Role of Micronutrients and Gut Microbiota-Derived Metabolites in COVID-19 Recovery
Abstract
:1. Introduction
2. Role of Micronutrients in Individual Health and Disease
2.1. Water-Soluble Vitamins
2.2. Fat-Soluble Vitamins
2.3. Macrominerals
2.4. Microminerals
2.5. Water and Electrolyte Homeostasis
3. Role of Micronutrients in COVID-19 Infection and Post-COVID-19 Syndrome Recovery
3.1. Water-Soluble Vitamins
3.2. Fat-Soluble Vitamins
3.3. Minerals
3.4. Water and Electrolyte Imbalance
4. Role of the Gut Microbiome and Its Metabolites in Health and Disease
4.1. Human and Gut Microbiome
4.2. Gut Microbiota-Derived Metabolites and Their Function in the Human Host
Group | Metabolite | Species | Target | Function or Effect | Related Disease | References |
---|---|---|---|---|---|---|
Bile acids | Cholate, hyocholate, deoxycholate, taurohyocholate, ursodeoxycholate, taurocholate, tauro-α-muricholate, glycocholate, hyodeoxycholate, tauro-β-muricholate, lithocholate, taurodeoxylcholate | Bifidobacterium, Clostridium, and Escherichia coli | farnesoid X receptor (FXR), vitamin D receptor (VDR), steroid and xenobiotic receptor (SXR), constitutive androstane receptor, The Bile Acid Membrane Receptor (TGR5), sphingosine 1-phosphate receptor 2, formyl-peptide receptor, muscarinic acetylcholine receptor | GI mobility and gut permeability, facilitate lipid and vitamin absorption, regulation of GM composition, gut hormones, intestinal immunity, intestinal electrolyte and fluid balance, gut motility, lipid homeostasis, glucose homeostasis, amino acid homeostasis, circadian clocks; influence neurotransmission and physiology | Primary biliary cholangitis, primary sclerosing cholangitis, obesity, nonalcoholic fatty liver disease, non-alcoholic steatohepatitis, atherosclerosis, ulcerative colitis, cancer, hepatic encephalopathy, multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, traumatic brain injury, stroke, and amyotrophic lateral, Inflammatory Bowel Disease | [130,131,132,133,135,179,180] |
Gases | H2S, H2, CO2, CHA, NO | Desulfovibrio piger, Desulfovibrio desulfuricans, Escherichia coli, Enterobacter aerogenes, Enterobacter cloacae, Citrobacter freundii, Proteus vulgaris, Edwardsiella tarda, Lactobacillus acidophilus, Lactobacillus shirota, Lactobacillus rhamnosus, Bifidobacterium bifidus, Bifidobacterium breve, Bifidobacterium infantis, Bacillus subtilis, Bacillus anthracis, Deinococcus radiodurans | Guanylate cyclase | Slows gut motility, regulates gut inflammation, promotes epitelial secretion and susceptibility to infections, mediation of gastric mucosal, protection and regulate mucosal blood flow | Parkinson’s disease, colitis, ulcer | [11,167,168,169,170,171,172,173,174,175,176,177,178] |
Lipids | Lipopolysaccharides (LPS), Conjugated fatty acids, Cholesterol, Phosphatidylcholines, Triglycerides, | LPS targets directly Toll-like receptor 4 (TLR4) | Triggering systemic inflammation, regulation of hyperinsulinemia, immune system, lipoprotein profiles, material bases for bile acid synthesis. | T2D, obesity, nonalcoholic fatty liver disease, hyperinsulinemia, hypercholesterolemia, chronic hepatitis C. | [179] | |
Neurotransmitters and choline metabolites | GABA, Dopamine, Serotonin and Catecholamines, Methylamine, Dimethylglycine, Dimethylamine | Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Shigella sonnei and Staphylococcus aureus, Lactobacillus brevis and Bifidobacterium dentium Anaerococcus hydrogenalis, Clostridium asparagiforme, Clostridium hathewayi, Clostridium sporogenes, Desulfitobacterium hafniense, Escherichia fergusonii, Proteus penneri, Providencia rettgeri, Providencia alcalifaciens, Providencia rustigianii, Edwardsiella tarda, Yokenella regensburgei, Citrobacter freundii, Escherichia coli, Proteus vulgaris | Adrenergic receptors, Serotonine (5-HT) receptors, gamma-aminobutyric acid (GABA) receptors Activate NF-KB, protein kinase C, NLR family pyrin domain containing 3 (NLRP3), and inflammasome | Visceral pain, inflammation, and visceral hypersensitivity Inflammation, visceral pain, GI mobility, and psychological factors Changes in Enteric nervous system ENS and gut–brain axis, visceral pain, and visceral hypersensitivity “Regulate gut motility, memory and stress responses, immune function of nervous system” Inhibits bile acid synthesis, promote inflammation, thrombosis, affects myocardial hypertrophy and fibrosis, exacerbates mitochondrial dysfunction | Parkinson’s disease, autism Nonalcoholic fatty liver disease, obesity, aterosclerosis, T2D, heart failure, HBP, Aterosclerosis, Fatty Liver | [100,101,102,103,104] |
Others | Ethanol, Methane, Triphosadenine, Lantibiotic, Microcin, Organic acids, Polyamines, Hypoxanthine | Methaninobrevibacter mithii, Methanosphaera stadtmanae, Lachnospiracea strains | Triphosadenine activate Purigenic (P2X and P2Y) receptors | Enhance or damage gut barrier, regulate intestinal or systemic immune response, act as antibiotics to modulate GM composition, supply the nutrients, be toxic to host cells, exacerbating obesity manifestations | Fatty liver disease, C. difficile and H. pylori infections, irritable bowel syndrome, ulcerative colitis, obesity | [179,180,181] |
Short-chain fatty acids | Acetate, propionate, butyrate, hexanoate, isovalerate, isobutyrate, 2-methylpropionate, valerate | Akkermansia muciniphila, Alistipes putredinis, Anaerostipes hadrus, Bacteroides fragilis, Bacteroides ovatus, Bacteroides uniformis, Bacteroides vulgates, Bifidobacterium adolescentis, Bifidobacterium longum, Blautia obeum, Clostridium bifermentans, Clostridium perfringens, Coprococcus catus, Coprococcus comes, Dialister invisus, Eubacterium hallii, Eubacterium rectale, Faecalibacterium prausnitzii, Megasphaera elsdenii, Phascolarctobacterium succinatutens, Prevotella copri, Roseburia hominis, Roseburia intestinalis, Roseburia inulinivorans, Ruminococcus bromii, Ruminococcus gnavus, Ruminococcus lavefaciens | G protein-coupled receptors (GPR41, GPR43, GPR109A, GPR81, GPR91) and Histone deacetylases (HDAC1 and HDAC3) | Visceral hypersensitivity and inflammation, regulation of GM composition, gut barrier integrity, appetite, energy homeostasis, gut hormone production, circadian clocks, inhibit proinflammatory cytokines, stimulate water and sodium absorption, modulate systemic immune response | Obesity, T2D, pancreatitis, nonalcoholic fatty liver disease, HBP, atherosclerosis, chronic kidney disease, ulcerative colitis, radiation proctitis, Crohn’s disease, colorectal cancer, autism spectrum disorder, sclerosis, Parkinson’s disease, asthma, diarrhea, hepatocellular carcinoma insulin Resistance | [114,128,179,180] |
Tryptophan and indole derivatives | Indole, Imidazole propionate, Indole propionic acid, Indole acetamide, Metyl-indole, Indole acetic acid, Indole lactic acid, Indole pyruvic acid, indoxyl sulfuric acid, Indole aldehyde, Indole-acrylic acid, Indole carboxaldehyde and Tryptamine | Bacteroides ovatus, Bacteroides Adolescentis, Bacteroides fragilis, Bacteroides pseudolongum, Bacteroides thetaiotaomicron, Bacteroides eggerthii, Bifidobacterium adolescentis, Bifidobacterium pseudolongum, Burkholderia pvrrocinia, Burkholderia Thetaiotaomicron, Butyrivibrio fibrisolvens, Clostridium botulinum, Clostridium caloritolerans, Clostridium paraputrificum, Clostridium sporogenes, Clostridium bartlettii, Clostridium bifermentans, Clostridium cadaveris, Clostridium difficile, Clostridium lentoputrescens, Clostridium limosum, Clostridium lituseburense, Clostridium melanomenatum, Clostridium paraputrificum, Clostridium saccharolyticum, Clostridium sporogenes, Clostridium tetani, Enterobacter cloacae, Escherichia Albertii, Escherichia coli, Eubacterium cylindroides, Fusobacterium nucleatum, Lactobacillus acidophillus, Lactobacillus johnsoni, Lactobacillus murinus, Lactobacillus reuteri, Parabacteroides distasonis, Peptostreptococcus anaerobiusm Peptostreptococcus asscharolyticus, Peptostreptococcus russelli, Rauschbrand bacillus, Ruminococcus gnavus | aryl hydrocarbon receptor (AhR) and PXR | Influence on gut permeability, promotes spore formation, drug resistance, biofilm formation, and virulence; regulate intestinal barrier functions, gut hormone secretion, gut motility, systemic immune response inducing inflammation | T2D, Ulcerative colitis, Crohn’s disease, obesity, stroke, mucosal candidiasis, autism spectrum disorder, Alzheimer’s disease, Parkinson’s disease, migraine, schizophrenia, irritable bowel syndrome, chronic kidney disease, hepatitis, impaired liver function | [142,143,144,145,146,147,148,149,150,151,152,153] |
Vitamins | Vitamin D, Vitamin B2. Vitamin, B3, Vitamin B5, Vitamin B6, Vitamin B9, Vitamin B12, Vitamin K | Salmonella typhimurium, Actinobacteria, Bacteroidetes, and Proteobacteria phyla | Vitamin receptors | Inflammation and gut permeability Inflammation “Involved in cellular metabolism: modulate immune function and cell proliferation; supply vitamins for hosts” | Schizophrenia, autism, dementia | [143,155,156] |
5. Gut Microbiota in the COVID-19 Infection and Post-COVID-19 Syndrome Recovery
6. Gut Microbiota Metabolites in the COVID-19 Infection and Post-COVID-19 Syndrome Recovery
6.1. L-Tryptophan-Derived Microbiota Metabolites
6.2. SCFAs
6.3. Microbial Metabolites Derived from Bile Acids
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, C.; Sui, J.; Kuhn, J.H.; Moore, M.J.; Luo, S.; Wong, S.K.; Huang, I.C.; Xu, K.; Vasilieva, N.; et al. Receptor and viral determinants of SARS–coronavirus adaptation to human ACE2. EMBO J. 2005, 24, 1634–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Understanding Risk. Available online: https://www.cdc.gov/coronavirus/2019–ncov/need–extra–precautions/index.html (accessed on 20 September 2022).
