Radiation as a Tool against Neurodegeneration—A Potential Treatment for Amyloidosis in the Central Nervous System
Abstract
:1. Introduction
2. Amyloidosis in Neurodegenerative Disorders
3. Hormesis of Ionizing Radiation
4. The Potential of Radiation to Treat Neurodegenerative Disorders
4.1. In Vitro Studies
4.2. Animal Models
4.3. Clinical Trials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Djajadikerta, A.; Keshri, S.; Pavel, M.; Prestil, R.; Ryan, L.; Rubinsztein, D.C. Autophagy Induction as a Therapeutic Strategy for Neurodegenerative Diseases. J. Mol. Biol. 2020, 432, 2799–2821. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kang, J.-H.; Lee, S. Autophagy in Neurodegenerative Diseases: A Hunter for Aggregates. Int. J. Mol. Sci. 2020, 21, 3369. [Google Scholar] [CrossRef] [PubMed]
- Sinyor, B.; Mineo, J.; Ochner, C. Alzheimer’s Disease, Inflammation, and the Role of Antioxidants. J. Alzheimers Dis. Rep. 2020, 4, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Madian, A.G.; Hindupur, J.; Hulleman, J.D.; Diaz-Maldonado, N.; Mishra, V.R.; Guigard, E.; Kay, C.M.; Rochet, J.C.; Regnier, F.E. Effect of single amino acid substitution on oxidative modifications of the Parkinson’s disease-related protein, DJ-1. Mol. Cell Proteom. 2012, 11, M111.010892. [Google Scholar] [CrossRef] [Green Version]
- Pritam, P.; Deka, R.; Bhardwaj, A.; Srivastava, R.; Kumar, D.; Jha, A.K.; Jha, N.K.; Villa, C.; Jha, S.K. Antioxidants in Alzheimer’s Disease: Current Therapeutic Significance and Future Prospects. Biology 2022, 11, 212. [Google Scholar] [CrossRef]
- Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol. 2021, 17, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Nazem, A.; Sankowski, R.; Bacher, M.; Al-Abed, Y. Rodent models of neuroinflammation for Alzheimer’s disease. J. Neuroinflammation 2015, 12, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, S.M.; Davis, A.; Simons, E. Targeting alpha-synuclein via the immune system in Parkinson’s disease: Current vaccine therapies. Neuropharmacology 2022, 202, 108870. [Google Scholar] [CrossRef] [PubMed]
- Merelli, A.; Repetto, M.; Lazarowski, A.; Auzmendi, J. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. J. Alzheimer Dis. 2021, 82, S109–S126. [Google Scholar] [CrossRef] [PubMed]
- Escartin, C.; Galea, E.; Lakatos, A.; O’Callaghan, J.P.; Petzold, G.C.; Serrano-Pozo, A.; Steinhäuser, C.; Volterra, A.; Carmignoto, G.; Agarwal, A.; et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 2021, 24, 312–325. [Google Scholar] [CrossRef]
- Dunn, N.; Mullee, M.; Perry, V.H.; Holmes, C. Association between dementia and infectious disease: Evidence from a case-control study. Alzheimer Dis. Assoc. Disord. 2005, 19, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Ezzat, K.; Sturchio, A.; Espay, A.J. Proteins Do Not Replicate, They Precipitate: Phase Transition and Loss of Function Toxicity in Amyloid Pathologies. Biology 2022, 11, 535. [Google Scholar] [CrossRef] [PubMed]
- Kurrus, J.A.; Hayes, J.K.; Hoidal, J.R.; Menendez, M.M.; Elstad, M.R. Radiation therapy for tracheobronchial amyloidosis. Chest 1998, 114, 1489–1492. [Google Scholar] [CrossRef]
