Aphelenchoides besseyi Ab-FAR-1 Interacts with Arabidopsis thaliana AtADF3 to Interfere with Actin Cytoskeleton, and Promotes Nematode Parasitism and Pathogenicity
Abstract
:1. Introduction
2. Results
2.1. Ab-FAR-1 Plays an Important Role in the Process of Nematode Infection
2.2. Immunological Localisation of Ab-FAR-1Δsp
2.3. Ab-FAR-1Δsp Localized in Plant Cytoplasm and Nucleus
2.4. Ab-FAR-1Δsp Promotes the Parasitism and Pathogenicity of RWTNs
2.5. In Planta, RNAi of Ab-far-1 Impairs the Parasitism and Pathogenicity of RWTNs
2.6. Ab-FAR-1 Interacts with Arabidopsis thaliana AtADF3
2.7. AtADF3 Is Involved in the Parasitism and Pathogenicity of RWTNs
2.8. Ab-FAR-1Δsp Can Affect AtADF3-Mediated Actin Filament Depolymerisation
2.9. Actin Cytoskeleton Is Changed in Arabidopsis thaliana Overexpressing Ab-FAR-1Δsp
2.10. Ab-FAR-1Δsp and AtADF3 Are Involved in the PTI of Arabidopsis thaliana
3. Discussion
4. Materials and Methods
4.1. Biological Material and Culture
4.2. RNA Extraction and Vector Construction
4.3. Generation of Transgenic Arabidopsis thaliana
4.4. Protein Prokaryotic Expression and anti-Ab-FAR-1Δsp Polyclonal Serum Preparation
4.5. Immunofluorescence Localisation of Ab-FAR-1Δsp
4.6. Subcellular Localisation of Ab-FAR-1Δsp
4.7. Interaction Analysis
4.8. β-Glucuronidase (GUS) Staining
4.9. Ab-FAR-1 Affects the Ability of AtADF3 to Depolymerize Actin Filaments
4.10. Changes in Actin Cytoskeleton of Arabidopsis thaliana Overexpressing Ab-FAR-Δsp
4.11. PTI Assay
4.12. Western Blot
4.13. Real-Time Quantitative PCR (RT-qPCR)
4.14. Data Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elling, A.A. Major Emerging Problems with Minor Meloidogyne Species. Phytopathology 2013, 103, 1092–1102. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Li, D.; Wang, Z.; Dong, A.; Liu, L.; Wang, B.; Chen, Q.; Liu, X. Transcriptomic Analysis of the Rice White Tip Nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae). PLoS ONE 2014, 9, e91591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [Green Version]
- EPPO. Distribion Maps of Quarantine Pests for Europe: Aphlenchoides besseyi; CAB International: Wallingford, UK, 2012; Volume Map 157.
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandari, D.D.; Brandizzi, F. Plant endomembranes and cytoskeleton: Moving targets in immunity. Curr. Opin. Plant Biol. 2020, 58, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Chaudhry, F.; Ruzicka, D.R.; Meagher, R.B.; Staiger, C.J.; Day, B. Arabidopsis Actin-Depolymerizing Factor AtADF4 Mediates Defense Signal Transduction Triggered by the Pseudomonas syringae Effector AvrPphB. Plant Physiol. 2009, 150, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Henty-Ridilla, J.L.; Li, J.; Day, B.; Staiger, C.J. ACTIN DEPOLYMERIZING FACTOR4 Regulates Actin Dynamics during Innate Immune Signaling in Arabidopsis. Plant Cell 2014, 26, 340–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Staiger, C.J. Understanding Cytoskeletal Dynamics During the Plant Immune Response. Annu. Rev. Phytopathol. 2018, 56, 513–533. [Google Scholar] [CrossRef]
- Akker, S.E.-V.D.; Stojilković, B.; Gheysen, G. Recent applications of biotechnological approaches to elucidate the biology of plant-nematode interactions. Curr. Opin. Biotechnol. 2021, 70, 122–130. [Google Scholar] [CrossRef]