- Di Renzo, L.; Gualtieri, P.; De Lorenzo, A. Diet, Nutrition and Chronic Degenerative Diseases. Nutrients 2021, 13, 1372. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz–Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud–Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef] [Green Version]
- WHO. Healthy Diet. Available online: https://www.who.int/campaigns/connecting–the–world–to–combat–coronavirus/healthyathome/healthyathome–––healthy–diet (accessed on 20 September 2022).
- Kurtz, A.; Grant, K.; Marano, R.; Arrieta, A.; Grant, K., Jr.; Feaster, W.; Steele, C.; Ehwerhemuepha, L. Long–term effects of malnutrition on severity of COVID–19. Sci. Rep. 2021, 11, 14974. [Google Scholar] [CrossRef]
- NIH. Diccionario de cáncer del NCI. Available online: https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario–cancer/def/desnutricion (accessed on 20 September 2022).
- EU Register of Nutrition and Health Claims Made on Foods (v.3.6). Available online: https://ec.europa.eu/food/safety/labelling_nutrition/claims/register/public/?event=register.home (accessed on 20 September 2022).
- Attaye, I.; Warmbrunn, M.V.; Boot, A.; van der Wolk, S.C.; Hutten, B.A.; Daams, J.G.; Herrema, H.; Nieuwdorp, M. A Systematic Review and Meta–analysis of Dietary Interventions Modulating Gut Microbiota and Cardiometabolic Diseases–Striving for New Standards in Microbiome Studies. Gastroenterology 2022, 162, 1911–1932. [Google Scholar] [CrossRef]
- McCarville, J.L.; Chen, G.Y.; Cuevas, V.D.; Troha, K.; Ayres, J.S. Microbiota Metabolites in Health and Disease. Annu. Rev. Immunol. 2020, 38, 147–170. [Google Scholar] [CrossRef]
- Akram, M.; Munir, N.; Daniyal, M.; Egbuna, C.; Găman, M.-A.; Onyekere, P.F.; Olatunde, A. Vitamins and Minerals: Types, Sources and their Functions. In Functional Foods and Nutraceuticals; Springer: New York, NY, USA, 2020; pp. 149–172. [Google Scholar]
- Biesalski Hans, K.; Jana, T. Micronutrients in the life cycle: Requirements and sufficient supply. NFS J. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Zhao, A.; Xue, Y.; Zhang, Y.; Li, W.; Yu, K.; Wang, P. Nutrition Concerns of Insufficient and Excessive Intake of Dietary Minerals in Lactating Women: A Cross–Sectional Survey in Three Cities of China. PLoS ONE 2016, 11, e0146483. [Google Scholar] [CrossRef]
- Hanna, M.; Jaqua, E.; Nguyen, V.; Clay, J. B Vitamins: Functions and Uses in Medicine. Perm. J. 2022, 26, 89–97. [Google Scholar] [CrossRef]
- Gasmi, A.; Tippairote, T.; Mujawdiya, P.K.; Peana, M.; Menzel, A.; Dadar, M.; Gasmi Benahmed, A.; Bjorklund, G. Micronutrients as immunomodulatory tools for COVID–19 management. Clin. Immunol. 2020, 220, 108545. [Google Scholar] [CrossRef]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Junaid, K.; Ejaz, H.; Abdalla, A.E.; Abosalif, K.O.A.; Ullah, M.I.; Yasmeen, H.; Younas, S.; Hamam, S.S.M.; Rehman, A. Effective Immune Functions of Micronutrients against SARS–CoV–2. Nutrients 2020, 12, 2992. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Hassan, A.; Molnar, J. The Role of Micronutrients to Support Immunity for COVID–19 Prevention. Rev. Bras. Farmacogn. 2021, 31, 361–374. [Google Scholar] [CrossRef]
- Lai, Y.J.; Chang, H.S.; Yang, Y.P.; Lin, T.W.; Lai, W.Y.; Lin, Y.Y.; Chang, C.C. The role of micronutrient and immunomodulation effect in the vaccine era of COVID–19. J. Chin. Med. Assoc. 2021, 84, 821–826. [Google Scholar] [CrossRef]
- Childs, C.E.; Calder, P.C.; Miles, E.A. Diet and Immune Function. Nutrients 2019, 11, 1933. [Google Scholar] [CrossRef] [Green Version]
- Blomhoff, R.; Blomhoff, H.K. Overview of retinoid metabolism and function. J. Neurobiol. 2006, 66, 606–630. [Google Scholar] [CrossRef]
- Sarohan, A.R. COVID–19: Endogenous Retinoic Acid Theory and Retinoic Acid Depletion Syndrome. Med. Hypotheses 2020, 144, 110250. [Google Scholar] [CrossRef]
- Ali, N. Role of vitamin D in preventing of COVID–19 infection, progression and severity. J. Infect. Public Health 2020, 13, 1373–1380. [Google Scholar] [CrossRef]
- Barrea, L.; Verde, L.; Grant, W.B.; Frias–Toral, E.; Sarno, G.; Vetrani, C.; Ceriani, F.; Garcia–Velasquez, E.; Contreras–Briceno, J.; Savastano, S.; et al. Vitamin D: A Role Also in Long COVID–19? Nutrients 2022, 14, 1625. [Google Scholar] [CrossRef]
- Melamed, M.L.; Michos, E.D.; Post, W.; Astor, B. 25–hydroxyvitamin D levels and the risk of mortality in the general population. Arch. Intern. Med. 2008, 168, 1629–1637. [Google Scholar] [CrossRef]
- Moscatelli, F.; Sessa, F.; Valenzano, A.; Polito, R.; Monda, V.; Cibelli, G.; Villano, I.; Pisanelli, D.; Perrella, M.; Daniele, A.; et al. COVID–19: Role of Nutrition and Supplementation. Nutrients 2021, 13, 976. [Google Scholar] [CrossRef]
- Lee, G.Y.; Han, S.N. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef] [Green Version]
- Araki, S.; Shirahata, A. Vitamin K Deficiency Bleeding in Infancy. Nutrients 2020, 12, 780. [Google Scholar] [CrossRef] [Green Version]
- Simes, D.C.; Viegas, C.S.B.; Araujo, N.; Marreiros, C. Vitamin K as a Diet Supplement with Impact in Human Health: Current Evidence in Age–Related Diseases. Nutrients 2020, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Fischer, V.; Haffner–Luntzer, M.; Amling, M.; Ignatius, A. Calcium and vitamin D in bone fracture healing and post–traumatic bone turnover. Eur. Cell. Mater. 2018, 35, 365–385. [Google Scholar] [CrossRef]
- Vannucci, L.; Fossi, C.; Quattrini, S.; Guasti, L.; Pampaloni, B.; Gronchi, G.; Giusti, F.; Romagnoli, C.; Cianferotti, L.; Marcucci, G.; et al. Calcium Intake in Bone Health: A Focus on Calcium–Rich Mineral Waters. Nutrients 2018, 10, 1930. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, T.; Fauzi, M.B.; Lokanathan, Y.; Law, J.X. The Role of Calcium in Wound Healing. Int. J. Mol. Sci. 2021, 22, 6486. [Google Scholar] [CrossRef]
- Patel, Y.; Joseph, J. Sodium Intake and Heart Failure. Int. J. Mol. Sci. 2020, 21, 9474. [Google Scholar] [CrossRef]
- Uwitonze, A.M.; Razzaque, M.S. Role of Magnesium in Vitamin D Activation and Function. J. Am. Osteopath. Assoc. 2018, 118, 181–189. [Google Scholar] [CrossRef]
- Pickering, G.; Mazur, A.; Trousselard, M.; Bienkowski, P.; Yaltsewa, N.; Amessou, M.; Noah, L.; Pouteau, E. Magnesium Status and Stress: The Vicious Circle Concept Revisited. Nutrients 2020, 12, 3672. [Google Scholar] [CrossRef]
- Shin, H.J.; Na, H.S.; Do, S.H. Magnesium and Pain. Nutrients 2020, 12, 2184. [Google Scholar] [CrossRef]
- Barbagallo, M.; Veronese, N.; Dominguez, L.J. Magnesium in Aging, Health and Diseases. Nutrients 2021, 13, 463. [Google Scholar] [CrossRef]
- Momoniat, T.; Ilyas, D.; Bhandari, S. ACE inhibitors and ARBs: Managing potassium and renal function. Cleve. Clin. J. Med. 2019, 86, 601–607. [Google Scholar] [CrossRef]
- Nomura, N.; Shoda, W.; Uchida, S. Clinical importance of potassium intake and molecular mechanism of potassium regulation. Clin. Exp. Nephrol. 2019, 23, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S.; Inaba, M. Potassium Metabolism and Management in Patients with CKD. Nutrients 2021, 13, 1751. [Google Scholar] [CrossRef]
- De La Puente–Yague, M.; Cuadrado–Cenzual, M.A.; Ciudad–Cabanas, M.J.; Hernandez–Cabria, M.; Collado–Yurrita, L. Vitamin D: And its role in breast cancer. Kaohsiung. J. Med. Sci. 2018, 34, 423–427. [Google Scholar] [CrossRef]
- Ciosek, Z.; Kot, K.; Kosik–Bogacka, D.; Lanocha–Arendarczyk, N.; Rotter, I. The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules 2021, 11, 506. [Google Scholar] [CrossRef]
- Bonaventura, P.; Benedetti, G.; Albarede, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef]
- Doboszewska, U.; Wlaz, P.; Nowak, G.; Mlyniec, K. Targeting zinc metalloenzymes in coronavirus disease 2019. Br. J. Pharmacol. 2020, 177, 4887–4898. [Google Scholar] [CrossRef]
- Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020, 105, 260–272. [Google Scholar] [CrossRef] [Green Version]
- Nairz, M.; Weiss, G. Iron in infection and immunity. Mol. Aspects. Med. 2020, 75, 100864. [Google Scholar] [CrossRef]
- Tina Suksmasari, B.H. Multivitamin Supplementation Supports Immune Function and Ameliorates Conditions Triggered By Reduced Air Quality. Vitam. Miner. 2015, 04, 1318–2376. [Google Scholar] [CrossRef]
- Nanovic, L. Electrolytes and fluid management in hemodialysis and peritoneal dialysis. Nutr. Clin. Pract. 2005, 20, 192–201. [Google Scholar] [CrossRef]
- Pollock, J.S.; Ryan, M.J.; Samson, W.K.; Brooks, D.P. Water and electrolyte homeostasis brings balance to physiology. Am J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R481–R483. [Google Scholar] [CrossRef] [Green Version]
- Ryan, D.P.; Hong, T.S.; Bardeesy, N. Sodium and Cardiovascular Disease. N. Engl. J. Med. 2014, 371, 2134–2139. [Google Scholar] [CrossRef]
- Spasovski, G.; Vanholder, R.; Allolio, B.; Annane, D.; Ball, S.; Bichet, D.; Decaux, G.; Fenske, W.; Hoorn, E.J.; Ichai, C.; et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol. Dial. Transplant 2014, 29 (Suppl. 2), i1–i39. [Google Scholar] [CrossRef] [Green Version]
- Severino, P.; D’Amato, A.; Prosperi, S.; Myftari, V.; Labbro Francia, A.; Onkaya, M.; Notari, C.; Papisca, I.; Canuti, E.S.; Yarden Revivo, M.; et al. The Mutual Relationship among Cardiovascular Diseases and COVID–19: Focus on Micronutrients Imbalance. Nutrients 2022, 14, 3439. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. Physiology and Pathophysiology of Potassium Homeostasis: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 682–695. [Google Scholar] [CrossRef]
- Singh, S.; Dodt, J.; Volkers, P.; Hethershaw, E.; Philippou, H.; Ivaskevicius, V.; Imhof, D.; Oldenburg, J.; Biswas, A. Structure functional insights into calcium binding during the activation of coagulation factor XIII A. Sci. Rep. 2019, 9, 11324. [Google Scholar] [CrossRef]
- Noordam, R.; Young, W.J.; Munroe, P.B. Electrolytes and electrophysiology: What’s next? Aging 2019, 11, 7329–7330. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Gotay, C.; Humphries, K.H.; Ignaszewski, A.; Esmaillzadeh, A.; Sarrafzadegan, N. Electrolyte minerals intake and cardiovascular health. Crit. Rev. Food. Sci. Nutr. 2019, 59, 2375–2385. [Google Scholar] [CrossRef]
- Aaron, K.J.; Sanders, P.W. Role of dietary salt and potassium intake in cardiovascular health and disease: A review of the evidence. Mayo. Clin. Proc. 2013, 88, 987–995. [Google Scholar] [CrossRef] [Green Version]
- WHO. Coronavirus. Available online: https://www.who.int/health–topics/coronavirus (accessed on 20 September 2022).