- Khaira, M.; Mutamba, A.; Meligonis, G.; Rose, G.E.; Plowman, P.N.; O’Donnell, H. The use of radiotherapy for the treatment of localized orbital amyloidosis. Orbit 2008, 27, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Copperman, T.S.; Truong, M.T.; Berk, J.L.; Sobel, R.K. External beam radiation for localized periocular amyloidosis: A case series. Orbit 2019, 38, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sami, N.; Kashav, T.; Islam, A.; Ahmad, F.; Hassan, M.I. Protein aggregation and neurodegenerative diseases: From theory to therapy. Eur. J. Med. Chem. 2016, 124, 1105–1120. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, J.; Antonelli, A.C.; Afridi, A.; Vatsia, S.; Joshi, G.; Romanov, V.; Murray, I.V.J.; Khan, S.A. Protein misfolding and aggregation in neurodegenerative diseases: A review of pathogeneses, novel detection strategies, and potential therapeutics. Rev. Neurosci. 2019, 30, 339–358. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.R.; Liu, R.T. The Toxicity and Polymorphism of β-Amyloid Oligomers. Int. J. Mol. Sci. 2020, 21, 4477. [Google Scholar] [CrossRef]
- Ungureanu, A.A.; Benilova, I.; Krylychkina, O.; Braeken, D.; de Strooper, B.; van Haesendonck, C.; Dotti, C.G.; Bartic, C. Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: A force spectroscopy study on living hippocampal neurons. Sci. Rep. 2016, 6, 25841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carija, A.; Navarro, S.; de Groot, N.S.; Ventura, S. Protein aggregation into insoluble deposits protects from oxidative stress. Redox Biol. 2017, 12, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Arrasate, M.; Mitra, S.; Schweitzer, E.S.; Segal, M.R.; Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004, 431, 805–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, L.; Feigin, A. Huntington’s Disease: New Frontiers in Therapeutics. Curr. Neurol. Neurosci. Rep. 2021, 21, 10. [Google Scholar] [CrossRef]
- Huang, L.K.; Chao, S.P.; Hu, C.J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci. 2020, 27, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poewe, W.; Volc, D.; Seppi, K.; Medori, R.; Lührs, P.; Kutzelnigg, A.; Djamshidian, A.; Thun-Hohenstein, C.; Meissner, W.G.; Rascol, O.; et al. Safety and Tolerability of Active Immunotherapy Targeting α-Synuclein with PD03A in Patients with Early Parkinson’s Disease: A Randomized, Placebo-Controlled, Phase 1 Study. J. Parkinsons Dis. 2021, 11, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Fatoba, O.; Ohtake, Y.; Itokazu, T.; Yamashita, T. Immunotherapies in Huntington’s disease and α-Synucleinopathies. Front. Immunol. 2020, 11, 337. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Dong, X. Therapeutic implications of prion diseases. Biosaf. Health 2021, 3, 92–100. [Google Scholar] [CrossRef]
- Yan, L.J. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2014, 2, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Loscalzo, J. Metabolic Responses to Reductive Stress. Antioxid. Redox Signal. 2020, 32, 1330–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloret, A.; Fuchsberger, T.; Giraldo, E.; Vina, J. Reductive Stress: A New Concept in Alzheimer’s Disease. Curr. Alzheimer Res. 2015, 13, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, K.K.S.; Devarajan, A.; Karan, G.; Sundaram, S.; Wang, Q.; van Groen, T.; del Monte, F.; Rajasekaran, N.S. Reductive stress promotes protein aggregation and impairs neurogenesis. Redox Biol. 2020, 37, 101739. [Google Scholar] [CrossRef]
