Optogenetic fMRI for Brain-Wide Circuit Analysis of Sensory Processing
Abstract
:1. Introduction
2. Basics of Optogenetics Relevant to fMRI
- (i).
- Transgenic mice with opsins in cell-type specific neurons (Figure 1B): for example, transgenic Thy1-ChR2 mice express ChR2 in a specific subpopulation of excitatory pyramidal neurons with the Thy1 promoter, and transgenic VGAT-ChR2 mice express ChR2 in inhibitory interneurons under the vesicular GABA transporter (VGAT) promoter [12,13]. These transgenic mouse lines are engineered to be born with an introduced gene such as ChR2.
- (ii).
- Virus-mediated expression of opsins for promotor-based gene delivery in neurons (Figure 1C): adeno-associated viruses (AAV) or lentiviruses are commonly used. Depending on the type of virus, opsins are transfected anterogradely from soma to axon terminal or retrogradely from axon terminal to soma. For example, calcium/calmodulin-dependent protein kinase II (CaMKII) is a gene expressed only in excitatory pyramidal neurons, so the local injection of AAV-CaMKII-ChR2 (or Arch) in wild-type mice or rats is commonly used for ChR2 (or Arch) expression in excitatory pyramidal neurons.
- (iii).
- Cre-lox system for site- and cell-specific optogenetics (Figure 1D): Cre (recombinase protein) recognizes lox (a unique DNA sequence) to induce site-specific recombination between two lox sites called “floxing,” resulting in inversion, deletion, or translocation. For example, when an AAV vector (e.g., AAV-DIO-ChR2) containing an inverted and double-floxed ChR2 gene is locally delivered into transgenic mice expressing Cre recombinase under a specific promotor, the inverted ChR2 gene will only be flipped to the correct orientation and be functional, resulting in ChR2 expression in a specific cell type with Cre.
3. Optogenetic Strategies for fMRI
- (i).
- Optogenetic excitation of excitatory cell bodies (soma), which is the most common, or axon terminals to map cell-type-specific functional downstream or circuit-specific networks.
- (ii).
- Optogenetic silencing by excitatory opsins in inhibitory interneurons or inhibitory opsins in excitatory pyramidal neurons to measure spontaneous (resting-state) activity in the stimulation site and downstream resting-network strength.
- (iii).
- Modulation of sensory processing by optogenetics. The sensory stimulus can be combined with optogenetic silencing or excitation for dissecting sensory circuits or determining modulatory effects.
3.1. Optogenetic Excitation and fMRI: Local Cell Bodies or Axonal Projections
3.2. Optogenetic Silencing and fMRI: Direct or Indirect Inhibition of Pyramidal Neurons
3.3. Combining Optogenetics with Sensory-Evoked fMRI
4. Brain-Wide Optogenetic fMRI in Sensory Processing
4.1. Somatosensory Circuits
4.1.1. Cortical Output of S1 Pyramidal Neurons
4.1.2. Brain States and Thalamic Modulation
4.1.3. Top-Down Modulation of Sensory Processing
4.1.4. Response Output to Sensory Stimuli
4.2. Other Sensory Modalities
5. Caution for ofMRI
5.1. Relationship between Neural Activity and fMRI Response
5.2. Sensitivity Issue
5.3. Heating Issue
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parham, L.D.; Crickmore, D. Expanding sensory awareness. In Intellectual Disabilities-E-Book: Toward Inclusion; Elsevier Health Sciences: Warsaw, Poland, 2022; p. 231. [Google Scholar]
- Greven, C.U.; Lionetti, F.; Booth, C.; Aron, E.N.; Fox, E.; Schendan, H.E.; Pluess, M.; Bruining, H.; Acevedo, B.; Bijttebier, P.; et al. Sensory Processing Sensitivity in the context of Environmental Sensitivity: A critical review and development of research agenda. Neurosci. Biobehav. Rev. 2019, 98, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Galiana-Simal, A.; Vela-Romero, M.; Romero-Vela, V.M.; Oliver-Tercero, N.; García-Olmo, V.; Benito-Castellanos, P.J.; Muñoz-Martinez, V.; Beato-Fernandez, L. Sensory processing disorder: Key points of a frequent alteration in neurodevelop-mental disorders. Cog. Med. 2020, 7, 1736829. [Google Scholar] [CrossRef]