- Carfi, A.; Bernabei, R.; Landi, F.; Gemelli Against, C.-P.-A.C.S.G. Persistent Symptoms in Patients After Acute COVID–19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Naureen, Z.; Dautaj, A.; Nodari, S.; Fioretti, F.; Dhuli, K.; Anpilogov, K.; Lorusso, L.; Paolacci, S.; Michelini, S.; Guda, T.; et al. Proposal of a food supplement for the management of post–COVID syndrome. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 67–73. [Google Scholar] [CrossRef]
- Vishnupriya, M.; Naveenkumar, M.; Manjima, K.; Sooryasree, N.V.; Saranya, T.; Ramya, S.; Harysh Winster, S.; Paulpandi, M.; Balachandar, V.; Arul, N. Post–COVID pulmonary fibrosis: Therapeutic efficacy using with mesenchymal stem cells–How the lung heals. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2748–2751. [Google Scholar] [CrossRef]
- Tenforde, M.W.; Kim, S.S.; Lindsell, C.J.; Billig Rose, E.; Shapiro, N.I.; Files, D.C.; Gibbs, K.W.; Erickson, H.L.; Steingrub, J.S.; Smithline, H.A.; et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID–19 in a Multistate Health Care Systems Network–United States, March–June 2020. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.D.; Ding, M.; Dong, X.; Zhang, J.J.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.L.; Fu, W.; Li, W.; et al. Risk factors for severe and critically ill COVID–19 patients: A review. Allergy 2021, 76, 428–455. [Google Scholar] [CrossRef] [PubMed]
- Whittle, J.; Molinger, J.; MacLeod, D.; Haines, K.; Wischmeyer, P.E.; Group, L.-C.S. Persistent hypermetabolism and longitudinal energy expenditure in critically ill patients with COVID–19. Crit. Care 2020, 24, 581. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Sasdelli, A.S.; Ravaioli, F.; Baracco, B.; Battaiola, C.; Bocedi, G.; Brodosi, L.; Leoni, L.; Mari, G.A.; Musio, A. Malnutrition and nutritional therapy in patients with SARS–CoV–2 disease. Clin. Nutr. 2021, 40, 1330–1337. [Google Scholar] [CrossRef]
- Cawood, A.L.; Walters, E.R.; Smith, T.R.; Sipaul, R.H.; Stratton, R.J. A Review of Nutrition Support Guidelines for Individuals with or Recovering from COVID–19 in the Community. Nutrients 2020, 12, 3230. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, Y.; Zhang, J.; Li, Y.; Peng, Z. Intravenous high–dose vitamin C for the treatment of severe COVID–19: Study protocol for a multicentre randomised controlled trial. BMJ Open 2020, 10, e039519. [Google Scholar] [CrossRef]
- Zhao, B.; Ling, Y.; Li, J.; Peng, Y.; Huang, J.; Wang, Y.; Qu, H.; Gao, Y.; Li, Y.; Hu, B.; et al. Beneficial aspects of high dose intravenous vitamin C on patients with COVID–19 pneumonia in severe condition: A retrospective case series study. Ann. Palliat. Med. 2021, 10, 1599–1609. [Google Scholar] [CrossRef]
- Vollbracht, C.; Kraft, K. Feasibility of Vitamin C in the Treatment of Post Viral Fatigue with Focus on Long COVID, Based on a Systematic Review of IV Vitamin C on Fatigue. Nutrients 2021, 13, 1154. [Google Scholar] [CrossRef]
- Xing, Y.; Zhao, B.; Yin, L.; Guo, M.; Shi, H.; Zhu, Z.; Zhang, L.; He, J.; Ling, Y.; Gao, M.; et al. Vitamin C supplementation is necessary for patients with coronavirus disease: An ultra–high–performance liquid chromatography–tandem mass spectrometry finding. J. Pharm. Biomed. Anal. 2021, 196, 113927. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; et al. Analysis of therapeutic targets for SARS–CoV–2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 2020, 10, 766–788. [Google Scholar] [CrossRef]
- Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.Z.; Teh, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.W.; Chandran, M.; Chay, J.W.M.; et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID–19). Nutrition 2020, 79–80, 111017. [Google Scholar] [CrossRef]
- Mercola, J.; Grant, W.B.; Wagner, C.L. Evidence Regarding Vitamin D and Risk of COVID–19 and Its Severity. Nutrients 2020, 12, 3361. [Google Scholar] [CrossRef]
- Pereira, M.; Dantas Damascena, A.; Galvao Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D deficiency aggravates COVID–19: Systematic review and meta–analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 1308–1316. [Google Scholar] [CrossRef]
- Barrea, L.; Grant, W.B.; Frias–Toral, E.; Vetrani, C.; Verde, L.; de Alteriis, G.; Docimo, A.; Savastano, S.; Colao, A.; Muscogiuri, G. Dietary Recommendations for Post–COVID–19 Syndrome. Nutrients 2022, 14, 1305. [Google Scholar] [CrossRef]
- Ilie, P.C.; Stefanescu, S.; Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 2020, 32, 1195–1198. [Google Scholar] [CrossRef]
- Gonen, M.S.; Alaylioglu, M.; Durcan, E.; Ozdemir, Y.; Sahin, S.; Konukoglu, D.; Nohut, O.K.; Urkmez, S.; Kucukece, B.; Balkan, I.I.; et al. Rapid and Effective Vitamin D Supplementation May Present Better Clinical Outcomes in COVID–19 (SARS–CoV–2) Patients by Altering Serum INOS1, IL1B, IFNg, Cathelicidin–LL37, and ICAM1. Nutrients 2021, 13, 4047. [Google Scholar] [CrossRef]
- Tavakol, S.; Seifalian, A.M. Vitamin E at a high dose as an anti–ferroptosis drug and not just a supplement for COVID–19 treatment. Biotechnol. Appl. Biochem. 2022, 69, 1058–1060. [Google Scholar] [CrossRef]
- Finzi, E. Treatment of SARS–CoV–2 with high dose oral zinc salts: A report on four patients. Int. J. Infect. Dis. 2020, 99, 307–309. [Google Scholar] [CrossRef]
- Pan, L.; Mu, M.; Yang, P.; Sun, Y.; Wang, R.; Yan, J.; Li, P.; Hu, B.; Wang, J.; Hu, C.; et al. Clinical Characteristics of COVID–19 Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross–Sectional, Multicenter Study. Am. J. Gastroenterol. 2020, 115, 766–773. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, X.; Jian, J.; Chen, X.; Yin, K. Cardiovascular disease in patients with COVID–19: Evidence from cardiovascular pathology to treatment. Acta Biochim. Biophys. Sin. 2021, 53, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.B.; Botelho, B.G.; Hollanda, J.V.G.; Ferreira, L.V.L.; Junqueira de Andrade, L.Z.; Oei, S.; Mello, T.S.; Muxfeldt, E.S. Covid–19 and the cardiovascular system: A comprehensive review. J. Hum. Hypertens. 2021, 35, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Maestrini, V.; Birtolo, L.I.; Francone, M.; Galardo, G.; Galea, N.; Severino, P.; Alessandri, F.; Colaiacomo, M.C.; Cundari, G.; Chimenti, C.; et al. Cardiac involvement in consecutive unselected hospitalized COVID–19 population: In–hospital evaluation and one–year follow–up. Int. J. Cardiol. 2021, 339, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Mitacchione, G.; Schiavone, M.; Curnis, A.; Arca, M.; Antinori, S.; Gasperetti, A.; Mascioli, G.; Severino, P.; Sabato, F.; Caracciolo, M.M.; et al. Impact of prior statin use on clinical outcomes in COVID–19 patients: Data from tertiary referral hospitals during COVID–19 pandemic in Italy. J. Clin. Lipidol. 2021, 15, 68–78. [Google Scholar] [CrossRef]
- Iravanian, S.; Dudley, S.C., Jr. The renin–angiotensin–aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm 2008, 5, S12–S17. [Google Scholar] [CrossRef] [Green Version]
- Pourfridoni, M.; Abbasnia, S.M.; Shafaei, F.; Razaviyan, J.; Heidari–Soureshjani, R. Fluid and Electrolyte Disturbances in COVID–19 and Their Complications. Biomed. Res. Int. 2021, 2021, 6667047. [Google Scholar] [CrossRef]
- Frontera, J.A.; Valdes, E.; Huang, J.; Lewis, A.; Lord, A.S.; Zhou, T.; Kahn, D.E.; Melmed, K.; Czeisler, B.M.; Yaghi, S.; et al. Prevalence and Impact of Hyponatremia in Patients With Coronavirus Disease 2019 in New York City. Crit. Care. Med. 2020, 48, e1211–e1217. [Google Scholar] [CrossRef]
- Cuesta, M.; Slattery, D.; Goulden, E.L.; Gupta, S.; Tatro, E.; Sherlock, M.; Tormey, W.; O’Neill, S.; Thompson, C.J. Hyponatraemia in patients with community–acquired pneumonia; prevalence and aetiology, and natural history of SIAD. Clin. Endocrinol. 2019, 90, 744–752. [Google Scholar] [CrossRef]
- Severino, P.; Netti, L.; Mariani, M.V.; Maraone, A.; D’Amato, A.; Scarpati, R.; Infusino, F.; Pucci, M.; Lavalle, C.; Maestrini, V.; et al. Prevention of Cardiovascular Disease: Screening for Magnesium Deficiency. Cardiol. Res. Pract. 2019, 2019, 4874921. [Google Scholar] [CrossRef] [Green Version]
- Quilliot, D.; Bonsack, O.; Jaussaud, R.; Mazur, A. Dysmagnesemia in Covid–19 cohort patients: Prevalence and associated factors. Magnes. Res. 2020, 33, 114–122. [Google Scholar] [CrossRef]
- Alamdari, N.M.; Afaghi, S.; Rahimi, F.S.; Tarki, F.E.; Tavana, S.; Zali, A.; Fathi, M.; Besharat, S.; Bagheri, L.; Pourmotahari, F.; et al. Mortality Risk Factors among Hospitalized COVID–19 Patients in a Major Referral Center in Iran. Tohoku. J. Exp. Med. 2020, 252, 73–84. [Google Scholar] [CrossRef]
