35] |
Glioma | Dendritic cells | Garg et al., 2016 [40] |
Lung cancer | Dendritic cells | Zheng et al., 2016 [38] |
Liver cancer | Supernatants of PDT-treated cells | Zhang et al., 2008 [41] |
Mesothelioma | Cell lysates | Friedberg, 2006 [42] |
Cervical cancer | Cell lysates | Bae et al., 2007 [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korbelik, M. Radiovaccination Strategy for Cancer Treatment Integrating Photodynamic Therapy-Generated Vaccines with Radiotherapy. Int. J. Mol. Sci. 2022, 23, 12263. https://doi.org/10.3390/ijms232012263
Korbelik M. Radiovaccination Strategy for Cancer Treatment Integrating Photodynamic Therapy-Generated Vaccines with Radiotherapy. International Journal of Molecular Sciences. 2022; 23(20):12263. https://doi.org/10.3390/ijms232012263
Chicago/Turabian StyleKorbelik, Mladen. 2022. "Radiovaccination Strategy for Cancer Treatment Integrating Photodynamic Therapy-Generated Vaccines with Radiotherapy" International Journal of Molecular Sciences 23, no. 20: 12263. https://doi.org/10.3390/ijms232012263
APA StyleKorbelik, M. (2022). Radiovaccination Strategy for Cancer Treatment Integrating Photodynamic Therapy-Generated Vaccines with Radiotherapy. International Journal of Molecular Sciences, 23(20), 12263. https://doi.org/10.3390/ijms232012263