- Niutanen, U.; Harra, T.; Lano, A.; Metsaranta, M. Systematic review of sensory processing in preterm children reveals ab-normal sensory modulation, somatosensory processing and sensory-based motor processing. Acta Paediatr. 2020, 109, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Ranford, J.; MacLean, J.; Alluri, P.R.; Comeau, O.; Godena, E.; LaFrance, W.C., Jr.; Hunt, A.; Stephen, C.D.; Perez, D.L. Sensory Processing Difficulties in Functional Neurological Disorder: A Possible Predisposing Vulnerability? Psychosomatics 2020, 61, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Tye, K.M.; Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 2012, 13, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.K.; Adhikari, A.; Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neurosci-ence. Nat. Rev. Neurosci. 2017, 18, 222–235. [Google Scholar] [CrossRef]
- Lee, J.H.; Kreitzer, A.C.; Singer, A.C.; Schiff, N.D. Illuminating Neural Circuits: From Molecules to MRI. J. Neurosci. 2017, 37, 10817–10825. [Google Scholar] [CrossRef] [Green Version]
- Markicevic, M.; Savvateev, I.; Grimm, C.; Zerbi, V. Emerging imaging methods to study whole-brain function in rodent mod-els. Transl. Psychiatry 2021, 11, 457. [Google Scholar] [CrossRef]
- Lee, J.H.; Durand, R.; Gradinaru, V.; Zhang, F.; Goshen, I.; Kim, D.S.; Fenno, L.E.; Ramakrishnan, C.; Deisseroth, K. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 2010, 465, 788–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, M.; Kahn, I.; Knoblich, U.; Bernstein, J.; Atallah, H.; Yang, A.; Kopell, N.; Buckner, R.L.; Graybiel, A.M.; Moore, C.I.; et al. Mapping brain networks in awake mice using combined optical neural control and fMRI. J. Neurophysiol. 2011, 105, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Barlow, J.Z.; Huntley, G.W. Developmentally regulated expression of Thy-1 in structures of the mouse sensory-motor system. J. Comp. Neurol. 2000, 421, 215–233. [Google Scholar] [CrossRef]
- Zhao, S.; Ting, J.T.; Atallah, H.E.; Qiu, L.; Tan, J.; Gloss, B.; Augustine, G.J.; Deisseroth, K.; Luo, M.; Graybiel, A.M.; et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods 2011, 8, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.N.A.; Jung, W.B.; Shim, H.J.; Kim, S.G. Characteristics of fMRI responses to visual stimulation in anesthetized vs. awake mice. Neuroimage 2021, 226, 117542. [Google Scholar] [CrossRef]
- Jung, W.B.; Im, G.H.; Jiang, H.; Kim, S.G. Early fMRI responses to somatosensory and optogenetic stimulation reflect neural information flow. Proc. Natl. Acad. Sci. USA 2021, 118, e2023265118. [Google Scholar] [CrossRef]
- Kweon, H.; Jung, W.B.; Im, G.H.; Ryoo, J.; Lee, J.H.; Do, H.; Choi, Y.; Song, Y.H.; Jung, H.; Park, H.; et al. Excitatory neuronal CHD8 in the regulation of neocortical development and sensory-motor behaviors. Cell Rep. 2021, 34, 108780. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.S.; Jiang, H.; Vo, T.T.; Jung, W.B.; Vazquez, A.L.; Kim, S.G. Contribution of Excitatory and Inhibitory Neuronal Activity to BOLD fMRI. Cereb. Cortex 2021, 31, 4053–4067. [Google Scholar] [CrossRef]
- You, T.; Im, G.H.; Kim, S.G. Characterization of brain-wide somatosensory BOLD fMRI in mice under dexmedetomi-dine/isoflurane and ketamine/xylazine. Sci. Rep. 2021, 11, 13110. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.B.; Jiang, H.; Lee, S.; Kim, S.G. Dissection of brain-wide resting-state and functional somatosensory circuits by fMRI with optogenetic silencing. Proc. Natl. Acad. Sci. USA 2022, 119, e2113313119. [Google Scholar] [CrossRef]