- Chen, D.; Li, X.; Song, Q.; Hu, C.; Su, F.; Dai, J.; Ye, Y.; Huang, J.; Zhang, X. Assessment of Hypokalemia and Clinical Characteristics in Patients With Coronavirus Disease 2019 in Wenzhou, China. JAMA. Netw. Open 2020, 3, e2011122. [Google Scholar] [CrossRef]
- Szoke, D.; Caruso, S.; Aloisio, E.; Pasqualetti, S.; Dolci, A.; Panteghini, M. Serum potassium concentrations in COVID–19. Clin. Chim. Acta 2021, 512, 26–27. [Google Scholar] [CrossRef]
- Alfano, G.; Ferrari, A.; Fontana, F.; Perrone, R.; Mori, G.; Ascione, E.; Magistroni, R.; Venturi, G.; Pederzoli, S.; Margiotta, G.; et al. Hypokalemia in Patients with COVID–19. Clin. Exp. Nephrol. 2021, 25, 401–409. [Google Scholar] [CrossRef]
- Coromilas, E.J.; Kochav, S.; Goldenthal, I.; Biviano, A.; Garan, H.; Goldbarg, S.; Kim, J.H.; Yeo, I.; Tracy, C.; Ayanian, S.; et al. Worldwide Survey of COVID–19–Associated Arrhythmias. Circ. Arrhythm. Electrophysiol. 2021, 14, e009458. [Google Scholar] [CrossRef]
- Muhanna, D.; Arnipalli, S.R.; Kumar, S.B.; Ziouzenkova, O. Osmotic Adaptation by Na(+)–Dependent Transporters and ACE2: Correlation with Hemostatic Crisis in COVID–19. Biomedicines 2020, 8, 460. [Google Scholar] [CrossRef]
- Zhou, Y.; Frey, T.K.; Yang, J.J. Viral calciomics: Interplays between Ca2+ and virus. Cell Calcium 2009, 46, 1–17. [Google Scholar] [CrossRef]
- Hughes, R.L.; Holscher, H.D. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv. Nutr. 2021, 12, 2190–2215. [Google Scholar] [CrossRef]
- Rajagopala, S.V.; Vashee, S.; Oldfield, L.M.; Suzuki, Y.; Venter, J.C.; Telenti, A.; Nelson, K.E. The Human Microbiome and Cancer. Cancer Prev. Res. 2017, 10, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Rosier, B.T.; Marsh, P.D.; Mira, A. Resilience of the Oral Microbiota in Health: Mechanisms That Prevent Dysbiosis. J. Dent. Res. 2018, 97, 371–380. [Google Scholar] [CrossRef]
- Martinez–Guryn, K.; Leone, V.; Chang, E.B. Regional Diversity of the Gastrointestinal Microbiome. Cell Host Microbe 2019, 26, 314–324. [Google Scholar] [CrossRef]
- Belizário, J.E.; Faintuch, J. Microbiome and Gut Dysbiosis. In Experientia Supplementum; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 459–476. [Google Scholar]
- Zmora, N.; Suez, J.; Elinav, E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 35–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Ren, W.; Smidt, H.; Wright, A.-D.G.; Yu, B.; Schyns, G.; McCormack, U.M.; Cowieson, A.J.; Yu, J.; He, J.; et al. Dynamic Distribution of Gut Microbiota in Pigs at Different Growth Stages: Composition and Contribution. Microbiol. Spectr. 2022, 10, e00688-21. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Fu, J.; Xu, B.; Wang, Y.; Jin, M. Interplay between gut microbiota and antimicrobial peptides. Anim. Nutr. 2020, 6, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Mazmanian, S.K.; Liu, C.H.; Tzianabos, A.O.; Kasper, D.L. An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell 2005, 122, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Lavelle, A.; Sokol, H. Gut microbiota–derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 223–237. [Google Scholar] [CrossRef]
- Tomasova, L.; Grman, M.; Ondrias, K.; Ufnal, M. The impact of gut microbiota metabolites on cellular bioenergetics and cardiometabolic health. Nutr. Metab. 2021, 18, 72. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, X.; Wang, J. Small molecules in the big picture of gut microbiome–host cross–talk. eBioMedicine 2022, 81, 104085. [Google Scholar] [CrossRef]
- Ohno, H. The impact of metabolites derived from the gut microbiota on immune regulation and diseases. Int. Immunol. 2020, 32, 629–636. [Google Scholar] [CrossRef]
- Sittipo, P.; Shim, J.-W.; Lee, Y. Microbial Metabolites Determine Host Health and the Status of Some Diseases. Int. J. Mol. Sci. 2019, 20, 5296. [Google Scholar] [CrossRef] [Green Version]
- Barbara, G.; Feinle–Bisset, C.; Ghoshal, U.C.; Santos, J.; Vanner, S.J.; Vergnolle, N.; Zoetendal, E.G.; Quigley, E.M. The Intestinal Microenvironment and Functional Gastrointestinal Disorders. Gastroenterology 2016, 150, 1305–1318.e1308. [Google Scholar] [CrossRef] [Green Version]
- Barcenilla, A.; Pryde, S.E.; Martin, J.C.; Duncan, S.H.; Stewart, C.S.; Henderson, C.; Flint, H.J. Phylogenetic Relationships of Butyrate–Producing Bacteria from the Human Gut. Appl. Environ. Microbiol. 2000, 66, 1654–1661. [Google Scholar] [CrossRef] [Green Version]
- Canfora, E.E.; Meex, R.C.R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019, 15, 261–273. [Google Scholar] [CrossRef]
- Crost, E.H.; Le Gall, G.; Laverde–Gomez, J.A.; Mukhopadhya, I.; Flint, H.J.; Juge, N. Mechanistic Insights Into the Cross–Feeding of Ruminococcus gnavus and Ruminococcus bromii on Host and Dietary Carbohydrates. Front. Microbiol. 2018, 9, 2558. [Google Scholar] [CrossRef]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short–chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- De Vuyst, L.; Leroy, F. Cross–feeding between bifidobacteria and butyrate–producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int. J. Food Microbiol. 2011, 149, 73–80. [Google Scholar] [CrossRef]
- Feng, W.; Ao, H.; Peng, C. Gut Microbiota, Short–Chain Fatty Acids, and Herbal Medicines. Front. Pharmacol. 2018, 9, 1354. [Google Scholar] [CrossRef]
- Huart, J.; Leenders, J.; Taminiau, B.; Descy, J.; Saint–Remy, A.; Daube, G.; Krzesinski, J.-M.; Melin, P.; de Tullio, P.; Jouret, F. Gut Microbiota and Fecal Levels of Short–Chain Fatty Acids Differ Upon 24–Hour Blood Pressure Levels in Men. Hypertension 2019, 74, 1005–1013. [Google Scholar] [CrossRef]
- Louis, P.; Young, P.; Holtrop, G.; Flint, H.J. Diversity of human colonic butyrate–producing bacteria revealed by analysis of the butyryl–CoA:acetate CoA–transferase gene. Environ. Microbiol. 2009, 12, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, S.; Macfarlane, G.T. Regulation of short–chain fatty acid production. Proc. Nutr. Soc. 2003, 62, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.-I.; Li, B.-B.; Pan, X.-H.; Sun, J. Gut microbiota in pancreatic diseases: Possible new therapeutic strategies. Acta Pharmacol. Sin. 2021, 42, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Cheng, J.; Duncan, A.E.; Kau, A.L.; Griffin, N.W.; Lombard, V.; Henrissat, B.; Bain, J.R.; et al. Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science 2013, 341, 1241214. [Google Scholar] [CrossRef] [Green Version]
- Tahara, Y.; Yamazaki, M.; Sukigara, H.; Motohashi, H.; Sasaki, H.; Miyakawa, H.; Haraguchi, A.; Ikeda, Y.; Fukuda, S.; Shibata, S. Gut Microbiota–Derived Short Chain Fatty Acids Induce Circadian Clock Entrainment in Mouse Peripheral Tissue. Sci. Rep. 2018, 8, 1395. [Google Scholar] [CrossRef] [Green Version]
- Macfarlane, G.T.; Gibson, G.R. Metabolic Activities of the Normal Colonic Flora. In Human Health; Springer London: London, UK, 1994; pp. 17–52. [Google Scholar]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The Role of Short–Chain Fatty Acids in Health and Disease. In Advances in Immunology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 91–119. [Google Scholar]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B.; Bajaj, J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 2014, 30, 332–338. [Google Scholar] [CrossRef]
- Dior, M.; Delagrèverie, H.; Duboc, H.; Jouet, P.; Coffin, B.; Brot, L.; Humbert, L.; Trugnan, G.; Seksik, P.; Sokol, H.; et al. Interplay between bile acid metabolism and microbiota in irritable bowel syndrome. Neurogastroenterol. Motil. 2016, 28, 1330–1340. [Google Scholar] [CrossRef]
- Duboc, H.; Rainteau, D.; Rajca, S.; Humbert, L.; Farabos, D.; Maubert, M.; Grondin, V.; Jouet, P.; Bouhassira, D.; Seksik, P.; et al. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea–predominant irritable bowel syndrome. Neurogastroenterol. Motil. 2012, 24, 513-e247. [Google Scholar] [CrossRef]
- Govindarajan, K.; MacSharry, J.; Casey, P.G.; Shanahan, F.; Joyce, S.A.; Gahan, C.G.M. Unconjugated Bile Acids Influence Expression of Circadian Genes: A Potential Mechanism for Microbe–Host Crosstalk. PLoS ONE 2016, 11, e0167319. [Google Scholar] [CrossRef] [Green Version]
- Poland, J.C.; Flynn, C.R. Bile Acids, Their Receptors, and the Gut Microbiota. Physiology 2016, 36, 235–245. [Google Scholar] [CrossRef]