- Mitchum, M.G.; Hussey, R.S.; Baum, T.J.; Wang, X.; Elling, A.A.; Wubben, M.; Davis, E.L. Nematode effector proteins: An emerging paradigm of parasitism. New Phytol. 2013, 199, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.; Chen, S.; Wang, X. The Novel Gr29d09 effector family from the potato cyst nematode Globodera rostochiensis suppresses plant immunity to promote nematode parasitism. J Nematol 2013, 45, 321–322. [Google Scholar]
- Chronis, D.; Chen, S.Y.; Lu, S.W.; Hewezi, T.; Carpenter, S.C.D.; Loria, R.; Baum, T.J.; Wang, X.H. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. Plant J 2013, 74, 185–196. [Google Scholar] [CrossRef]
- Jaouannet, M.; Magliano, M.; Arguel, M.J.; Gourgues, M.; Evangelisti, E.; Abad, P.; Rosso, M.N. The Root-Knot Nematode Calreticulin Mi-CRT Is a Key Effector in Plant Defense Suppression. Mol. Plant-Microbe Interact. 2013, 26, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, J.; Liu, P.; Liu, Q.; Chen, C.; Guo, Q.; Yin, J.; Yang, G.; Jian, H. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism. Sci. Rep. 2016, 6, 19443. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Zhuo, K.; Chen, S.; Hu, L.; Sun, L.; Wang, X.; Zhang, L.H.; Liao, J. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system. New Phytol. 2015, 209, 1159–1173. [Google Scholar] [CrossRef]
- Chen, J.; Lin, B.; Huang, Q.; Hu, L.; Zhuo, K.; Liao, J. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism. Plos Pathog. 2017, 13, e1006301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Hu, L.; Sun, L.; Lin, B.; Huang, K.; Zhuo, K.; Liao, J. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism. Mol. Plant Pathol. 2018, 19, 1942–1955. [Google Scholar] [CrossRef] [Green Version]
- Leelarasamee, N.; Zhang, L.; Gleason, C. The root-knot nematode effector MiPFN3 disrupts plant actin filaments and promotes parasitism. PLOS Pathog. 2018, 14, e1006947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaxter, M.; Page, A.; Rudin, W.; Maizels, R. Nematode surface coats: Actively evading immunity. Parasitol. Today 1992, 8, 243–247. [Google Scholar] [CrossRef]
- Jones, J.; Reavy, B.; Smant, G.; Prior, A. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis. Gene 2003, 324, 47–54. [Google Scholar] [CrossRef]
- Robertson, L.; Robertson, W.M.; Sobczak, M.; Helder, J.; Tetaud, E.; Ariyanayagam, M.R.; Ferguson, M.; Fairlamb, A.; Jones, J.T. Cloning, expression and functional characterisation of a peroxiredoxin from the potato cyst nematode Globodera rostochiensis. Mol. Biochem. Parasitol. 2000, 111, 41–49. [Google Scholar] [CrossRef]
- Dubreuil, G.; Deleury, E.; Magliano, M.; Jaouannet, M.; Abad, P.; Rosso, M.N. Peroxiredoxins from the plant parasitic root-knot nematode, Meloidogyne incognita, are required for successful development within the host. Int. J. Parasitol. 2011, 41, 385–396. [Google Scholar] [CrossRef]
- Wen, T.Y.; Wu, X.-Q.; Ye, J.-R.; Qiu, Y.-J.; Rui, L.; Zhang, Y. A Bursaphelenchus xylophilus pathogenic protein Bx-FAR-1, as potential control target, mediates the jasmonic acid pathway in pines. Pest Manag. Sci. 2022, 78, 1870–1880. [Google Scholar] [CrossRef]
- Fairfax, K.C.; Vermeire, J.J.; Harrison, L.M.; Bungiro, R.D.; Grant, W.; Husain, S.Z.; Cappello, M. Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum. Int. J. Parasitol. 2009, 39, 1561–1571. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Xiang, Y.; Xie, H.; Xu, C.-L.; Xie, T.-F.; Zhang, C.; Li, Y. Molecular Characterization and Functions of Fatty Acid and Retinoid Binding Protein Gene (Ab-far-1) in Aphelenchoides besseyi. PLoS ONE 2013, 8, e66011. [Google Scholar] [CrossRef]