- Lee, J.Y.; You, T.; Lee, C.H.; Im, G.H.; Seo, H.; Woo, C.W.; Kim, S.G. Role of anterior cingulate cortex inputs to periaque-ductal gray for pain avoidance. Curr. Biol. 2022, 32, 2834–2847. [Google Scholar] [CrossRef] [PubMed]
- Jennings, J.H.; Sparta, D.R.; Stamatakis, A.M.; Ung, R.L.; Pleil, K.E.; Kash, T.L.; Stuber, G.D. Distinct extended amygdala circuits for divergent motivational states. Nature 2013, 496, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.K.; Hausser, M.; Carandini, M. Distal connectivity causes summation and division across mouse visual cortex. Nat. Neurosci. 2014, 17, 30–32. [Google Scholar] [CrossRef] [Green Version]
- Babl, S.S.; Rummell, B.P.; Sigurdsson, T. The Spatial Extent of Optogenetic Silencing in Transgenic Mice Expressing Chan-nelrhodopsin in Inhibitory Interneurons. Cell Rep. 2019, 29, 1381–1395.e4. [Google Scholar] [CrossRef] [Green Version]
- Huo, Y.; Chen, H.; Guo, Z.V. Mapping Functional Connectivity from the Dorsal Cortex to the Thalamus. Neuron 2020, 107, 1080–1094.e5. [Google Scholar] [CrossRef]
- Li, N.; Chen, S.; Guo, Z.V.; Chen, H.; Huo, Y.; Inagaki, H.K.; Chen, G.; Davis, C.; Hansel, D.; Guo, C.; et al. Spatio-temporal constraints on optogenetic inactivation in cortical circuits. eLife 2019, 8, e48622. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, K.; Lien, A.D.; Scanziani, M. Distinct recurrent versus afferent dynamics in cortical visual processing. Nat. Neurosci. 2015, 18, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Wiegert, J.S.; Mahn, M.; Prigge, M.; Printz, Y.; Yizhar, O. Silencing Neurons: Tools, Applications, and Experimental Constraints. Neuron 2017, 95, 504–529. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.J.; Jung, W.B.; Schlegel, F.; Lee, J.; Kim, S.; Lee, J.; Kim, S.G. Mouse fMRI under ketamine and xylazine anesthesia: Robust contralateral somatosensory cortex activation in response to forepaw stimulation. Neuroimage 2018, 177, 30–44. [Google Scholar] [CrossRef]
- Jung, W.B.; Shim, H.J.; Kim, S.G. Mouse BOLD fMRI at ultrahigh field detects somatosensory networks including thalamic nuclei. Neuroimage 2019, 195, 203–214. [Google Scholar] [CrossRef]
- Chen, X.; Tong, C.; Han, Z.; Zhang, K.; Bo, B.; Feng, Y.; Liang, Z. Sensory evoked fMRI paradigms in awake mice. Neuroimage 2020, 204, 116242. [Google Scholar] [CrossRef]
- Yu, X.; Chung, S.; Chen, D.Y.; Wang, S.; Dodd, S.J.; Walters, J.R.; Isaac, J.T.; Koretsky, A.P. Thalamocortical inputs show post-critical-period plasticity. Neuron 2012, 74, 731–742. [Google Scholar] [CrossRef]
- Carmack, S.A.; Keeley, R.J.; Vendruscolo, J.C.M.; Lowery-Gionta, E.G.; Lu, H.; Koob, G.F.; Stein, E.A.; Vendruscolo, L.F. Heroin addiction engages negative emotional learning brain circuits in rats. J. Clin. Investig. 2019, 129, 2480–2484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.; Chen, W.; Chen, X.; Zhang, K.; Tong, C.; Zhang, X.; Li, C.T.; Liang, Z. Awake and behaving mouse fMRI during Go/No-Go task. Neuroimage 2019, 188, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hu, Y.; Talishinsky, A.D.; Potter, C.T.; Calva, C.B.; Ramsey, L.A.; Kesner, A.J.; Don, R.F.; Junn, S.; Tan, A.; et al. Medial prefrontal cortex and anteromedial thalamus interaction regulates goal-directed behavior and dopaminergic neuron activity. Nat. Commun. 2022, 13, 1386. [Google Scholar] [CrossRef] [PubMed]
- Poulet, J.F.; Fernandez, L.M.; Crochet, S.; Petersen, C.C. Thalamic control of cortical states. Nat. Neurosci. 2012, 15, 370–372. [Google Scholar] [CrossRef]