- Wei, W.; Wang, H.-F.; Zhang, Y.; Zhang, Y.-L.; Niu, B.-Y.; Yao, S.-K. Altered metabolism of bile acids correlates with clinical parameters and the gut microbiota in patients with diarrhea–predominant irritable bowel syndrome. WJG 2020, 26, 7153–7172. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, L.; Xiong, X.; He, Y.; Huang, W.; Liu, Z.; Ji, L.; Pan, B.; Guo, X.; Wang, L.; et al. TMAVA, a Metabolite of Intestinal Microbes, Is Increased in Plasma From Patients With Liver Steatosis, Inhibits γ–Butyrobetaine Hydroxylase, and Exacerbates Fatty Liver in Mice. Gastroenterology 2020, 158, 2266–2281.e2227. [Google Scholar] [CrossRef]
- Baptista, L.C.; Sun, Y.; Carter, C.S.; Buford, T.W. Crosstalk Between the Gut Microbiome and Bioactive Lipids: Therapeutic Targets in Cognitive Frailty. Front. Nutr. 2020, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Xu, W.; Zhang, L.; Li, X.; Wang, R.; Wu, S. Impact of Gut Microbiota and Microbiota–Related Metabolites on Hyperlipidemia. Front. Cell. Infect. Microbiol. 2021, 11, 685. [Google Scholar] [CrossRef]
- Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 2019, 20, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host–gut microbiota metabolic interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef]
- Lin, R.; Liu, W.; Piao, M.; Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino. Acids 2017, 49, 2083–2090. [Google Scholar] [CrossRef]
- Portune, K.J.; Beaumont, M.; Davila, A.-M.; Tomé, D.; Blachier, F.; Sanz, Y. Gut microbiota role in dietary protein metabolism and health–related outcomes: The two sides of the coin. Trends Food Sci. Technol. 2016, 57, 213–232. [Google Scholar] [CrossRef] [Green Version]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef] [Green Version]
- Elsden, S.R.; Hilton, M.G.; Waller, J.M. The end products of the metabolism of aromatic amino acids by clostridia. Arch. Microbiol. 1976, 107, 283–288. [Google Scholar] [CrossRef]
- Lee, J.-H.; Wood, T.K.; Lee, J. Roles of Indole as an Interspecies and Interkingdom Signaling Molecule. Trends Microbiol. 2015, 23, 707–718. [Google Scholar] [CrossRef]
- Liu, W.-H.; Chen, F.-F.; Wang, C.-E.; Fu, H.-H.; Fang, X.-Q.; Ye, J.-R.; Shi, J.-Y. Indole–3–Acetic Acid in Burkholderia pyrrocinia JK–SH007: Enzymatic Identification of the Indole–3–Acetamide Synthesis Pathway. Front. Microbiol. 2019, 10, 2559. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hou, Y.; Wang, G.; Zheng, X.; Hao, H. Gut Microbial Metabolites of Aromatic Amino Acids as Signals in Host–Microbe Interplay. Trends Endocrinol. Metab. 2020, 31, 818–834. [Google Scholar] [CrossRef]
- Modoux, M.; Rolhion, N.; Mani, S.; Sokol, H. Tryptophan Metabolism as a Pharmacological Target. Trends Pharmacol. Sci. 2020, 42, 60–73. [Google Scholar] [CrossRef]
- Roth, W.; Zadeh, K.; Vekariya, R.; Ge, Y.; Mohamadzadeh, M. Tryptophan Metabolism and Gut–Brain Homeostasis. Int. J. Mol. Sci. 2021, 22, 2973. [Google Scholar] [CrossRef]
- Russell, W.R.; Duncan, S.H.; Scobbie, L.; Duncan, G.; Cantlay, L.; Calder, A.G.; Anderson, S.E.; Flint, H.J. Major phenylpropanoid–derived metabolites in the human gut can arise from microbial fermentation of protein. Mol. Nutr. Food Res. 2013, 57, 523–535. [Google Scholar] [CrossRef]
- Smith, E.A.; Macfarlane, G.T. Enumeration of human colonic bacteria producing phenolic and indolic compounds: Effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol. 1996, 81, 288–302. [Google Scholar] [CrossRef]
- Vangipurapu, J.; Silva, L.F.; Kuulasmaa, T.; Smith, U.; Laakso, M. Microbiota–related Metabolites and the Risk of Type 2 Diabetes. Diabetes Care 2020, 43, 1319–1325. [Google Scholar] [CrossRef]
- Vujkovic–Cvijin, I.; Dunham, R.M.; Iwai, S.; Maher, M.C.; Albright, R.G.; Broadhurst, M.J.; Hernandez, R.D.; Lederman, M.M.; Huang, Y.; Somsouk, M.; et al. Dysbiosis of the Gut Microbiota Is Associated with HIV Disease Progression and Tryptophan Catabolism. Sci. Transl. Med. 2013, 5, 193ra91. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhu, S.; Ma, N.; Johnston, L.J.; Wu, C.; Ma, X. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation. Med. Res. Rev. 2021, 41, 1061–1088. [Google Scholar] [CrossRef]
- Dai, Z.; Wu, Z.; Hang, S.; Zhu, W.; Wu, G. Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol. Hum. Reprod. 2015, 21, 389–409. [Google Scholar] [CrossRef] [Green Version]
- Lagier, J.-C.; Hugon, P.; Khelaifia, S.; Fournier, P.-E.; La Scola, B.; Raoult, D. The Rebirth of Culture in Microbiology through the Example of Culturomics To Study Human Gut Microbiota. Clin. Microbiol. Rev. 2015, 28, 237–264. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Liao, A.P.; Xia, Y.; Chun Li, Y.; Li, J.-D.; Sartor, R.B.; Sun, J. Vitamin D Receptor Negatively Regulates Bacterial–Stimulated NF–κB Activity in Intestine. Am. J. Pathol. 2010, 177, 686–697. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Mazzoli, R.; Pessione, E. The Neuro–endocrinological Role of Microbial Glutamate and GABA Signaling. Front. Microbiol. 2016, 7, 1934. [Google Scholar] [CrossRef] [Green Version]
- Morais, L.H.; Schreiber, H.L.I.V.; Mazmanian, S.K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 2021, 19, 241–255. [Google Scholar] [CrossRef]
- Mossad, O.; Nent, E.; Woltemate, S.; Folschweiller, S.; Buescher, J.M.; Schnepf, D.; Erny, D.; Staeheli, P.; Bartos, M.; Szalay, A.; et al. Microbiota–dependent increase in δ–valerobetaine alters neuronal function and is responsible for age–related cognitive decline. Nat. Aging 2021, 1, 1127–1136. [Google Scholar] [CrossRef]
- Mousa, W.K.; Athar, B.; Merwin, N.J.; Magarvey, N.A. Antibiotics and specialized metabolites from the human microbiota. Nat. Prod. Rep. 2017, 34, 1302–1331. [Google Scholar] [CrossRef] [PubMed]
- Perruzza, L.; Gargari, G.; Proietti, M.; Fosso, B.; D’Erchia, A.M.; Faliti, C.E.; Rezzonico–Jost, T.; Scribano, D.; Mauri, L.; Colombo, D.; et al. T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota–Derived Extracellular ATP. Cell Rep. 2017, 18, 2566–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Walther, D.J.; Peter, J.-U.; Bashammakh, S.; Hörtnagl, H.; Voits, M.; Fink, H.; Bader, M. Synthesis of Serotonin by a Second Tryptophan Hydroxylase Isoform. Science 2003, 299, 76. [Google Scholar] [CrossRef]
- Wang, Y.; Li, N.; Yang, J.-J.; Zhao, D.-M.; Chen, B.; Zhang, G.-Q.; Chen, S.; Cao, R.-F.; Yu, H.; Zhao, C.-Y.; et al. Probiotics and fructo–oligosaccharide intervention modulate the microbiota–gut brain axis to improve autism spectrum reducing also the hyper–serotonergic state and the dopamine metabolism disorder. Pharmacol. Res. 2020, 157, 104784. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, J.; Li, J.V.; Zhou, N.-Y.; Tang, H.; Wang, Y. Gut Microbiota Composition Modifies Fecal Metabolic Profiles in Mice. J. Proteome Res. 2013, 12, 2987–2999. [Google Scholar] [CrossRef]
- Adak, S.; Aulak, K.S.; Stuehr, D.J. Direct Evidence for Nitric Oxide Production by a Nitric–oxide Synthase–like Protein from Bacillus subtilis. J. Biol. Chem. 2022, 277, 16167–16171. [Google Scholar] [CrossRef] [Green Version]
- Barrett, E.L.; Clark, M.A. Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol. Rev. 1987, 51, 192–205. [Google Scholar] [CrossRef]
- Guarneros, G.; Ortega, M.V. Cysteine desulfhydrase activities of Salmonella typhimurium and Escherichia coli. Biochim. Biophys. Acta BBA-Enzymol. 1970, 198, 132–142. [Google Scholar] [CrossRef]
- Kalantar–Zadeh, K.; Berean, K.J.; Burgell, R.E.; Muir, J.G.; Gibson, P.R. Intestinal gases: Influence on gut disorders and the role of dietary manipulations. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 733–747. [Google Scholar] [CrossRef]
- Mars, R.A.T.; Yang, Y.; Ward, T.; Houtti, M.; Priya, S.; Lekatz, H.R.; Tang, X.; Sun, Z.; Kalari, K.R.; Korem, T.; et al. Longitudinal Multi–omics Reveals Subset–Specific Mechanisms Underlying Irritable Bowel Syndrome. Cell 2020, 183, 1137–1140. [Google Scholar] [CrossRef]
- Ostojic, S.M. Inadequate Production of H2 by Gut Microbiota and Parkinson Disease. Trends Endocrinol. Metab. 2018, 29, 286–288. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2006, 87, 315–424. [Google Scholar] [CrossRef] [Green Version]
- Sen, N. Functional and Molecular Insights of Hydrogen Sulfide Signaling and Protein Sulfhydration. J. Mol. Biol. 2016, 429, 543–561. [Google Scholar] [CrossRef] [Green Version]
- Siegel, L.M.; Murphy, M.J.; Kamin, H. Reduced Nicotinamide Adenine Dinucleotide Phosphate–Sulfite Reductase of Enterobacteria. J. Biol. Chem. 1973, 248, 251–264. [Google Scholar] [CrossRef]