- Röntgen, W.C. Über Eine Neuea Art von Strahlen: (Sitzungsberichte der phys.-med. Gesellschaft Würzburg); Springer: Berlin/Heidelberg, Germany, 1895; pp. 132–145. [Google Scholar]
- Becquerel, H. Sur Diverses Propriétés Des Rayons Uraniques; Institut de France, Academie des sciences: Paris, France, 1896; pp. 855–858. [Google Scholar]
- Azzam, E.I.; Jay-Gerin, J.P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012, 327, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, W.; Giron, M.C. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci. 2014, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- L’Annunziata, M.F. Radioactivity and Our Well-Being. In Radioactivity: Introduction and History, From the Quantum to Quarks, 2nd ed.; L’Annunziata, M.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–66. [Google Scholar]
- Mohan, R.; Grosshans, D. Proton therapy—Present and future. Adv. Drug Deliv. Rev. 2017, 109, 26–44. [Google Scholar] [CrossRef] [Green Version]
- Paganetti, H.; Beltran, C.; Both, S.; Dong, L.; Flanz, J.; Furutani, K.; Grassberger, C.; Grosshans, D.R.; Knopf, A.-C.; Langendijk, J.A.; et al. Roadmap: Proton therapy physics and biology. Phys. Med. Biol. 2021, 66, 05RM01. [Google Scholar] [CrossRef]
- Baldwin, J.; Grantham, V. Radiation Hormesis: Historical and Current Perspectives. J. Nucl. Med. Technol. 2015, 43, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Yoshimoto, M.; Kataoka, T.; Toyota, T.; Taguchi, T.; Yamaoka, K. Inhibitory Effects of Prior Low-Dose X-Irradiation on Cold-Induced Brain Injury in Mouse. Inflammation 2012, 35, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Tsukimoto, M.; Nakatsukasa, H.; Sugawara, K.; Yamashita, K.; Kojima, S. Repeated 0.5-Gy gamma irradiation attenuates experimental autoimmune encephalomyelitis with up-regulation of regulatory T cells and suppression of IL17 roduction. Radiat. Res. 2008, 170, 429–436. [Google Scholar] [CrossRef]
- Ina, Y.; Sakai, K. Prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice. Radiat. Res. 2004, 161, 168–173. [Google Scholar] [CrossRef] [PubMed]
- McKelvey, K.J.; Hudson, A.L.; Donaghy, H.; Stoner, S.P.; Wheeler, H.R.; Diakos, C.I.; Howell, V.M. Differential effects of radiation fractionation regimens on glioblastoma. Radiat. Oncol. 2022, 17, 17. [Google Scholar] [CrossRef]
- Gomes, T.; Song, Y.; Brede, D.A.; Xie, L.; Gutzkow, K.B.; Salbu, B.; Tollefsen, K.E. Gamma radiation induces dose-dependent oxidative stress and transcriptional alterations in the freshwater crustacean Daphnia magna. Sci. Total Environ. 2018, 628–629, 206–216. [Google Scholar] [CrossRef]
- Cuttler, J.M. Application of Low Doses of Ionizing Radiation in Medical Therapies. Dose-Response 2020, 18, 1559325819895739. [Google Scholar] [CrossRef]
- Otani, A.; Kojima, H.; Guo, C.; Oishi, A.; Yoshimura, N. Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa. Am. J. Pathol. 2012, 180, 328–336. [Google Scholar] [CrossRef]
- Yang, L.; Yang, J.; Li, G.; Li, Y.; Wu, R.; Cheng, J.; Tang, Y. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury. Mol. Neurobiol. 2017, 54, 1022–1032. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Singla, N.; Chadha, V.D.; Dhawan, D.K. A concept of radiation hormesis: Stimulation of antioxidant machinery in rats by low dose ionizing radiation. Hell. J. Nucl. Med. 2019, 22, 43–48. [Google Scholar]