- McCormick, D.A.; McGinley, M.J.; Salkoff, D.B. Brain state dependent activity in the cortex and thalamus. Curr. Opin. Neurobiol. 2015, 31, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Olcese, U.; Lohuis, M.N.O.; Pennartz, C.M.A. Sensory Processing Across Conscious and Nonconscious Brain States: From Single Neurons to Distributed Networks for Inferential Representation. Front. Syst. Neurosci. 2018, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- Aru, J.; Suzuki, M.; Larkum, M.E. Cellular Mechanisms of Conscious Processing. Trends Cogn. Sci. 2020, 24, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Lee, J.Y.; Lee, S.H. Bottom-up and top-down modulation of multisensory integration. Curr. Opin. Neurobiol. 2018, 52, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.X.; Cullen, K.E. Predictive Sensing: The Role of Motor Signals in Sensory Processing. Biol. Psychiatry Cogn. Neurosci. Neuroimag. 2019, 4, 842–850. [Google Scholar] [CrossRef]
- Parker, P.R.L.; Brown, M.A.; Smear, M.C.; Niell, C.M. Movement-Related Signals in Sensory Areas: Roles in Natural Behavior. Trends Neurosci. 2020, 43, 581–595. [Google Scholar] [CrossRef]
- Euston, D.R.; Gruber, A.J.; McNaughton, B.L. The role of medial prefrontal cortex in memory and decision making. Neuron 2012, 76, 1057–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howland, J.G.; Ito, R.; Lapish, C.C.; Villaruel, F.R. The rodent medial prefrontal cortex and associated circuits in orchestrat-ing adaptive behavior under variable demands. Neurosci. Biobehav. Rev. 2022, 135, 104569. [Google Scholar] [CrossRef]
- Gesiarz, F.; Crockett, M.J. Goal-directed, habitual and Pavlovian prosocial behavior. Front. Behav. Neurosci. 2015, 9, 135. [Google Scholar] [PubMed] [Green Version]
- LeDoux, J.; Daw, N.D. Surviving threats: Neural circuit and computational implications of a new taxonomy of defensive be-haviour. Nat. Rev. Neurosci. 2018, 19, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Liu, Y.; Meng, Y.; Yan, Y.; Jin, L.; Zhang, J.; Liang, J.; Li, Y.; Shen, F.J.C.A.R. A Translation from Goal-Directed to Ha-bitual Control: The Striatum in Drug Addiction. Curr. Addict. Rep. 2021, 8, 530–537. [Google Scholar] [CrossRef]
- Iordanova, B.; Vazquez, A.L.; Poplawsky, A.J.; Fukuda, M.; Kim, S.G. Neural and hemodynamic responses to optogenetic and sensory stimulation in the rat somatosensory cortex. J. Cereb. Blood Flow Metab. 2015, 35, 922–932. [Google Scholar] [CrossRef]
- Schmid, F.; Wachsmuth, L.; Schwalm, M.; Prouvot, P.H.; Jubal, E.R.; Fois, C.; Pramanik, G.; Zimmer, C.; Faber, C.; Stroh, A. Assessing sensory versus optogenetic network activation by combining (o) fMRI with optical Ca2+ recordings. J. Cereb. Blood Flow Metab. 2016, 36, 1885–1900. [Google Scholar] [CrossRef] [Green Version]
- Just, N.; Faber, C. Probing activation-induced neurochemical changes using optogenetics combined with functional magnetic resonance spectroscopy: A feasibility study in the rat primary somatosensory cortex. J. Neurochem. 2019, 150, 402–419. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sobczak, F.; Pais-Roldan, P.; Schwarz, C.; Koretsky, A.P.; Yu, X. Mapping the Brain-Wide Network Effects by Optogenetic Activation of the Corpus Callosum. Cereb. Cortex 2020, 30, 5885–5898. [Google Scholar] [CrossRef]