- Singh, S.; Lin, H. Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract. Microorganisms 2015, 3, 866–889. [Google Scholar] [CrossRef] [Green Version]
- Sobko, T.; Reinders, C.I.; Jansson, E.Å.; Norin, E.; Midtvedt, T.; Lundberg, J.O. Gastrointestinal bacteria generate nitric oxide from nitrate and nitrite. Nitric Oxide 2005, 13, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Rabus, R.; Venceslau, S.S.; Wöhlbrand, L.; Voordouw, G.; Wall, J.D.; Pereira, I.A.C. A Post–Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate–Reducing Prokaryotes. In Advances in Microbial Physiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 55–321. [Google Scholar]
- Ng, S.C.; Tilg, H. COVID–19 and the gastrointestinal tract: More than meets the eye. Gut 2020, 69, 973–974. [Google Scholar] [CrossRef] [Green Version]
- Koh, A.; De Vadder, F.; Kovatcheva–Datchary, P.; Backhed, F. From Dietary Fiber to Host Physiology: Short–Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Gaibani, P.; D’Amico, F.; Bartoletti, M.; Lombardo, D.; Rampelli, S.; Fornaro, G.; Coladonato, S.; Siniscalchi, A.; Re, M.C.; Viale, P.; et al. The Gut Microbiota of Critically Ill Patients With COVID–19. Front. Cell. Infect. Microbiol. 2021, 11, 670424. [Google Scholar] [CrossRef]
- Zuo, T.; Liu, Q.; Zhang, F.; Lui, G.C.; Tso, E.Y.; Yeoh, Y.K.; Chen, Z.; Boon, S.S.; Chan, F.K.; Chan, P.K.; et al. Depicting SARS–CoV–2 faecal viral activity in association with gut microbiota composition in patients with COVID–19. Gut 2021, 70, 276–284. [Google Scholar] [CrossRef]
- Dubin, K.; Pamer, E.G. Enterococci and Their Interactions with the Intestinal Microbiome. Microbiol. Spectr. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Bardi, T.; Pintado, V.; Gomez–Rojo, M.; Escudero–Sanchez, R.; Azzam Lopez, A.; Diez–Remesal, Y.; Martinez Castro, N.; Ruiz–Garbajosa, P.; Pestana, D. Nosocomial infections associated to COVID–19 in the intensive care unit: Clinical characteristics and outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 495–502. [Google Scholar] [CrossRef]
- Bonazzetti, C.; Morena, V.; Giacomelli, A.; Oreni, L.; Casalini, G.; Galimberti, L.R.; Bolis, M.; Rimoldi, M.; Ballone, E.; Colombo, R.; et al. Unexpectedly High Frequency of Enterococcal Bloodstream Infections in Coronavirus Disease 2019 Patients Admitted to an Italian ICU: An Observational Study. Crit. Care Med. 2021, 49, e31–e40. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Moreira–Rosario, A.; Marques, C.; Pinheiro, H.; Araujo, J.R.; Ribeiro, P.; Rocha, R.; Mota, I.; Pestana, D.; Ribeiro, R.; Pereira, A.; et al. Gut Microbiota Diversity and C–Reactive Protein Are Predictors of Disease Severity in COVID–19 Patients. Front. Microbiol. 2021, 12, 705020. [Google Scholar] [CrossRef]
- Yeoh, Y.K.; Zuo, T.; Lui, G.C.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID–19. Gut 2021, 70, 698–706. [Google Scholar] [CrossRef]
- Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Dhama, K.; Lee, S.S. Altered gut microbiota patterns in COVID–19: Markers for inflammation and disease severity. World J. Gastroenterol. 2022, 28, 2802–2822. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; et al. Alterations in Gut Microbiota of Patients With COVID–19 During Time of Hospitalization. Gastroenterology 2020, 159, 944–955.e948. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Liu, Q.; Zhang, F.; Yeoh, Y.K.; Wan, Y.; Zhan, H.; Lui, G.C.Y.; Chen, Z.; Li, A.Y.L.; Cheung, C.P.; et al. Temporal landscape of human gut RNA and DNA virome in SARS–CoV–2 infection and severity. Microbiome 2021, 9, 91. [Google Scholar] [CrossRef]
- Sokol, H.; Contreras, V.; Maisonnasse, P.; Desmons, A.; Delache, B.; Sencio, V.; Machelart, A.; Brisebarre, A.; Humbert, L.; Deryuter, L.; et al. SARS-CoV-2 infection in nonhuman primates alters the composition and functional activity of the gut microbiota. Gut Microbes 2021, 13, 1893113. [Google Scholar] [CrossRef]
- Zhang, F.; Wan, Y.; Zuo, T.; Yeoh, Y.K.; Liu, Q.; Zhang, L.; Zhan, H.; Lu, W.; Xu, W.; Lui, G.C.Y.; et al. Prolonged Impairment of Short–Chain Fatty Acid and L–Isoleucine Biosynthesis in Gut Microbiome in Patients With COVID–19. Gastroenterology 2022, 162, 548–561.e544. [Google Scholar] [CrossRef]
- Hill, J.H.; Round, J.L. SnapShot: Microbiota effects on host physiology. Cell 2021, 184, 2796.e2791. [Google Scholar] [CrossRef]
- Ghiboub, M.; Verburgt, C.M.; Sovran, B.; Benninga, M.A.; de Jonge, W.J.; Van Limbergen, J.E. Nutritional Therapy to Modulate Tryptophan Metabolism and Aryl Hydrocarbon–Receptor Signaling Activation in Human Diseases. Nutrients 2020, 12, 2846. [Google Scholar] [CrossRef]
- Thomas, T.; Stefanoni, D.; Reisz, J.A.; Nemkov, T.; Bertolone, L.; Francis, R.O.; Hudson, K.E.; Zimring, J.C.; Hansen, K.C.; Hod, E.A.; et al. COVID–19 infection alters kynurenine and fatty acid metabolism, correlating with IL–6 levels and renal status. JCI Insight 2020, 5, e140327. [Google Scholar] [CrossRef]
- Beischlag, T.V.; Luis Morales, J.; Hollingshead, B.D.; Perdew, G.H. The aryl hydrocarbon receptor complex and the control of gene expression. Crit. Rev. Eukaryot. Gene Expr. 2008, 18, 207–250. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Gu, S.; Gong, Y.; Li, B.; Lu, H.; Li, Q.; Zhang, R.; Gao, X.; Wu, Z.; Zhang, J.; et al. Clinical Significance of the Correlation between Changes in the Major Intestinal Bacteria Species and COVID–19 Severity. Engineering 2020, 6, 1178–1184. [Google Scholar] [CrossRef]
- Venzon, M.; Bernard–Raichon, L.; Klein, J.; Axelrad, J.; Hussey, G.; Sullivan, A.; Casanovas-Massana, A.; Noval, M.; Valero-Jimenez, A.; Gago, J.; et al. Gut microbiome dysbiosis during COVID–19 is associated with increased risk for bacteremia and microbial translocation. Res. Sq. 2021. Preprint. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Wang, Y.N.; Feng, H.Y.; Guo, Z.Y.; Li, X.; Nie, X.L.; Zhao, Y.Y. Host/microbiota interactions–derived tryptophan metabolites modulate oxidative stress and inflammation via aryl hydrocarbon receptor signaling. Free. Radic. Biol. Med. 2022, 184, 30–41. [Google Scholar] [CrossRef]
- Gao, K.; Mu, C.L.; Farzi, A.; Zhu, W.Y. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef]
- Paeslack, N.; Mimmler, M.; Becker, S.; Gao, Z.; Khuu, M.P.; Mann, A.; Malinarich, F.; Regen, T.; Reinhardt, C. Microbiota–derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids 2022. [Google Scholar] [CrossRef]
- Kousara, S.; Anjuma, S.N.; Jaleela, F.; Khana, J.; Naseema, S. Biomedical Significance of Tryptamine: A Review. J. Pharmaco. 2017, 5. [Google Scholar] [CrossRef]
- Liu, J.; Geng, W.; Sun, H.; Liu, C.; Huang, F.; Cao, J.; Xia, L.; Zhao, H.; Zhai, J.; Li, Q.; et al. Integrative metabolomic characterisation identifies altered portal vein serum metabolome contributing to human hepatocellular carcinoma. Gut 2022, 71, 1203–1213. [Google Scholar] [CrossRef]
- Camargo, S.M.R.; Vuille–Dit–Bille, R.N.; Meier, C.F.; Verrey, F. ACE2 and gut amino acid transport. Clin. Sci. 2020, 134, 2823–2833. [Google Scholar] [CrossRef]
- Nataf, S.; Pays, L. Molecular Insights into SARS–CoV2–Induced Alterations of the Gut/Brain Axis. Int. J. Mol. Sci. 2021, 22, 10440. [Google Scholar] [CrossRef]
- Perlot, T.; Penninger, J.M. ACE2–from the renin–angiotensin system to gut microbiota and malnutrition. Microbes Infect. 2013, 15, 866–873. [Google Scholar] [CrossRef]
- De Oliveira, A.P.; Lopes, A.L.F.; Pacheco, G.; de Sa Guimaraes Noleto, I.R.; Nicolau, L.A.D.; Medeiros, J.V.R. Premises among SARS–CoV–2, dysbiosis and diarrhea: Walking through the ACE2/mTOR/autophagy route. Med. Hypotheses 2020, 144, 110243. [Google Scholar] [CrossRef]
- Kaur, G.; Ji, X.; Rahman, I. SARS–CoV2 Infection Alters Tryptophan Catabolism and Phospholipid Metabolism. Metabolites 2021, 11, 659. [Google Scholar] [CrossRef]
- Le Floc’h, N.; Otten, W.; Merlot, E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 2011, 41, 1195–1205. [Google Scholar] [CrossRef]
- Mehraj, V.; Routy, J.P. Tryptophan Catabolism in Chronic Viral Infections: Handling Uninvited Guests. Int. J. Tryptophan Res. 2015, 8, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Quan, S.; Zhang, F.; Sun, R.; Qian, L.; et al. Proteomic and Metabolomic Characterization of COVID–19 Patient Sera. Cell 2020, 182, 59–72e15. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez–Vazquez, C.; Quintana, F.J. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity 2018, 48, 19–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardinassi, L.G.; Souza, C.O.S.; Sales–Campos, H.; Fonseca, S.G. Immune and Metabolic Signatures of COVID–19 Revealed by Transcriptomics Data Reuse. Front. Immunol. 2020, 11, 1636. [Google Scholar] [CrossRef] [PubMed]