- Kojima, S.; Matsuki, O.; Nomura, T.; Yamaoka, K.; Takahashi, M.; Niki, E. Elevation of antioxidant potency in the brain of mice by low-dose gamma-ray irradiation and its effect on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced brain damage. Free Radic. Biol. Med. 1999, 26, 388–395. [Google Scholar] [CrossRef]
- Otsuka, K.; Koana, T.; Tauchi, H.; Sakai, K. Activation of antioxidative enzymes induced by low-dose-rate whole-body gamma irradiation: Adaptive response in terms of initial DNA damage. Radiat. Res. 2006, 166, 474–478. [Google Scholar] [CrossRef]
- Rödel, F.; Hofmann, D.; Auer, J.; Keilholz, L.; Röllinghoff, M.; Sauer, R.; Beuscher, H.U. The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion. Strahlenther. Onkol. 2008, 184, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, G.; Maggiorella, L.; Rödel, F.; Rödel, V.; Willis, D.; Trott, K.-R. Mononuclear cell adhesion and cell adhesion molecule liberation after X-irradiation of activated endothelial cells in vitro. Int. J. Radiat. Biol. 2002, 78, 315–325. [Google Scholar] [CrossRef]
- Hildebrandt, G.; Radlingmayr, A.; Rosenthal, S.; Rothe, R.; Jahns, J.; Hindemith, M.; Rödel, F.; Kamprad, F. Low-dose radiotherapy (LD-RT) and the modulation of iNOS expression in adjuvant-induced arthritis in rats. Int. J. Radiat. Biol. 2003, 79, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Arenas, M.; Sabater, S.; Hernández, V.; Rovirosa, A.; Lara, P.C.; Biete, A.; Panés, J. Anti-inflammatory effects of low-dose radiotherapy. Indications, dose, and radiobiological mechanisms involved. Strahlenther. Onkol. 2012, 188, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Kriz, J.; Seegenschmiedt, H.M.; Bartels, A.; Micke, O.; Muecke, R.; Schaefer, U.; Haverkamp, U.; Eich, H.T. Updated strategies in the treatment of benign diseases—a patterns of care study of the german cooperative group on benign diseases. Adv. Radiat. Oncol. 2018, 3, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Rödel, F.; Keilholz, L.; Herrmann, M.; Sauer, R.; Hildebrandt, G. Radiobiological mechanisms in inflammatory diseases of low-dose radiation therapy. Int. J. Radiat. Biol. 2007, 83, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Al Yahya, R.S. Treatment of primary cutaneous amyloidosis with laser: A review of the literature. Lasers Med. Sci. 2016, 31, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Millar, A.B.; O’Reilly, A.P.; Clarke, S.W.; Hetzel, M.R. Amyloidosis of the respiratory tract treated by laser therapy. Thorax 1985, 40, 544–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitaevich, E.P. Case of Effective Radiation Treatment of Amyloidosis of the Larynx. Med. Radiol. 1967, 12, 76. [Google Scholar]
- Neuner, G.A.; Badros, A.A.; Meyer, T.K.; Nanaji, N.M.; Regine, W.F. Complete resolution of laryngeal amyloidosis with radiation treatment. Head Neck 2012, 34, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Pecora, J.; Sambursky, J.; Vargha, Z. Radiation therapy in amyloidosis of the eyelid and conjunctiva: A case report. Ann. Ophthalmol. 1982, 14, 194–196. [Google Scholar] [PubMed]
- Monroe, A.T.; Walia, R.; Zlotecki, R.A.; Jantz, M.A. Tracheobronchial amyloidosis: A case report of successful treatment with external beam radiation therapy. Chest 2004, 125, 784–789. [Google Scholar] [CrossRef]