- Ryali, S.; Shih, Y.Y.; Chen, T.; Kochalka, J.; Albaugh, D.; Fang, Z.; Supekar, K.; Lee, J.H.; Menon, V. Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions. Neuroimage 2016, 132, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Vahdat, S.; Pendharkar, A.V.; Chiang, T.; Harvey, S.; Uchino, H.; Cao, Z.; Kim, A.; Choy, M.; Chen, H.; Lee, H.J.; et al. Brain-wide neural dynamics of poststroke recovery induced by optogenetic stimulation. Sci. Adv. 2021, 7, eabd9465. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Watson, G.D.; Alloway, K.D.; Lee, G.; Neuberger, T.; Zhang, N. Mapping the functional network of medial pre-frontal cortex by combining optogenetics and fMRI in awake rats. Neuroimage 2015, 117, 114–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cover, C.G.; Kesner, A.J.; Ukani, S.; Stein, E.A.; Ikemoto, S.; Yang, Y.; Lu, H. Whole brain dynamics during optogenetic self-stimulation of the medial prefrontal cortex in mice. Commun. Biol. 2021, 4, 66. [Google Scholar] [CrossRef]
- Ferenczi, E.A.; Zalocusky, K.A.; Liston, C.; Grosenick, L.; Warden, M.R.; Amatya, D.; Katovich, K.; Mehta, H.; Patenaude, B.; Ramakrishnan, C.; et al. Prefrontal cortical regulation of brain-wide circuit dynamics and reward-related behavior. Science 2016, 351, aac9698. [Google Scholar] [CrossRef] [Green Version]
- Leong, A.T.; Chan, R.W.; Gao, P.P.; Chan, Y.S.; Tsia, K.K.; Yung, W.H.; Wu, E.X. Long-range projections coordinate dis-tributed brain-wide neural activity with a specific spatiotemporal profile. Proc. Natl. Acad. Sci. USA 2016, 113, E8306–E8315. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Leong, A.T.L.; Chan, R.W.; Liu, Y.; Wu, E.X. Thalamic low frequency activity facilitates resting-state cortical interhemispheric MRI functional connectivity. Neuroimage 2019, 201, 115985. [Google Scholar] [CrossRef]
- Leong, A.T.L.; Wang, X.; Wong, E.C.; Dong, C.M.; Wu, E.X. Neural activity temporal pattern dictates long-range propaga-tion targets. Neuroimage 2021, 235, 118032. [Google Scholar] [CrossRef]
- Liu, J.; Lee, H.J.; Weitz, A.J.; Fang, Z.; Lin, P.; Choy, M.; Fisher, R.; Pinskiy, V.; Tolpygo, A.; Mitra, P.; et al. Frequency-selective control of cortical and subcortical networks by central thalamus. Elife 2015, 4, e09215. [Google Scholar] [CrossRef]
- Weitz, A.J.; Lee, H.J.; Choy, M.; Lee, J.H. Thalamic Input to Orbitofrontal Cortex Drives Brain-wide, Frequency-Dependent Inhibition Mediated by GABA and Zona Incerta. Neuron 2019, 104, 1153–1167.e4. [Google Scholar] [CrossRef]
- Wank, I.; Pliota, P.; Badurek, S.; Kraitsy, K.; Kaczanowska, J.; Griessner, J.; Kreitz, S.; Hess, A.; Haubensak, W. Central amyg-dala circuitry modulates nociceptive processing through differential hierarchical interaction with affective network dynamics. Commun. Biol. 2021, 4, 732. [Google Scholar] [CrossRef]
- Lee, H.J.; Weitz, A.J.; Bernal-Casas, D.; Duffy, B.A.; Choy, M.; Kravitz, A.V.; Kreitzer, A.C.; Lee, J.H. Activation of Direct and Indirect Pathway Medium Spiny Neurons Drives Distinct Brain-wide Responses. Neuron 2016, 91, 412–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernal-Casas, D.; Lee, H.J.; Weitz, A.J.; Lee, J.H. Studying Brain Circuit Function with Dynamic Causal Modeling for Opto-genetic fMRI. Neuron 2017, 93, 522–532.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, C.; Frassle, S.; Steger, C.; von Ziegler, L.; Sturman, O.; Shemesh, N.; Peleg-Raibstein, D.; Burdakov, D.; Bohacek, J.; Stephan, K.E.; et al. Optogenetic activation of striatal D1R and D2R cells differentially en-gages downstream connected areas beyond the basal ganglia. Cell Rep. 2021, 37, 110161. [Google Scholar] [CrossRef]
- Borich, M.R.; Brodie, S.M.; Gray, W.A.; Ionta, S.; Boyd, L.A. Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation. Neuropsychologia 2015, 79 Pt B, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Petersen, C.C.H. Sensorimotor processing in the rodent barrel cortex. Nat. Rev. Neurosci. 2019, 20, 533–546. [Google Scholar] [CrossRef]