- Hamaker, B.R.; Tuncil, Y.E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 2014, 426, 3838–3850. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012, 95, 50–60. [Google Scholar] [CrossRef]
- Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short–chain fatty acids stimulate glucagon–like peptide–1 secretion via the G–protein–coupled receptor FFAR2. Diabetes 2012, 61, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Scheppach, W. Effects of short chain fatty acids on gut morphology and function. Gut 1994, 35, S35–S38. [Google Scholar] [CrossRef] [Green Version]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short–chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid. Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [Green Version]
- Rios–Covian, D.; Ruas–Madiedo, P.; Margolles, A.; Gueimonde, M.; de Los Reyes–Gavilan, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef]
- Kim, C.H. Immune regulation by microbiome metabolites. Immunology 2018, 154, 220–229. [Google Scholar] [CrossRef]
- Licciardi, P.V.; Ververis, K.; Karagiannis, T.C. Histone deacetylase inhibition and dietary short–chain Fatty acids. ISRN Allergy 2011, 2011, 869647. [Google Scholar] [CrossRef] [Green Version]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; Gonzalez, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)–Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Cao, T.; Zhang, X.; Chen, D.; Zhang, P.; Li, Q.; Muhammad, A. The epigenetic modification during the induction of Foxp3 with sodium butyrate. Immunopharmacol. Immunotoxicol. 2018, 40, 309–318. [Google Scholar] [CrossRef]
- Kibbie, J.J.; Dillon, S.M.; Thompson, T.A.; Purba, C.M.; McCarter, M.D.; Wilson, C.C. Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase (HDAC) inhibition and GPR43 signaling. Immunobiology 2021, 226, 152126. [Google Scholar] [CrossRef]
- Nastasi, C.; Candela, M.; Bonefeld, C.M.; Geisler, C.; Hansen, M.; Krejsgaard, T.; Biagi, E.; Andersen, M.H.; Brigidi, P.; Odum, N.; et al. The effect of short–chain fatty acids on human monocyte–derived dendritic cells. Sci. Rep. 2015, 5, 16148. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, H.N.; Moroney, J.B.; Gan, H.; Shen, T.; Im, J.L.; Li, T.; Taylor, J.R.; Zan, H.; Casali, P. B cell–intrinsic epigenetic modulation of antibody responses by dietary fiber–derived short–chain fatty acids. Nat. Commun. 2020, 11, 60. [Google Scholar] [CrossRef] [Green Version]
- Vinolo, M.A.; Hatanaka, E.; Lambertucci, R.H.; Newsholme, P.; Curi, R. Effects of short chain fatty acids on effector mechanisms of neutrophils. Cell Biochem. Funct. 2009, 27, 48–55. [Google Scholar] [CrossRef]
- Iniguez–Gutierrez, L.; Godinez–Mendez, L.A.; Fafutis–Morris, M.; Padilla–Arellano, J.R.; Corona–Rivera, A.; Bueno–Topete, M.R.; Rojas–Rejon, O.A.; Delgado–Rizo, V. Physiological concentrations of short–chain fatty acids induce the formation of neutrophil extracellular traps in vitro. Int. J. Immunopathol. Pharmacol. 2020, 34, 1–10. [Google Scholar] [CrossRef]
- Correa–Oliveira, R.; Fachi, J.L.; Vieira, A.; Sato, F.T.; Vinolo, M.A. Regulation of immune cell function by short–chain fatty acids. Clin. Transl. Immunol. 2016, 5, e73. [Google Scholar] [CrossRef]
- Jardou, M.; Lawson, R. Supportive therapy during COVID–19: The proposed mechanism of short–chain fatty acids to prevent cytokine storm and multi–organ failure. Med. Hypotheses 2021, 154, 110661. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Xiao, M.; Cao, S.; Sun, Y.; Zhao, L.; Mao, X.; Chen, P.; Tong, X.; Ou, Z.; Zhu, H.; et al. Distinct gut microbiota and health outcomes in asymptomatic infection, viral nucleic acid test re-positive, and convalescent COVID-19 cases. mLife 2022, 1, 183–197. [Google Scholar] [CrossRef]
- Pascoal, L.B.; Rodrigues, P.B.; Genaro, L.M.; Gomes, A.; Toledo–Teixeira, D.A.; Parise, P.L.; Bispo–Dos–Santos, K.; Simeoni, C.L.; Guimaraes, P.V.; Buscaratti, L.I.; et al. Microbiota–derived short–chain fatty acids do not interfere with SARS–CoV–2 infection of human colonic samples. Gut Microbes 2021, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Hussain, M.M. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E1183–E1194. [Google Scholar] [CrossRef] [Green Version]
- Chiang, J.Y. Bile acid metabolism and signaling. Compr. Physiol. 2013, 3, 1191–1212. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, J.J.; Bezencon, J.; Sjostedt, N.; Fallon, J.K.; Brouwer, K.L.R. Role of Organic Solute Transporter Alpha/Beta in Hepatotoxic Bile Acid Transport and Drug Interactions. Toxicol. Sci. 2020, 176, 34–35. [Google Scholar] [CrossRef]
- Huang, D.; Xiong, M.; Xu, X.; Wu, X.; Xu, J.; Cai, X.; Lu, L.; Zhou, H. Bile acids elevated by high–fat feeding induce endoplasmic reticulum stress in intestinal stem cells and contribute to mucosal barrier damage. Biochem. Biophys. Res. Commun. 2020, 529, 289–295. [Google Scholar] [CrossRef]
- Harnisch, L.O.; Mihaylov, D.; Bein, T.; Apfelbacher, C.; Kiehntopf, M.; Bauer, M.; Moerer, O.; Quintel, M. Determination of individual bile acids in acute respiratory distress syndrome reveals a specific pattern of primary and secondary bile acids and a shift to the acidic pathway as an adaptive response to the critical condition. Clin. Chem. Lab. Med. 2022, 60, 891–900. [Google Scholar] [CrossRef]
Vitamins | Food Sources | Deficiency Symptoms | Risk Factors for Micronutrient Deficiency | Functions and Clinical Uses | References |
---|---|---|---|---|---|
Water-soluble vitamins | |||||
Thiamin (B1) | Whole grains Pork Fish Yeast | Fatigue Anorexia Beriberi Endocarditis Arrhythmias Sleep disorders Irritability Neuropathy Wernicke–Korsakoff syndrome | Chronic alcoholism Malnutrition Bariatric surgery Pregnancy Breastfeeding Diarrhea Chronic kidney disease | Wernicke–Korsakoff syndrome Carbohydrate metabolism (thiamine pyrophosphate) | [12,13,14,16] |
Riboflavin (B2) | Eggs Dairy Green vegetables Meat Mushrooms Almonds | Ariboflavinosis (stomatitis, cheilitis and glossitis) Photophobia Dermatitis Cataracts Migraines Changes in personality | Anorexia nervosa Malabsorption syndromes Prolonged use of barbiturates Pregnancy Dialysis Diarrhea | Migraine prophylaxis Cataract prevention Coenzyme in multiple biochemical processes | [12,13,14] |
Niacin (B3) | Animal and plant foods Soy Nuts Seeds Legumes Grains | Pellagra Depression Anxiety Memory loss Psychotic symptoms | Low Tryptophan Intake High Corn Diet Hartnup Disease Carcinoid syndrome | Coenzyme in oxidation-reduction reactions | [12,13,14] |
Pantothenic acid (B5) | Fortified cereals Fish Avocado Eggs Beef and pork Sunflower seeds Lentils | Alopecia Dermatitis Numbness Encephalopathy Behavior changes | Deficiency associated with another B complex vitamin | Acne, Allergies Rheumatoid Arthritis | [12,13,14] |
Pyridoxine (B6) | Beef Poultry Starchy vegetables Fortified cereal | Anemia Irritability Depression Seizures Peripheral neuropathy | Alcoholism Kidney failure Rheumatoid arthritis Malabsorption syndromes | Nausea and vomiting during pregnancy | [12,13,14] |
Biotin (B7) | Meat Eggs Fish Seeds Soy Nuts | Dermatitis and tremor in extremities Depression Irritability Seizures Cognitive impairment | Alcoholism Epilepsy medications Pregnancy Biotinidase enzyme deficiency | Hereditary enzyme deficiency Brittle hair syndrome Fatty acid synthesis Glucose utilization Protein metabolism | [12,13,14] |
Folic acid (B9) | Green leafy vegetables Nuts Beans Dairy Meat Poultry Brussels | Megaloblastic anemia Behavioral changes Psychosis Dementia | Genetic polymorphisms Malabsorption Poor intake Hemodialysis Hemolysis | Megaloblastic anemia Prevents neural tube defects in pregnancy Dialysis Malabsorption | [12,13,14,16] |
Cobalamin (B12) | Animal foods Fortified foods | Megaloblastic anemia Behavioral changes Psychosis Dementia | Pernicious anemia Malabsorption Vegan diet | Megaloblastic anemia Malabsorption syndromes Maintenance dose for deficiency in vegans Essential in red blood cell production | [12,14,16] |
Vitamin C | Oranges Lemons Grapefruit Green vegetables Beef liver | Scurvy | Consumption deficit | Collagen formation Wound healing Immune system Antioxidant Free radical scavenger Skin disorders (Redness, hyperpigmentation) | [12,14,16] |
Fat-soluble vitamins | |||||