- Basavaraju, S.; Zhan, B.; Kennedy, M.W.; Liu, Y.; Hawdon, J.; Hotez, P. Ac-FAR-1, a 20 kDa fatty acid- and retinol-binding protein secreted by adult Ancylostoma caninum hookworms: Gene transcription pattern, ligand binding properties and structural characterisation. Mol. Biochem. Parasitol. 2003, 126, 63–71. [Google Scholar] [CrossRef]
- Burusco, M.F.R.; Shimabukuro, M.I.; Cooper, A.; Kennedy, M.W.; Corsico, B.; Smith, B.O. 1H, 13C and 15N chemical shift assignments of Na-FAR-1, a helix-rich fatty acid and retinol binding protein of the parasitic nematode Necator americanus. Biomol. NMR Assign. 2014, 8, 19–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prior, A.; Jones, J.T.; Blok, V.C.; Beauchamp, J.; McDermott, L.; Cooper, A.; Kennedy, M.W. A surface-associated retinol- and fatty acid-binding protein (Gp-FAR-1) from the potato cyst nematode Globodera pallida: Lipid binding activities, structural analysis and expression pattern. Biochem. J. 2001, 356, 387–394. [Google Scholar] [CrossRef]
- Iberkleid, I.; Vieira, P.; Engler, J.D.A.; Firester, K.; Spiegel, Y.; Horowitz, S.B. Fatty Acid-and Retinol-Binding Protein, Mj-FAR-1 Induces Tomato Host Susceptibility to Root-Knot Nematodes. PLoS ONE 2013, 8, e64586. [Google Scholar] [CrossRef]
- Iberkleid, I.; Sela, N.; Miyara, S.B. Meloidogyne javanica fatty acid- and retinol-binding protein (Mj-FAR-1) regulates expression of lipid-, cell wall-, stress- and phenylpropanoid-related genes during nematode infection of tomato. BMC Genom. 2015, 16, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.-W.; Xu, C.-L.; Ding, S.-W.; Huang, X.; Cheng, X.; Zhang, C.; Chen, C.; Xie, H. Identification and function of FAR protein family genes from a transcriptome analysis of Aphelenchoides besseyi. Bioinformatics 2018, 34, 2936–2943. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.-W.; Wang, D.-W.; Xiang, Y.; Xu, C.-L.; Xie, H. Identification and Characterization of a Fatty Acid- and Retinoid-Binding Protein Gene (Ar-far-1) from the Chrysanthemum Foliar Nematode, Aphelenchoides ritzemabosi. Int. J. Mol. Sci. 2019, 20, 5566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solovyova, A.S.; Meenan, N.; McDermott, L.; Garofalo, A.; Bradley, J.E.; Kennedy, M.W.; Byron, O. The polyprotein and FAR lipid binding proteins of nematodes: Shape and monomer/dimer states in ligand-free and bound forms. Eur. Biophys. J. 2003, 32, 465–476. [Google Scholar] [CrossRef]
- Barletta, G.P.; Franchini, G.; Corsico, B.; Fernandez-Alberti, S. Fatty Acid and Retinol-Binding Protein: Unusual Protein Conformational and Cavity Changes Dictated by Ligand Fluctuations. J. Chem. Inf. Model. 2019, 59, 3545–3555. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, A.; Kennedy, M.W.; Bradley, J.E. The FAR proteins of parasitic nematodes: Their possible involvement in the pathogenesis of infection and the use of Caenorhabditis elegans as a model system to evaluate their function. Med. Microbiol. Immunol. 2003, 192, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.W.; Garside, L.H.; Goodrick, L.E.; McDermott, L.; Brass, A.; Price, N.C.; Kelly, S.M.; Cooper, A.; Bradley, J.E. The Ov20 protein of the parasitic nematode Onchocerca volvulus. A structurally novel class of small helix-rich retinol-binding proteins. J. Biol. Chem. 1997, 272, 29442–29448. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, A.; Kläger, S.L.; Rowlinson, M.-C.; Nirmalan, N.; Klion, A.; Allen, J.; Kennedy, M.W.; E Bradley, J. The FAR proteins of filarial nematodes: Secretion, glycosylation and lipid binding characteristics. Mol. Biochem. Parasitol. 2002, 122, 161–170. [Google Scholar] [CrossRef]