- Castejon, C.; Martin-Cortecero, J.; Nunez, A. Higher-Order Thalamic Encoding of Somatosensory Patterns and Bilateral Events. Front. Neural Circuits 2021, 15, 752804. [Google Scholar] [CrossRef] [PubMed]
- Sieveritz, B.; Raghavan, R.T. The Central Thalamus: Gatekeeper or Processing Hub? J. Neurosci. 2021, 41, 4954–4956. [Google Scholar] [CrossRef]
- Brown, J.A.; Pilitsis, J.G. Motor Cortex Stimulation. Pain. Med. 2006, 7 (Suppl. S1), S140–S145. [Google Scholar] [CrossRef]
- Sangha, S.; Robinson, P.D.; Greba, Q.; Davies, D.A.; Howland, J.G. Alterations in reward, fear and safety cue discrimination after inactivation of the rat prelimbic and infralimbic cortices. Neuropsychopharmacology 2014, 39, 2405–2413. [Google Scholar] [CrossRef]
- Kuner, R.; Kuner, T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol. Rev. 2021, 101, 213–258. [Google Scholar] [CrossRef]
- Carrere, M.; Alexandre, F. A pavlovian model of the amygdala and its influence within the medial temporal lobe. Front. Syst. Neurosci. 2015, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Hintiryan, H.; Foster, N.N.; Bowman, I.; Bay, M.; Song, M.Y.; Gou, L.; Yamashita, S.; Bienkowski, M.S.; Zingg, B.; Zhu, M.; et al. The mouse cortico-striatal projectome. Nat. Neurosci. 2016, 19, 1100–1114. [Google Scholar] [CrossRef] [PubMed]
- Fadok, J.P.; Markovic, M.; Tovote, P.; Luthi, A. New perspectives on central amygdala function. Curr. Opin. Neurobiol. 2018, 49, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Li, B. Central amygdala cells for learning and expressing aversive emotional memories. Curr. Opin. Behav. Sci. 2019, 26, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Lipton, D.M.; Gonzales, B.J.; Citri, A. Dorsal Striatal Circuits for Habits, Compulsions and Addictions. Front. Syst. Neurosci. 2019, 13, 28. [Google Scholar] [CrossRef] [Green Version]
- Peak, J.; Hart, G.; Balleine, B.W. From learning to action: The integration of dorsal striatal input and output pathways in in-strumental conditioning. Eur. J. Neurosci. 2019, 49, 658–671. [Google Scholar] [CrossRef]
- Han, S.; Soleiman, M.T.; Soden, M.E.; Zweifel, L.S.; Palmiter, R.D. Elucidating an Affective Pain Circuit that Creates a Threat Memory. Cell 2015, 162, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.D.; Valdivia, S.; Khan, A.; Ahn, H.S.; Adke, A.P.; Gonzalez, S.M.; Sugimura, Y.K.; Carrasquillo, Y. Dual and Opposing Functions of the Central Amygdala in the Modulation of Pain. Cell Rep. 2019, 29, 332–346.e5. [Google Scholar] [CrossRef] [Green Version]
- Jahanshahi, M.; Obeso, I.; Rothwell, J.C.; Obeso, J.A. A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition. Nat. Rev. Neurosci. 2015, 16, 719–732. [Google Scholar] [CrossRef]
- Leong, A.T.L.; Dong, C.M.; Gao, P.P.; Chan, R.W.; To, A.; Sanes, D.H.; Wu, E.X. Optogenetic auditory fMRI reveals the effects of visual cortical inputs on auditory midbrain response. Sci. Rep. 2018, 8, 8736. [Google Scholar] [CrossRef]
- Leong, A.T.L.; Gu, Y.; Chan, Y.S.; Zheng, H.; Dong, C.M.; Chan, R.W.; Wang, X.; Liu, Y.; Tan, L.H.; Wu, E.X. Optogenetic fMRI interrogation of brain-wide central vestibular pathways. Proc. Natl. Acad. Sci. USA 2019, 116, 10122–10129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, Y.; Sekino, M.; Terazono, Y.; Ohsaki, H.; Fukazawa, Y.; Sakai, S.; Yawo, H.; Hisatsune, T. Opto-fMRI analysis for explor-ing the neuronal connectivity of the hippocampal formation in rats. Neurosci. Res. 2012, 74, 248–255. [Google Scholar] [CrossRef]