A | Animal foods Human milk Fish Liver Eggs Green and yellow vegetables Yellow and orange non-citrus fruits | Visual impairment Bitot spots Keratomalacia Follicular hyperkeratosis Growth retardation Respiratory and intestinal infections | Malnutrition Poverty | Maintenance of visual sharpness Growth and development Formation of red blood cells Formation of skin and bones Immunity | [12,14,16] |
D | Exposure to sunlight Milk Cheese Fortified cereals Egg yolks Salmon | Osteomalacia Rickets | Decreased exposure to UV rays Absorption disorders | Stimulates bone mineralization Antioxidant Improves the absorption of phosphorus and calcium | [12,13,14,16] |
E | Wheat germ Oil nuts Cereal Meat Egg Milk Green leafy vegetables | Cystic fibrosis Ataxia Abetalipoproteinemia Hemolysis Macrocytic anemia in premature infants | Poor food intake | Antioxidant Wound healing Immunity | [12,14,16] |
K | Fresh green leafy Vegetables Egg yolk Soybean oil Liver | Generalized bleeding Haemorrhagic disease in the newborn Prolongation of coagulation times | Poor food intake Coagulation factor deficiency | Formation of prothrombin and other K-dependent coagulation factors | [12,14,16] |
Minerals | |||||
Zn | Red meat Fish Poultry Nuts Whole grains | Gastrointestinal diseases Decreased immune function | Alcoholism Chronic Kidney disease | Cell-mediated immunity Bone formation Tissue growth Brain functions Sexual maturation Fertility | [12,14] |
Calcium | Seafood (salmon and sardines) Green leafy vegetables Milk Egg | Fractures Osteoporosis Osteomalacia Rickets | Alterations in parathormone and calcitonin Chronic kidney disease Alcoholism Magnesium deficiency | Bone growth and development Nerve function Muscle contraction Blood clotting | [13,14] |
Nutrient | Immunomodulating Property | Deficiency Effect on Immune System | References |
---|---|---|---|
Vitamin A | It maintains the integrity of the barrier and the normal differentiation of epithelial tissues Mucosal immune response and anti-inflammatory agent It regulates the functions of NK cells and the activities of macrophages Differentiation and development of T helper 1 (Th1) and T helper 2 (Th2) cells Supports the production of antibodies by B cells | Increases susceptibility to virus-induced infections of the respiratory tract, measles, and diarrhea Failure of immune responses to vaccines | [17,18,19] |
Vitamin C | It contributes to the maintenance of the redox integrity of cells and protection against (ROS) generated by inflammatory responses Regenerates other antioxidants It stimulates the functions of leukocytes It contributes to the integrity of the epithelial barrier by promoting collagen synthesis Antimicrobial Activities: Increases serum complement protein and IFN γ production Role in antibody production | Increases the risk and severity of some respiratory infections, including pneumonia | [17,18,19,20,21] |
Vitamin D | Production of antimicrobial peptides (catelicidin and defensin) responsible for modifying the GM Promotion of anti-inflammatory cytokines Inhibition of IFN γ nuclear factor kB It improves innate immunity by increasing the differentiation of monocytes to macrophages Promotes the growth and phagocytic capacity of macrophages | They increase the risks, severity, and mortality of various respiratory conditions, such as rhinitis, asthma, tuberculosis, chronic lung disorders, viral respiratory infections, including COVID-19 | [17,18,19,21] |
Vitamin E | Lipid-soluble antioxidant that protects cell membranes against oxidative damage Supports the integrity of airways and epithelial barriers Enhances the cytotoxic activity of Nκ cells It modulates the expression of IFN γ and Interleukin 2 It decreases the expression of prostaglandin E2 by macrophages Optimizes and improves Th1 function | It impairs the functions of humoral and cellular adaptive immunity, thus facilitating viral infection with highly virulent strains, and conditions serious subsequent pathologies together with abnormal immune responses | [17,18,19] |
B6 | Participates in biosynthesis of fatty acids and proteins along with B12 and B9 Maintains Th1 response Involved in the proliferation of T lymphocytes | The deficiency is accompanied by suppression of the Th1 response and promotion of Th2 as well as a decrease in pro-inflammatory cytokines | [17,19] |
B12 | Participates in biosynthesis of fatty acids and proteins along with B6 and B9 Effects on cytotoxic cells (NK, CD+, T cells) | Suppresses NK cell activity, decreases the number of lymphocytes and abnormal CD4+/CD8+ cell ratio | [17,19] |
Folic acid | Participates in biosynthesis of fatty acids and proteins along with B12 and B9 Maintains innate immunity (NK cell activity) | It causes an impaired immune response and resistance to infection Increased carcinogenicity due to reduced cytotoxic activity | [17,19] |
Magnesium | Involved in nucleic acid metabolism, DNA replication, leukocyte activation, regulation of apoptosis Protects DNA from oxidative damage | Increases susceptibility to upper respiratory tract infections It promotes low-grade chronic inflammation through the production of pro-inflammatory cytokines, acute phase proteins, and free radicals. | [17,19] |
Se | Key role in redox and antioxidant regulation through glutathione peroxidases by scavenging free radicals Essential for the optimal immune response through the regulation of IFN α, IFN γ, and IFN β production Participates in the production of Immunoglobulin G Influences the functions and differentiation of NK cells, T cells, and antibodies | Increases the risk and virulence of viruses including lung infections, particularly in infants, during their first six weeks of life | [17,18,21] |
Zn | It modulates the function of approximately 2000 enzymes and 750 transcription factors, which include immune, growth, and development processes Antiviral properties: Inhibits the enzyme RNA polymerase Maintains the integrity of the immune barrier Improves the cytotoxic activity of NK cells Participates in complement protein activities and IFN γ production It intervenes in the cytotoxic defense against oxidative stress | It increases the risk and morbidity of inflammatory disorders, infections, and viral pneumonia, particularly in children and the elderly Increases the risk of bacterial and fungal infections (particularly diarrhea and pneumonia) | [17,18,19,20] |
Fe | Essential for cell differentiation and growth. Involved in DNA synthesis Involved in the process of destruction of bacteria by neutrophils through the formation of toxic hydroxyl radicals | It decreases the secretion of cytokines (IFN γ, TNFα, Interleukin 2 [IL-2]) It attenuates the activity of NK cells and lymphocytes | [17,19] |
Cu | Maintains intracellular antioxidant balance Important role in innate immunity (macrophages, neutrophils, and monocytes) | It decreases the proliferation of T cells and increases the circulation of B cells There are no reports of increased incidence of infections during decreased intake | [17,19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Flores, T.d.J.; Pedraza-Brindis, E.J.; Cárdenas-Bedoya, J.; Ruíz-Carrillo, J.D.; Méndez-Clemente, A.S.; Martínez-Guzmán, M.A.; Iñiguez-Gutiérrez, L. Role of Micronutrients and Gut Microbiota-Derived Metabolites in COVID-19 Recovery. Int. J. Mol. Sci. 2022, 23, 12324. https://doi.org/10.3390/ijms232012324
Hernández-Flores TdJ, Pedraza-Brindis EJ, Cárdenas-Bedoya J, Ruíz-Carrillo JD, Méndez-Clemente AS, Martínez-Guzmán MA, Iñiguez-Gutiérrez L. Role of Micronutrients and Gut Microbiota-Derived Metabolites in COVID-19 Recovery. International Journal of Molecular Sciences. 2022; 23(20):12324. https://doi.org/10.3390/ijms232012324
Chicago/Turabian StyleHernández-Flores, Teresita de Jesús, Eliza Julia Pedraza-Brindis, Jhonathan Cárdenas-Bedoya, José Daniel Ruíz-Carrillo, Anibal Samael Méndez-Clemente, Marco Alonso Martínez-Guzmán, and Liliana Iñiguez-Gutiérrez. 2022. "Role of Micronutrients and Gut Microbiota-Derived Metabolites in COVID-19 Recovery" International Journal of Molecular Sciences 23, no. 20: 12324. https://doi.org/10.3390/ijms232012324
APA StyleHernández-Flores, T. d. J., Pedraza-Brindis, E. J., Cárdenas-Bedoya, J., Ruíz-Carrillo, J. D., Méndez-Clemente, A. S., Martínez-Guzmán, M. A., & Iñiguez-Gutiérrez, L. (2022). Role of Micronutrients and Gut Microbiota-Derived Metabolites in COVID-19 Recovery. International Journal of Molecular Sciences, 23(20), 12324. https://doi.org/10.3390/ijms232012324