- Kalra, S.; Utz, J.P.; Edell, E.S.; Foote, R.L. External-beam radiation therapy in the treatment of diffuse tracheobronchial amyloidosis. Mayo Clin. Proc. 2001, 76, 853–856. [Google Scholar] [CrossRef] [Green Version]
- Poovaneswaran, S.; Razak, A.R.A.; Lockman, H.; Bone, M.; Pollard, K.; Mazdai, G. Tracheobronchial Amyloidosis: Utilization of Radiotherapy as a Treatment Modality. Medscape J. Med. 2008, 10, 42. [Google Scholar]
- Luo, M.; Peng, G.; Shi, L.; Ming, X.; Li, Z.; Fei, S.; Ding, Q.; Cheng, J. Intensity-modulated radiotherapy for localized nasopharyngeal amyloidosis: Case report and literature review. Strahlenther. Onkol. 2016, 192, 944–950. [Google Scholar] [CrossRef]
- Ren, S.; Ren, G. External beam radiation therapy is safe and effective in treating primary pulmonary amyloidosis. Respir. Med. 2012, 106, 1063–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, C.T.; Greene, B.D.; Fegan, J.E.; Rovira, D.; Gertz, M.A.; Marcus, D.M. External beam radiation therapy for amyloidosis of the urinary bladder. Pract. Radiat. Oncol. 2018, 8, 25–27. [Google Scholar] [CrossRef]
- Betlazar, C.; Middleton, R.J.; Banati, R.B.; Liu, G.J. The impact of high and low dose ionising radiation on the central nervous system. Redox Biol. 2016, 9, 144–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Tanaka, K.; Ji, B.; Ono, M.; Fang, Y.; Ninomiya, Y.; Maruyama, K.; Izumi-Nakajima, N.; Begum, N.; Higuchi, M.; et al. Total body 100-mGy X-irradiation does not induce Alzheimer’s disease-like pathogenesis or memory impairment in mice. J. Radiat. Res. 2014, 55, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Lowe, X.R.; Bhattacharya, S.; Marchetti, F.; Wyrobek, A.J. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer’s disease. Radiat. Res. 2009, 171, 53–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.-C.; Ding, Y.-X.; Liu, Y.-H.; Duan, L.; Bai, Y.; Shi, M.; Chen, L.-W. Low-dose radiation stimulates Wnt/β-catenin signaling, neural stem cell proliferation and neurogenesis of the mouse hippocampus in vitro and in vivo. Curr. Alzheimer Res. 2012, 9, 278–289. [Google Scholar] [CrossRef]
- Bistolfi, F. Localized amyloidosis and Alzheimer’s disease: The rationale for weekly long-term low dose amyloid-based fractionated radiotherapy. Neuroradiol. J. 2008, 21, 683–692. [Google Scholar] [CrossRef]
- Chaurasia, M.; Bhatt, A.N.; Das, A.; Dwarakanath, B.S.; Sharma, K. Radiation-induced autophagy: Mechanisms and consequences. Free Radic. Res. 2016, 50, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, M.; Gupta, S.; Das, A.; Dwarakanath, B.S.; Simonsen, A.; Sharma, K. Radiation induces EIF2AK3/PERK and ERN1/IRE1 mediated pro-survival autophagy. Autophagy 2019, 15, 1391–1406. [Google Scholar] [CrossRef]
- Wilson, G.D.; Marples, B. A New Use for an Old Treatment: Radiation Therapy and Alzheimer’s Disease. Radiat. Res. 2016, 185, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Nam, Y.; Kim, C.; Lee, H.; Hong, S.; Kim, H.S.; Shin, S.J.; Park, Y.H.; Mai, H.N.; Oh, S.M.; et al. Neuroprotective and Anti-Inflammatory Effects of Low–Moderate Dose Ionizing Radiation in Models of Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 3678. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chung, H.; Mai, H.N.; Nam, Y.; Shin, S.J.; Park, Y.H.; Chung, M.J.; Lee, J.K.; Rhee, H.Y.; Jahng, G.H.; et al. Low-Dose Ionizing Radiation Modulates Microglia Phenotypes in the Models of Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 4532. [Google Scholar] [CrossRef]
