Dysregulation of Placental Lipid Hydrolysis by High-Fat/High-Cholesterol Feeding and Gestational Diabetes Mellitus in Mice
Abstract
:1. Introduction
2. Results
2.1. Increased Placental Efficiency after HF/HCD Feeding and in GDM
2.2. Placentae from Pregnancies Complicated by HF/HCD and GDM Accumulate TG
2.3. Increased Placental CE Hydrolysis in Pregnancies Complicated by HF/HCD and GDM
2.4. Fetal Hepatic Lipid Accumulation after Maternal HF/HCD Feeding and GDM Development
3. Discussion
4. Materials and Methods
4.1. Animals and Sample Collection
4.2. Glucose Tolerance Test
4.3. Plasma Parameters
4.4. RNA Isolation, cDNA Preparation and Real-Time PCR
4.5. Oil Red O Staining
4.6. Lipid Extraction
4.7. CE and TG Hydrolase Activity Assays
4.8. Western Blotting
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Overweight and Obesity Factsheet. Available online: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 17 June 2022).
- Teh, W.T.; Teede, H.J.; Paul, E.; Harrison, C.L.; Wallace, E.M.; Allan, C. Risk factors for gestational diabetes mellitus: Implications for the application of screening guidelines. Aust. N. Z. J. Obstet. Gynaecol. 2011, 51, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wei, T.; Ni, W.; Zhang, A.; Zhang, J.; Xing, Y.; Xing, Q. Incidence and risk factors of gestational diabetes mellitus: A prospective cohort study in Qingdao, China. Front. Endocrinol. 2020, 11, 636. [Google Scholar] [CrossRef]
- Solomon, C.G.; Willett, W.C.; Carey, V.J.; Rich-Edwards, J.; Hunter, D.J.; Colditz, G.A.; Stampfer, M.J.; Speizer, F.E.; Spiegelman, D.; Manson, J.E. A prospective study of pregravid determinants of gestational diabetes mellitus. JAMA 1997, 278, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- Metzger, B.E.; Buchanan, T.A.; Coustan, D.R.; de Leiva, A.; Dunger, D.B.; Hadden, D.R.; Hod, M.; Kitzmiller, J.L.; Kjos, S.L.; Oats, J.N.; et al. Summary and recommendations of the fourth international workshop-conference on gestational diabetes mellitus. Diabetes Care 2007, 30, S251–S260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational diabetes mellitus. Nat. Rev. Dis. Prim. 2019, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Herrera, E. Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine 2002, 19, 43–55. [Google Scholar] [CrossRef]
- Hauguel, S.; Desmaizieres, V.; Challier, J.C. Glucose uptake, utilization, and transfer by the human placenta as functions of maternal glucose concentration. Pediatr. Res. 1986, 20, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Castrejon, M.; Powell, T.L. Placental nutrient transport in gestational diabetic pregnancies. Front. Endocrinol. 2017, 8, 306. [Google Scholar] [CrossRef] [Green Version]
- Lindegaard, M.L.S.; Olivecrona, G.; Christoffersen, C.; Kratky, D.; Hannibal, J.; Petersen, B.L.; Zechner, R.; Damm, P.; Nielsen, L.B. Endothelial and lipoprotein lipases in human and mouse placenta. J. Lipid Res. 2005, 46, 2339–2346. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.; Dana, S.; Faust, J.; Beaudet, A.; Brown, M. Role of lysosomal acid lipase in the metabolism of plasma low density lipoprotein. Observations in cultured fibroblasts from a patient with cholesteryl ester storage disease. J. Biol. Chem. 1975, 250, 8487–8495. [Google Scholar] [CrossRef]