- Sirota, A.; Csicsvari, J.; Buhl, D.; Buzsaki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl. Acad. Sci. USA 2003, 100, 2065–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellistri, E.; Aguilar, J.; Brotons-Mas, J.R.; Foffani, G.; de la Prida, L.M. Basic properties of somatosensory-evoked responses in the dorsal hippocampus of the rat. J. Physiol. 2013, 591, 2667–2686. [Google Scholar] [CrossRef] [PubMed]
- Weitz, A.J.; Fang, Z.; Lee, H.J.; Fisher, R.S.; Smith, W.C.; Choy, M.; Liu, J.; Lin, P.; Rosenberg, M.; Lee, J.H. Optogenetic fMRI reveals distinct, frequency-dependent networks recruited by dorsal and intermediate hippocampus stimulations. Neuroimage 2015, 107, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Chan, R.W.; Leong, A.T.L.; Ho, L.C.; Gao, P.P.; Wong, E.C.; Dong, C.M.; Wang, X.; He, J.; Chan, Y.S.; Lim, L.W.; et al. Low-frequency hippocampal-cortical activity drives brain-wide resting-state functional MRI connectivity. Proc. Natl. Acad. Sci. USA 2017, 114, E6972–E6981. [Google Scholar] [CrossRef] [Green Version]
- Leutgeb, S.; Leutgeb, J.K.; Barnes, C.A.; Moser, E.I.; McNaughton, B.L.; Moser, M.B. Independent codes for spatial and epi-sodic memory in hippocampal neuronal ensembles. Science 2005, 309, 619–623. [Google Scholar] [CrossRef] [Green Version]
- Fournier, J.; Saleem, A.B.; Diamanti, E.M.; Wells, M.J.; Harris, K.D.; Carandini, M. Mouse Visual Cortex Is Modulated by Distance Traveled and by Theta Oscillations. Curr. Biol. 2020, 30, 3811–3817.e6. [Google Scholar] [CrossRef]
- Diamanti, E.M.; Reddy, C.B.; Schroder, S.; Muzzu, T.; Harris, K.D.; Saleem, A.B.; Carandini, M. Spatial modulation of visual responses arises in cortex with active navigation. Elife 2021, 10, e63705. [Google Scholar] [CrossRef]
- Choe, K.Y.; Sanchez, C.F.; Harris, N.G.; Otis, T.S.; Mathews, P.J. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain. Neuroimage 2018, 173, 370–383. [Google Scholar] [CrossRef]
- Grandjean, J.; Corcoba, A.; Kahn, M.C.; Upton, A.L.; Deneris, E.S.; Seifritz, E.; Helmchen, F.; Mann, E.O.; Rudin, M.; Saab, B.J. A brain-wide functional map of the serotonergic responses to acute stress and fluoxetine. Nat. Commun. 2019, 10, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.G.; Ogawa, S. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J. Cereb. Blood Flow Metab. 2012, 32, 1188–1206. [Google Scholar] [CrossRef] [PubMed]
- Takata, N.; Sugiura, Y.; Yoshida, K.; Koizumi, M.; Hiroshi, N.; Honda, K.; Yano, R.; Komaki, Y.; Matsui, K.; Suematsu, M.; et al. Optogenetic astrocyte activation evokes BOLD fMRI response with oxygen consumption without neuronal activity modulation. Glia 2018, 66, 2013–2023. [Google Scholar] [CrossRef] [PubMed]
- Anenberg, E.; Chan, A.W.; Xie, Y.; LeDue, J.M.; Murphy, T.H. Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow. J. Cereb. Blood Flow Metab. 2015, 35, 1579–1586. [Google Scholar] [CrossRef] [Green Version]
- Logothetis, N.K.; Pauls, J.; Augath, M.; Trinath, T.; Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, N.K.; Wandell, B.A. Interpreting the BOLD signal. Ann. Rev. Physiol. 2004, 66, 735–769. [Google Scholar] [CrossRef] [PubMed]
- Brocka, M.; Helbing, C.; Vincenz, D.; Scherf, T.; Montag, D.; Goldschmidt, J.; Angenstein, F.; Lippert, M. Contributions of do-paminergic and non-dopaminergic neurons to VTA-stimulation induced neurovascular responses in brain reward circuits. Neuroimage 2018, 177, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Lohani, S.; Poplawsky, A.J.; Kim, S.G.; Moghaddam, B. Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI. Mol. Psychiatry 2017, 22, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Kovacevic, N.; Henderson, J.T.; Chan, E.; Lifshitz, N.; Bishop, J.; Evans, A.C.; Henkelman, R.M.; Chen, X.J. A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb. Cortex 2005, 15, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Welniak-Kaminska, M.; Fiedorowicz, M.; Orzel, J.; Bogorodzki, P.; Modlinska, K.; Stryjek, R.; Chrzanowska, A.; Pisula, W.; Grieb, P. Volumes of brain structures in captive wild-type and laboratory rats: 7T magnetic resonance in vivo automatic atlas-based study. PLoS One 2019, 14, e0215348. [Google Scholar] [CrossRef]