- Duan, R.; Zhu, L.; Liu, T.C.Y.; Li, Y.; Liu, J.; Jiao, J.; Xu, X.; Yao, L.; Liu, S. Light emitting diode irradiation protect against the amyloid beta 25–35 induced apoptosis of PC12 cell in vitro. Lasers Surg. Med. 2003, 33, 199–203. [Google Scholar] [CrossRef]
- Zecca, L.; Youdim, M.B.H.; Riederer, P.; Connor, J.R.; Crichton, R.R. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 2004, 5, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Savelieff, M.G.; Sanghyun, L.; Yuzhong, L.; Lim, M.H. Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS Chem. Biol. 2013, 8, 856–865. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, J.K. Investigation of the redox state of magnetite upon Aβ-fibril formation or proton irradiation; implication of iron redox inactivation and β-amyloidolysis. MRS Commun. 2018, 8, 955–960. [Google Scholar] [CrossRef]
- Kirschvink, J.L.; Kobayashi-Kirschvink, A.; Woodford, B.J. Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci. USA 1992, 89, 7683–7687. [Google Scholar] [CrossRef] [Green Version]
- Størmer, F.C. Alzheimer’s Disease: What Is the Connection between Amyloid Plaques, Magnetite and Memory? J. Alzheimers Dis. Parkinsonism 2017, 7, 366. [Google Scholar] [CrossRef]
- Tahirbegi, I.B.; Pardo, W.A.; Alvira, M.; Mir, M.; Samitier, J. Amyloid Aβ 42, a promoter of magnetite nanoparticle formation in Alzheimer’s disease. Nanotechnology 2016, 27, 465102. [Google Scholar] [CrossRef]
- Mir, M.; Tahirbegi, I.B.; Valle-Delgado, J.J.; Fernàndez-Busquets, X.; Samitier, J. In vitro study of magnetite-amyloid β complex formation. Nanomedicine 2012, 8, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Pankhurst, Q.; Hautot, D.; Khan, N.; Dobson, J. Increased levels of magnetic iron compounds in Alzheimer’s disease. J. Alzheimers Dis. 2008, 13, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Van der Weerd, L.; Lefering, A.; Webb, A.; Egli, R.; Bossoni, L. Effects of Alzheimer’s disease and formalin fixation on the different mineralised-iron forms in the human brain. Sci. Rep. 2020, 10, 16440. [Google Scholar] [CrossRef]
- Seo, S.J.; Chang, W.S.; Jeon, J.G.; Choi, Y.; Kim, E.H.; Kim, J.K. Proton Stimulation Targeting Plaque Magnetite Reduces Amyloid-β Plaque and Iron Redox Toxicity and Improves Memory in an Alzheimer’s Disease Mouse Model. J. Alzheimers Dis. 2021, 84, 377–392. [Google Scholar] [CrossRef]
- Maher, B.A.; Ahmed, I.A.M.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.A.; Torres-Jardón, R.; Calderon-Garciduenas, L. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA 2016, 113, 10797–10801. [Google Scholar] [CrossRef] [Green Version]
- Marples, B.; McGee, M.; Callan, S.; Bowen, S.E.; Thibodeau, B.J.; Michael, D.B.; Wilson, G.D.; Maddens, M.E.; Fontanesi, J.; Martinez, A.A. Cranial irradiation significantly reduces beta amyloid plaques in the brain and improves cognition in a murine model of Alzheimer’s Disease (AD). Radiother. Oncol. 2016, 118, 43–51. [Google Scholar] [CrossRef]
- Wilson, G.D.; Wilson, T.G.; Hanna, A.; Fontanesi, G.; Kulchycki, J.; Buelow, K.; Pruetz, B.L.; Michael, D.B.; Chinnaiyan, P.; Maddens, M.E.; et al. Low Dose Brain Irradiation Reduces Amyloid-β and Tau in 3xTg-AD Mice. J. Alzheimers Dis. 2020, 75, 15–21. [Google Scholar] [CrossRef]