- Ding, S.; Wang, D.; Xu, C.; Yang, S.; Cheng, X.; Peng, X.; Chen, C.; Xie, H. A new fungus-mediated RNAi method established and used to study the fatty acid and retinol binding protein function of the plant-parasitic nematode Aphelenchoides besseyi. RNA Biol. 2020, 18, 1424–1433. [Google Scholar] [CrossRef]
- Siddique, S.; Grundler, F.M. Parasitic nematodes manipulate plant development to establish feeding sites. Curr. Opin. Microbiol. 2018, 46, 102–108. [Google Scholar] [CrossRef]
- Horton, P.; Park, K.-J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef] [Green Version]
- Mondal, H.A.; Louis, J.; Archer, L.; Patel, M.; Nalam, V.J.; Sarowar, S.; Sivapalan, V.; Root, D.D.; Shah, J. Arabidopsis ACTIN-DEPOLYMERIZING FACTOR3 Is Required for Controlling Aphid Feeding from the Phloem. Plant Physiol. 2017, 176, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Sheahan, M.B.; Staiger, C.J.; Rose, R.J.; McCurdy, D.W. A Green Fluorescent Protein Fusion to Actin-Binding Domain 2 of Arabidopsis Fimbrin Highlights New Features of a Dynamic Actin Cytoskeleton in Live Plant Cells. Plant Physiol. 2004, 136, 3968–3978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayscough, K.R.; Stryker, J.; Pokala, N.; Sanders, M.; Crews, P.; Drubin, D.G. High Rates of Actin Filament Turnover in Budding Yeast and Roles for Actin in Establishment and Maintenance of Cell Polarity Revealed Using the Actin Inhibitor Latrunculin-A. J. Cell Biol. 1997, 137, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gómez, L.; Boller, T. FLS2: An LRR Receptor–like Kinase Involved in the Perception of the Bacterial Elicitor Flagellin in Arabidopsis. Mol. Cell 2000, 5, 1003–1011. [Google Scholar] [CrossRef]
- Macho, A.P.; Zipfel, C. Plant PRRs and the Activation of Innate Immune Signaling. Mol. Cell 2014, 54, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Xu, C.; Chen, C.; Li, J.; Wang, J.; Xie, H. Novel Functions of the Fatty Acid and Retinol Binding Protein (FAR) Gene Family Revealed by Fungus-Mediated RNAi in the Parasitic Nematode, Aphelenchoides besseyi. Int. J. Mol. Sci. 2021, 22, 10057. [Google Scholar] [CrossRef]
- Davis, E.L.; Hussey, R.S.; Baum, T.J.; Bakker, J.; Schots, A.; Rosso, M.-N.; Abad, P. Nematode Parasitism Genes. Annu. Rev. Phytopathol. 2000, 38, 365–396. [Google Scholar] [CrossRef]
- Zhuo, K.; Chen, J.S.; Lin, B.R.; Wang, J.; Sun, F.X.; Hu, L.L.; Liao, J.L. A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Mol Plant Pathol 2017, 18, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Lin, B.; Huang, Q.; Sun, L.; Chen, J.; Hu, L.; Zhuo, K.; Liao, J. The Meloidogyne graminicola effector MgMO289 targets a novel copper metallochaperone to suppress immunity in rice. J. Exp. Bot. 2021, 72, 5638–5655. [Google Scholar] [CrossRef]
- Zhao, J.; Li, L.; Liu, Q.; Liu, P.; Li, S.; Yang, D.; Chen, Y.; Pagnotta, S.; Favery, B.; Abad, P.; et al. A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. J. Exp. Bot. 2019, 70, 5943–5958. [Google Scholar] [CrossRef]