- Rungta, R.L.; Osmanski, B.F.; Boido, D.; Tanter, M.; Charpak, S. Light controls cerebral blood flow in naive animals. Nat. Commun. 2017, 8, 14191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christie, I.N.; Wells, J.A.; Southern, P.; Marina, N.; Kasparov, S.; Gourine, A.V.; Lythgoe, M.F. FMRI response to blue light delivery in the naive brain: Implications for combined optogenetic fMRI studies. Neuroimage 2013, 66, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Schmid, F.; Wachsmuth, L.; Albers, F.; Schwalm, M.; Stroh, A.; Faber, C. True and apparent optogenetic BOLD fMRI signals. Magn. Reason. Med. 2017, 77, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sobczak, F.; Chen, Y.; Jiang, Y.; Qian, C.; Lu, Z.; Ayata, C.; Logothetis, N.K.; Yu, X. Mapping optogenetically-driven single-vessel fMRI with concurrent neuronal calcium recordings in the rat hippocampus. Nat. Commun. 2019, 10, 5239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albers, F.; Wachsmuth, L.; Schache, D.; Lambers, H.; Faber, C. Functional MRI Readouts From BOLD and Diffusion Meas-urements Differentially Respond to Optogenetic Activation and Tissue Heating. Front. Neurosci. 2019, 13, 1104. [Google Scholar] [CrossRef] [PubMed]
- Stujenske, J.M.; Spellman, T.; Gordon, J.A. Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for In Vivo Optogenetics. Cell Rep. 2015, 12, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Owen, S.F.; Liu, M.H.; Kreitzer, A.C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 2019, 22, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Duffy, B.A.; Choy, M.; Lee, J.H. Predicting Successful Generation and Inhibition of Seizure-like Afterdischarges and Mapping Their Seizure Networks Using fMRI. Cell Rep. 2020, 30, 2540–2554.e4. [Google Scholar] [CrossRef] [Green Version]
- Choy, M.; Dadgar-Kiani, E.; Cron, G.O.; Duffy, B.A.; Schmid, F.; Edelman, B.J.; Asaad, M.; Chan, R.W.; Vahdat, S.; Lee, J.H. Repeated hippocampal seizures lead to brain-wide reorganization of circuits and seizure propagation pathways. Neuron 2022, 110, 221–236.e4. [Google Scholar] [CrossRef]
- Mandino, F.; Yeow, L.Y.; Bi, R.; Sejin, L.; Bae, H.G.; Baek, S.H.; Lee, C.Y.; Mohammad, H.; Horien, C.; Teoh, C.L.; et al. The lateral entorhinal cortex is a hub for local and global dysfunc-tion in early Alzheimer’s disease states. J. Cereb. Blood Flow Metab. 2022, 42, 1616–1631. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-Y.; You, T.; Woo, C.-W.; Kim, S.-G. Optogenetic fMRI for Brain-Wide Circuit Analysis of Sensory Processing. Int. J. Mol. Sci. 2022, 23, 12268. https://doi.org/10.3390/ijms232012268
Lee J-Y, You T, Woo C-W, Kim S-G. Optogenetic fMRI for Brain-Wide Circuit Analysis of Sensory Processing. International Journal of Molecular Sciences. 2022; 23(20):12268. https://doi.org/10.3390/ijms232012268
Chicago/Turabian StyleLee, Jeong-Yun, Taeyi You, Choong-Wan Woo, and Seong-Gi Kim. 2022. "Optogenetic fMRI for Brain-Wide Circuit Analysis of Sensory Processing" International Journal of Molecular Sciences 23, no. 20: 12268. https://doi.org/10.3390/ijms232012268
APA StyleLee, J. -Y., You, T., Woo, C. -W., & Kim, S. -G. (2022). Optogenetic fMRI for Brain-Wide Circuit Analysis of Sensory Processing. International Journal of Molecular Sciences, 23(20), 12268. https://doi.org/10.3390/ijms232012268