- Iacono, D.; Murphy, E.K.; Avantsa, S.S.; Perl, D.P.; Day, R.M. Reduction of pTau and APP levels in mammalian brain after low-dose radiation. Sci. Rep. 2021, 11, 2215. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Jeong, H.; Hong, E.H.; Joo, H.M.; Cho, K.S.; Nam, S.Y. Low-dose ionizing radiation alleviates Aβ42-induced cell death via regulating AKT and p38 pathways in Drosophila Alzheimer’s disease models. Biol. Open 2019, 8, bio036657. [Google Scholar] [CrossRef] [Green Version]
- El-Ghazaly, M.A.; Sadik, N.A.; Rashed, E.R.; Abd-el-Fattah, A.A. Neuroprotective effect of EGb761® and low-dose whole-body γ-irradiation in a rat model of Parkinson’s disease. Toxicol. Ind. Health 2015, 31, 1128–1143. [Google Scholar] [CrossRef]
- Rudobeck, E.; Bellone, J.A.; Szücs, A.; Bonnick, K.; Mehrotra-Carter, S.; Badaut, J.; Nelson, G.A.; Hartman, R.E.; Vlkolinský, R. Low-dose proton radiation effects in a transgenic mouse model of Alzheimer’s disease—Implications for space travel. PLoS ONE 2017, 12, e018168. [Google Scholar]
- Owlett, L.; Belcher, E.K.; Dionisio-Santos, D.A.; Williams, J.P.; Olschowka, J.A.; O’Banion, M.K. Space radiation does not alter amyloid or tau pathology in the 3xTg mouse model of Alzheimer’s disease. Life Sci. Space Res. 2020, 27, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Cuttler, J.M.; Moore, E.R.; Hosfeld, V.D.; Nadolski, D.L. Treatment of Alzheimer Disease with CT Scans: A Case Report. Dose Response 2016, 14, 1559325816640073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuttler, J.M.; Moore, E.R.; Hosfeld, V.D.; Nadolski, D.L. Update on a Patient with Alzheimer Disease Treated with CT Scans. Dose Response 2017, 15, 1559325817693167. [Google Scholar] [CrossRef]
- Cuttler, J.M.; Moore, E.R.; Hosfeld, V.D.; Nadolski, D.L. Second Update on a Patient with Alzheimer Disease Treated by CT Scans. Dose Response 2018, 16, 1559325818756461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuttler, J.M.; Abdellah, E.; Goldberg, Y.; Al-Shamaa, S.; Symons, S.P.; Black, S.E.; Freedman, M. Low Doses of Ionizing Radiation as a Treatment for Alzheimer’s Disease: A Pilot Study. J. Alzheimers Dis. 2021, 80, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Zilli, T. Effect of Low Dose Radiotherapy on Brain Amyloidosis in the Treatment of Alzheimer’s Disease. ClinicalTrials.gov identifier: NCT03352258. Available online: https://clinicaltrials.gov/ct2/show/NCT03352258 (accessed on 2 September 2022).
- Fontanesi, J. Study of Low Dose Whole Brain Irradiation in the Treatment of Alzheimer’s Disease. ClinicalTrials.gov identifier: NCT02359864. Available online: https://clinicaltrials.gov/ct2/show/NCT02359864 (accessed on 2 September 2022).
- Kyung Hee University Hospital at Gangdong. The Safety and Scientific Validity of Low-dose Whole Brain Radiotherapy in Alzheimer’s Disease. ClinicalTrials.gov identifier: NCT04203121. Available online: https://clinicaltrials.gov/ct2/show/NCT04203121 (accessed on 2 September 2022).
- Virginia Commonwealth University. Low Dose RT to Reduce Cerebral Amyloidosis in Early Alzheimer’s. ClinicalTrials.gov identifier: NCT02769000. Available online: https://clinicaltrials.gov/ct2/show/NCT02769000 (accessed on 2 September 2022).