- Zimmermann, R.; Strauss, J.G.; Haemmerle, G.; Schoiswohl, G.; Birner-Gruenberger, R.; Riederer, M.; Lass, A.; Neuberger, G.; Eisenhaber, F.; Hermetter, A.; et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004, 306, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Belfrage, P.; Jergil, B.; Strålfors, P.; Tornqvist, H. Hormone-sensitive lipase of rat adipose tissue: Identification and some properties of the enzyme protein. FEBS Lett. 1977, 75, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Tornqvist, H.; Belfrage, P. Purification and some properties of a monoacylglycerol-hydrolyzing enzyme of rat adipose tissue. J. Biol. Chem. 1976, 251, 813–819. [Google Scholar] [CrossRef]
- Warner, T.G.; Dambach, L.M.; Shin, J.H.; O’Brien, J.S. Purification of the lysosomal acid lipase from human liver and its role in lysosomal lipid hydrolysis. J. Biol. Chem. 1981, 256, 2952–2957. [Google Scholar] [CrossRef]
- Cruz, J.C.; Sugii, S.; Yu, C.; Chang, T.-Y. Role of niemann-pick type C1 protein in intracellular trafficking of low density lipoprotein-derived cholesterol. J. Biol. Chem. 2000, 275, 4013–4021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuentzel, K.B.; Bradić, I.; Akhmetshina, A.; Korbelius, M.; Rainer, S.; Kolb, D.; Gauster, M.; Vujić, N.; Kratky, D. Defective lysosomal lipolysis causes prenatal lipid accumulation and exacerbates immediately after birth. Int. J. Mol. Sci. 2021, 22, 10416. [Google Scholar] [CrossRef]
- Hulme, C.H.; Stevens, A.; Dunn, W.; Heazell, A.E.P.; Hollywood, K.; Begley, P.; Westwood, M.; Myers, J.E. Identification of the functional pathways altered by placental cell exposure to high glucose: Lessons from the transcript and metabolite interactome. Sci. Rep. 2018, 8, 5270. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Pan, Z.; Guo, F.; Wang, H.; Long, W.; Wang, H.; Yu, B. Placental metabolic profiling in gestational diabetes mellitus: An important role of fatty acids. J. Clin. Lab. Anal. 2021, 35, e24096. [Google Scholar] [CrossRef]
- Castillo-Castrejon, M.; Yamaguchi, K.; Rodel, R.L.; Erickson, K.; Kramer, A.; Hirsch, N.M.; Rolloff, K.; Jansson, T.; Barbour, L.A.; Powell, T.L. Effect of type 2 diabetes mellitus on placental expression and activity of nutrient transporters and their association with birth weight and neonatal adiposity. Mol. Cell. Endocrinol. 2021, 532, 111319. [Google Scholar] [CrossRef]
- Barrett, H.L.; Kubala, M.H.; Romero, K.S.; Denny, K.J.; Woodruff, T.M.; McIntyre, H.D.; Callaway, L.K.; Nitert, M.D. Placental lipases in pregnancies complicated by gestational diabetes mellitus (GDM). PLoS ONE 2014, 9, e104826. [Google Scholar] [CrossRef]
- Gauster, M.; Hiden, U.; van Poppel, M.; Frank, S.; Wadsack, C.; Mouzon, S.H.-D.; Desoye, G. Dysregulation of placental endothelial lipase in obese women with gestational diabetes mellitus. Diabetes 2011, 60, 2457–2464. [Google Scholar] [CrossRef] [Green Version]
- Hulme, C.H.; Nicolaou, A.; Murphy, S.A.; Heazell, A.E.P.; Myers, J.E.; Westwood, M. The effect of high glucose on lipid metabolism in the human placenta. Sci. Rep. 2019, 9, 14114. [Google Scholar] [CrossRef] [Green Version]