- Ruzicka, D.R.; Kandasamy, M.K.; McKinney, E.C.; Meagher, R.B.; Burgos-Rivera, B. The ancient subclasses of Arabidopsis ACTIN DEPOLYMERIZING FACTOR genes exhibit novel and differential expression. Plant J. 2007, 52, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Wu, G.; Xu, X.; Luan, H.; Zhi, H.; Cui, J.; Cui, X.; Chen, X. Soybean actin-depolymerizing factor 2 interacts with Soybean mosaic virus-encoded P3 protein. Virus Genes 2014, 50, 333–339. [Google Scholar] [CrossRef] [PubMed]
- De Almeida Engler, J.; Van Poucke, K.; Karimi, M.; De Groodt, R.; Gheysen, G.; Engler, G.; Gheysen, G. Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots. Plant J. 2004, 38, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Clément, M.; Ketelaar, T.; Rodiuc, N.; Banora, M.Y.; Smertenko, A.; Engler, G.; Abad, P.; Hussey, P.J.; Engler, J.D.A. Actin-Depolymerizing Factor2-Mediated Actin Dynamics Are Essential for Root-Knot Nematode Infection of Arabidopsis. Plant Cell 2009, 21, 2963–2979. [Google Scholar] [CrossRef] [Green Version]
- Inada, N.; Higaki, T.; Hasezawa, S. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus. Plant Physiol. 2016, 170, 1420–1434. [Google Scholar] [CrossRef] [Green Version]
- de AlmeidaEngler, J.; Rodiuc, N.; Smertenko, A.; Abad, P. Plant actin cytoskeleton re-modeling by plant parasitic nematodes. Plant Signal. Behav. 2010, 5, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Carlier, M.-F.; Laurent, V.; Santolini, J.; Melki, R.; Didry, D.; Xia, G.-X.; Hong, Y.; Chua, N.-H.; Pantaloni, D. Actin Depolymerizing Factor (ADF/Cofilin) Enhances the Rate of Filament Turnover: Implication in Actin-based Motility. J. Cell Biol. 1997, 136, 1307–1322. [Google Scholar] [CrossRef]
- Pavlov, D.; Muhlrad, A.; Cooper, J.; Wear, M.; Reisler, E. Actin Filament Severing by Cofilin. J. Mol. Biol. 2007, 365, 1350–1358. [Google Scholar] [CrossRef] [Green Version]
- Andrianantoandro, E.; Pollard, T.D. Mechanism of Actin Filament Turnover by Severing and Nucleation at Different Concentrations of ADF/Cofilin. Mol. Cell 2006, 24, 13–23. [Google Scholar] [CrossRef]
- Porter, K.; Shimono, M.; Tian, M.; Day, B. Arabidopsis Actin-Depolymerizing Factor-4 Links Pathogen Perception, Defense Activation and Transcription to Cytoskeletal Dynamics. PLOS Pathog. 2012, 8, e1003006. [Google Scholar] [CrossRef] [Green Version]
- Henty-Ridilla, J.L.; Shimono, M.; Li, J.; Chang, J.H.; Day, B.; Staiger, C.J. The Plant Actin Cytoskeleton Responds to Signals from Microbe-Associated Molecular Patterns. PLOS Pathog. 2013, 9, e1003290. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-W.; Peng, X.-F.; Xie, H.; Xu, C.-L.; Cheng, D.-Q.; Li, J.-Y.; Wu, W.-J.; Wang, K. Arabidopsis thaliana as a suitable model host for research on interactions between plant and foliar nematodes, parasites of plant shoot. Sci. Rep. 2016, 6, 38286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Henriques, R.; Lin, S.-S.; Niu, Q.-W.; Chua, N.-H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 2006, 1, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Li, J.; Zhu, J.; Fan, T.; Qian, D.; Zhou, Y.; Wang, J.; Ren, H.; Xiang, Y.; An, L. Arabidopsis CROLIN1, a Novel Plant Actin-binding Protein, Functions in Cross-linking and Stabilizing Actin Filaments. J. Biol. Chem. 2013, 288, 32277–32288. [Google Scholar] [CrossRef] [Green Version]