- Montay-Gruel, P.; Petersson, K.; Jaccard, M.; Boivin, G.; Germond, J.F.; Petit, B.; Doenlen, R.; Favaudon, V.; Bochud, F.; Bailat, C.; et al. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s. Radiother. Oncol. 2017, 124, 365–369. [Google Scholar] [CrossRef]
- Montay-Gruel, P.; Acharya, M.M.; Gonçalves, J.P.; Petit, B.; Petridis, I.G.; Fuchs, P.; Leavitt, R.; Petersson, K.; Gondré, M.; Ollivier, J.; et al. Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice. Clin. Cancer Res. 2021, 27, 775–784. [Google Scholar] [CrossRef]
- Simmons, D.A.; Lartey, F.M.; Schüler, E.; Rafat, M.; King, G.; Kim, A.; Ko, R.; Semaan, S.; Gonzalez, S.; Jenkins, M.; et al. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother. Oncol. 2019, 139, 4–10. [Google Scholar] [CrossRef]
Amyloidosis | Irradiation Conditions | Nr. of Patients | Follow-Up Time | Results | Reference |
---|---|---|---|---|---|
Orbital | 30–34 Gy/15–17 fractions/6 MV photons | 2 | 2 and 6 years | Improvement of proptosis and eye movements and no progression of the disease | [14] |
Eyelid | 20–30 Gy/10–20 fractions/6 MV photons | 4 | 1–2 years | No disease progression of the disease 1 year after treatment, but some increase in amyloid deposition 1 year later | [15] |
Nasopharyngeal | 70 Gy/25 fractions/6 MV photons (intensity modulated RT) | 1 | 1 year | Mass decreased 3 months after treatment and disappeared 1 year later | [64] |
Laryngeal | 45 Gy/25 fractions/energy not defined | 1 | 11 months | Voice was back to normal, and the mass disrupting vocal’s function disappeared | [59] |
Tracheobronchial | 20 Gy/10 fractions in 2 weeks/4 MV photons Repeated scheme after 6 months | 1 | 1.5 years | The irradiated areas were almost normal in appearance. The patient was free of symptoms | [13] |
Tracheobronchial | 20 Gy/10 fractions/6 and 10 MV photons | 1 | 21 months | Improvement 6 months later, and bronchoscopy revealed a reduction in amyloid deposits 11 months after therapy | [62] |
Tracheobronchial | 24 Gy/12 fractions daily/6 MV photons | 1 | 1.5 years | Aeration improved significantly and the mucosa of the trachea was almost restored to normal. However, there was still some thickening in the lower lobes and bronchus intermedius | [61] |
Tracheobronchial | 24 Gy/12 fractions/6 MV photons | 1 | 9 months | Bronchoscopy and chest X-ray revealed no disease progression, and the patient symptoms were improved | [63] |
Pulmonary | 24 Gy/12 fractions over 18 days/6 MV photons | 3 | 3.5–4.5 years | Pulmonary tests and radiological images showed improvements, which were accompanied with fewer symptoms | [65] |
Urinary Bladder | 24 Gy/12 fractions/6 and 18 MV photons | 1 | 7 months | Bladder was normal by cystoscopy and without signs of amyloidosis | [66] |
Patient | Disease | Age (years) | Nr. of Scans | Total Administered Dose (Gy) |
---|---|---|---|---|
1 | AD | 81 | 11 | 0.447 |
2 | PD | n.a. | 6 | 0.240 |
3 | AD | 88 | 4 | 0.165 |
4 | AD | 90 | 4 | 0.175 |
5 | AD | 84 | 4 | 0.162 |
6 | AD | 82 | 4 | 0.161 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, C.M.; Pereira, L.; Teubig, P.; Santos, P.; Mendes, F.; Viñals, S.; Galaviz, D.; Herrera, F. Radiation as a Tool against Neurodegeneration—A Potential Treatment for Amyloidosis in the Central Nervous System. Int. J. Mol. Sci. 2022, 23, 12265. https://doi.org/10.3390/ijms232012265
Coelho CM, Pereira L, Teubig P, Santos P, Mendes F, Viñals S, Galaviz D, Herrera F. Radiation as a Tool against Neurodegeneration—A Potential Treatment for Amyloidosis in the Central Nervous System. International Journal of Molecular Sciences. 2022; 23(20):12265. https://doi.org/10.3390/ijms232012265
Chicago/Turabian StyleCoelho, Carina Marques, Lia Pereira, Pamela Teubig, Pedro Santos, Filipa Mendes, Sílvia Viñals, Daniel Galaviz, and Federico Herrera. 2022. "Radiation as a Tool against Neurodegeneration—A Potential Treatment for Amyloidosis in the Central Nervous System" International Journal of Molecular Sciences 23, no. 20: 12265. https://doi.org/10.3390/ijms232012265
APA StyleCoelho, C. M., Pereira, L., Teubig, P., Santos, P., Mendes, F., Viñals, S., Galaviz, D., & Herrera, F. (2022). Radiation as a Tool against Neurodegeneration—A Potential Treatment for Amyloidosis in the Central Nervous System. International Journal of Molecular Sciences, 23(20), 12265. https://doi.org/10.3390/ijms232012265