- Furse, S.; Koulman, A.; E Ozanne, S.; Poston, L.; White, S.L.; Meek, C.L. Altered lipid metabolism in obese women with gestational diabetes and associations with offspring adiposity. J. Clin. Endocrinol. Metab. 2022, 107, e2825–e2832. [Google Scholar] [CrossRef]
- Berger, N.; Allerkamp, H.; Wadsack, C. Serine hydrolases in lipid homeostasis of the placenta-targets for placental function? Int. J. Mol. Sci. 2022, 23, 6851. [Google Scholar] [CrossRef]
- Fowden, A.L.; Sferruzzi-Perri, A.N.; Coan, P.M.; Constancia, M.; Burton, G.J. Placental efficiency and adaptation: Endocrine regulation. J. Physiol. 2009, 587, 3459–3472. [Google Scholar] [CrossRef]
- Rossant, J.; Cross, J.C. Placental development: Lessons from mouse mutants. Nat. Rev. Genet. 2001, 2, 538–548. [Google Scholar] [CrossRef]
- Aye, I.L.M.H.; Lager, S.; Ramirez, V.I.; Gaccioli, F.; Dudley, D.J.; Jansson, T.; Powell, T. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol. Reprod. 2014, 90, 129. [Google Scholar] [CrossRef]
- Kleiblova, P.; Dostalova, I.; Bartlova, M.; Lacinová, Z.; Ticha, I.; Krejčí, V.; Springer, D.; Kleibl, Z.; Haluzik, M. Expression of adipokines and estrogen receptors in adipose tissue and placenta of patients with gestational diabetes mellitus. Mol. Cell. Endocrinol. 2010, 314, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, M.L. Fetal brain to liver weight ratio as a measure of intrauterine growth retardation: Analysis of 182 stillborn autopsies. Mod. Pathol. 2001, 14, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Diabetesatlas. Available online: https://diabetesatlas.org/data/en/indicators/14/ (accessed on 22 September 2022).
- Howell, K.R.; Powell, T.L. Effects of maternal obesity on placental function and fetal development. Reproduction 2017, 153, R97–R108. [Google Scholar] [CrossRef] [Green Version]
- Evers, I.M.; Nikkels, P.G.J.; Sikkema, J.M.; Visser, G.H.A. Placental pathology in women with type 1 diabetes and in a control group with normal and large-for-gestational-age infants. Placenta 2003, 24, 819–825. [Google Scholar] [CrossRef]
- Romero, A.; Villamayor, F.; Grau, M.; Sacristan, A.; Ortiz, J. Relationship between fetal weight and litter size in rats: Application to reproductive toxicology studies. Reprod. Toxicol. 1992, 6, 453–456. [Google Scholar] [CrossRef]
- Kim, D.W.; Young, S.L.; Grattan, D.R.; Jasoni, C.L. Obesity during pregnancy disrupts placental morphology, cell proliferation, and inflammation in a sex-specific manner across gestation in the mouse. Biol. Reprod. 2014, 90, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Schaiff, W.T.; Knapp, F.F., Jr.; Barak, Y.; Biron-Shental, T.; Nelson, D.M.; Sadovsky, Y. Ligand-activated peroxisome proliferator activated receptor γ alters placental morphology and placental fatty acid uptake in mice. Endocrinology 2007, 148, 3625–3634. [Google Scholar] [CrossRef]
- Dennedy, M.C.; Avalos, G.; O’Reilly, M.; O’Sullivan, E.P.; Gaffney, G.; Dunne, F. Atlantic-dip: Raised maternal body mass index (BMI) adversely affects maternal and fetal outcomes in glucose-tolerant women according to international association of diabetes and pregnancy study groups (IADPSG) criteria. J. Clin. Endocrinol. Metab. 2012, 97, E608–E612. [Google Scholar] [CrossRef]