- Semblat, J.-P.; Rosso, M.-N.; Hussey, R.S.; Abad, P.; Castagnone-Sereno, P. Molecular Cloning of a cDNA Encoding an Amphid-Secreted Putative Avirulence Protein from the Root-Knot Nematode Meloidogyne incognita. Mol. Plant-Microbe Interact. 2001, 14, 72–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reise, R.W.; Huettel, R.N.; Sayre, R.M. Carrot callus tissue for culture of endoparasitic nematodes. J. Nematol. 1987, 19, 387–389. [Google Scholar]
- Vieira, P.; Danchin, E.; Neveu, C.; Crozat, C.; Jaubert, S.; Hussey, R.S.; Engler, G.; Abad, P.; De Almeida-Engler, J.; Castagnone-Sereno, P.; et al. The plant apoplasm is an important recipient compartment for nematode secreted proteins. J. Exp. Bot. 2010, 62, 1241–1253. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.-D.; Cho, Y.-H.; Sheen, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007, 2, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Pardee, J.D.; Aspudich, J. Purification of muscle actin. Methods Enzymol. 1982, 85, 164–181. [Google Scholar] [CrossRef]
- Nan, Q.; Qian, D.; Niu, Y.; He, Y.; Tong, S.; Niu, Z.; Ma, J.; Yang, Y.; An, L.; Wan, D.; et al. Plant Actin-Depolymerizing Factors Possess Opposing Biochemical Properties Arising from Key Amino Acid Changes throughout Evolution. Plant Cell 2017, 29, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Nandi, A.K. Arabidopsis thaliana methionine sulfoxide reductase B8 influences stress-induced cell death and effector-triggered immunity. Plant Mol. Biol. 2016, 93, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.G.; Geng, X.; Lee, S.Y.; Mackey, D. The Pseudomonas syringae type III effector AvrRpm1 induces significant defenses by activating the Arabidopsis nucleotide-binding leucine-rich repeat protein RPS2. Plant J. 2009, 57, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, C.; Yang, S.; Chen, C.; Tang, S.; Wang, J.; Xie, H. A venom allergen-like protein, rsvap, the first discovered effector protein of Radopholus similis that inhibits plant defense and facilitates parasitism. Int. J. Mol. Sci. 2021, 22, 4782. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, S.; Cheng, X.; Wang, D.; Chen, C.; Yang, S.; Wang, J.; Xu, C.; Xie, H. Aphelenchoides besseyi Ab-FAR-1 Interacts with Arabidopsis thaliana AtADF3 to Interfere with Actin Cytoskeleton, and Promotes Nematode Parasitism and Pathogenicity. Int. J. Mol. Sci. 2022, 23, 12280. https://doi.org/10.3390/ijms232012280
Ding S, Cheng X, Wang D, Chen C, Yang S, Wang J, Xu C, Xie H. Aphelenchoides besseyi Ab-FAR-1 Interacts with Arabidopsis thaliana AtADF3 to Interfere with Actin Cytoskeleton, and Promotes Nematode Parasitism and Pathogenicity. International Journal of Molecular Sciences. 2022; 23(20):12280. https://doi.org/10.3390/ijms232012280
Chicago/Turabian StyleDing, Shanwen, Xi Cheng, Dongwei Wang, Chun Chen, Sihua Yang, Jiafeng Wang, Chunling Xu, and Hui Xie. 2022. "Aphelenchoides besseyi Ab-FAR-1 Interacts with Arabidopsis thaliana AtADF3 to Interfere with Actin Cytoskeleton, and Promotes Nematode Parasitism and Pathogenicity" International Journal of Molecular Sciences 23, no. 20: 12280. https://doi.org/10.3390/ijms232012280
APA StyleDing, S., Cheng, X., Wang, D., Chen, C., Yang, S., Wang, J., Xu, C., & Xie, H. (2022). Aphelenchoides besseyi Ab-FAR-1 Interacts with Arabidopsis thaliana AtADF3 to Interfere with Actin Cytoskeleton, and Promotes Nematode Parasitism and Pathogenicity. International Journal of Molecular Sciences, 23(20), 12280. https://doi.org/10.3390/ijms232012280