- Kaminsky, S.; Sibley, C.P.; Maresh, M.; Thomas, C.R.; D’Souza, S.W. The effects of diabetes on placental lipase activity in the rat and human. Pediatr. Res. 1991, 30, 541–543. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Lee, Y.J.; An, S.-M.; Kim, M.J.; Jeong, J.S.; Kim, D.S.; Lim, Y.; Jung, E.-M.; Kim, S.-C.; An, B.-S. Dynamic regulation of lipid metabolism in the placenta of in vitro and in vivo models of gestational diabetes mellitus. Biol. Reprod. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Laurens, C.; Badin, P.-M.; Louche, K.; Mairal, A.; Tavernier, G.; Marette, A.; Tremblay, A.; Weisnagel, S.J.; Joanisse, D.R.; Langin, D.; et al. G0/G1 switch gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle. Mol. Metab. 2016, 5, 527–537. [Google Scholar] [CrossRef]
- Yang, X.; Lu, X.; Lombès, M.; Rha, G.B.; Chi, Y.-I.; Guerin, T.M.; Smart, E.J.; Liu, J. The G0/G1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab. 2010, 11, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Das, K.M.P.; Wechselberger, L.; Liziczai, M.; De la Rosa Rodriguez, M.; Grabner, G.; Heier, C.; Viertlmayr, R.; Radler, C.; Lichtenegger, J.; Zimmermann, R.; et al. Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase. J. Lipid Res. 2018, 59, 531–541. [Google Scholar] [CrossRef]
- Challier, J.; Basu, S.; Bintein, T.; Minium, J.; Hotmire, K.; Catalano, P.; Mouzon, S.H.-D. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta 2008, 29, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001, 50, 537–546. [Google Scholar]
- Winzell, M.S.; Ahrén, B. The high-fat diet—Fed mouse: A model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 2004, 53, S215–S219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoonejans, J.M.; Ozanne, S.E. Developmental programming by maternal obesity: Lessons from animal models. Diabet. Med. 2021, 38, e14694. [Google Scholar] [CrossRef]
- Schulze, F.; Wehner, J.; Kratschmar, D.V.; Makshana, V.; Meier, D.T.; Häuselmann, S.P.; Dalmas, E.; Thienel, C.; Dror, E.; Wiedemann, S.J.; et al. Inhibition of IL-1beta improves glycaemia in a mouse model for gestational diabetes. Sci. Rep. 2020, 10, 3035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayward, C.E.; Lean, S.; Sibley, C.P.; Jones, R.L.; Wareing, M.; Greenwood, S.L.; Dilworth, M.R. Placental adaptation: What can we learn from birthweight: Placental weight ratio? Front. Physiol. 2016, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Festing, M.F.W. Design and statistical methods in studies using animal models of development. ILAR J. 2006, 47, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Virtue, S.; Vidal-Puig, A. GTTs and ITTs in mice: Simple tests, complex answers. Nat. Metab. 2021, 3, 883–886. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Bradić, I.; Kuentzel, K.B.; Honeder, S.; Grabner, G.F.; Vujić, N.; Zimmermann, R.; Birner-Gruenberger, R.; Kratky, D. Off-target effects of the lysosomal acid lipase inhibitors Lalistat-1 and Lalistat-2 on neutral lipid hydrolases. Mol. Metab. 2022, 61, 101510. [Google Scholar] [CrossRef]
Gene | Forward Sequence 5′-3′ | Reverse Sequence 5′-3′ |
---|---|---|
Abca1 | CTCTTCATGACTCTAGCCTGGA | ACACAGACAGGAAGACGAACAC |
Abcg1 | CTTTCCTACTCTGTACCCGAGG | CGGGGCATTCCATTGATAAGG |
Abhd5 | GGTTAAGTCTAGTGCAGC | AAGCTGTCTCACCACTTG |
Cd31 | ACCGGGTGCTGTTCTATAAGG | TCACCTCGTACTAATCGTGG |
Cd36 | GCAGGTCTATCTACGCTGTG | GGTTGTCTGGATTCTGGAGG |
Cyclophilin A | CCATCCAGCCATTCAGTCTT | TTCCAGGATTCATGTGCCAG |
Emr1 | CTTTGGCTATGGGCTTCCAGTC | GCAAGGAGGACAGAGTTTATCGTG |
Eomes | GCGCATGTTTCCTTTCTTGAG | GAAGCGCCAGTGGTTAGGG |
Esx1 | CCCATGCATCCTCAAATGATG | GCCTAAATGGTGGAGGCATTC |
Fas | GAAGCCGAACACCTCTGTGCAGT | GCTCCTTGCTGCCATCTGTATTG |
Fatp4 | GGCACAGACACTCACTGGAC | TGCGGTTTTCCATAAAGAGGG |
G0s2 | GCCACCGAATCCAGAACTGA | TTGATTGCTCGCACAGCCTA |
Hilpda | TCCGTGACTCCCCGAGAA | GCCCAGCACATAGAGGTTCA |
Hmgcr | TGTTCACCGGCAACAACAAGA | CCGCGTTATCGTCAGGATGA |
Krt8 | CAAGGTGGAACTAGAGTCCCG | CTCGTACTGGGCACGAACTTC |
Lamp1 | CAGCACTCTTTGAGGTGAAAAAC | CCATTCGCAGTCTCGTAGGTG |
Lamp2 | TGTATTTGGCTAATGGCTCAGC | TATGGGCACAAGGAAGTTGTC |
Lipa | GCTGGCTTTGATGTGTGGATG | ATGGTGCAGCCTTGAGAATGA |
Lipe | GCTGGTGACACTCGCAGAAG | TGGCTGGTGTCTCTGTGTCC |
Mash2 | AACCGCGTAAAGCTGGTAAACT | TCTCCACCTTACTCAGCTTCTTGTT |
Mgll | CGGACTTCCAAGTTTTTGTCAGA | GCAGCCACTAGGATGGAGATG |
Nlrp3 | TCGCAGCAAAGATCCACACAG | ATTACCCGCCCGAGAAAGG |
Npc1 | AATGCCTGCCGTGATGTG | CGCTTGTCCGTTGTCTTTATTG |
Npc2 | GTCAACATCACCTTTACC | GATTCCACTCTTACAACC |
Pnpla2 | GCCACTCACATCTACGGAGC | GACAGCCACGGATGGTGTTC |
Scd1 | CCGGAGACCCCTTAGATCGA | TAGCCTGTAAAAGATTTCTGCAAACC |
Srebf1 | CAAGGCCATCGACTACATCCG | CACCACTTCGGGTTTCATGC |
Srebf2 | TGAAGGACTTAGTCATGGGCAC | CGCAGCTTGTGATTGACCT |
Tfeb | AAGGTTCGGGAGTATCTGTCTG | GGGTTGGAGCTGATATGTAGCA |
Tpbpa | GGAGTGGCCTCAGCTGCTAT | AACTTCTTTATCCTTCTGCTCTTGCA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuentzel, K.B.; Bradić, I.; Mihalič, Z.N.; Korbelius, M.; Rainer, S.; Pirchheim, A.; Kargl, J.; Kratky, D. Dysregulation of Placental Lipid Hydrolysis by High-Fat/High-Cholesterol Feeding and Gestational Diabetes Mellitus in Mice. Int. J. Mol. Sci. 2022, 23, 12286. https://doi.org/10.3390/ijms232012286
Kuentzel KB, Bradić I, Mihalič ZN, Korbelius M, Rainer S, Pirchheim A, Kargl J, Kratky D. Dysregulation of Placental Lipid Hydrolysis by High-Fat/High-Cholesterol Feeding and Gestational Diabetes Mellitus in Mice. International Journal of Molecular Sciences. 2022; 23(20):12286. https://doi.org/10.3390/ijms232012286
Chicago/Turabian StyleKuentzel, Katharina B., Ivan Bradić, Zala N. Mihalič, Melanie Korbelius, Silvia Rainer, Anita Pirchheim, Julia Kargl, and Dagmar Kratky. 2022. "Dysregulation of Placental Lipid Hydrolysis by High-Fat/High-Cholesterol Feeding and Gestational Diabetes Mellitus in Mice" International Journal of Molecular Sciences 23, no. 20: 12286. https://doi.org/10.3390/ijms232012286
APA StyleKuentzel, K. B., Bradić, I., Mihalič, Z. N., Korbelius, M., Rainer, S., Pirchheim, A., Kargl, J., & Kratky, D. (2022). Dysregulation of Placental Lipid Hydrolysis by High-Fat/High-Cholesterol Feeding and Gestational Diabetes Mellitus in Mice. International Journal of Molecular Sciences, 23(20), 12286. https://doi.org/10.3390/ijms232012286