Phase Behavior of Ionic Liquid-Based Aqueous Two-Phase Systems
Abstract
:1. Introduction
2. Properties of IL-Based ATPSs
2.1. Effects of ILs Cations
2.2. Effects of ILs Anions
2.3. Effects of Temperature
3. Mechanism of Phase Separation
4. Phase Equilibrium of the IL-Based ATPSs
4.1. Salts
4.2. Polymers
4.3. Surfactants
4.4. Amino Acids
4.5. Saccharides
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
[C2mim]Cl | 1-Ethyl-3-methylimidazolium chloride |
[C4mim]Cl | 1-Butyl-3-methylimidazolium chloride |
[C5mim]Cl | 1-Pentyl-3-imidazolium chloride |
[C6mim]Cl | 1-Hexyl-3-methylimidazolium chloride |
[C7mim]Cl | 1-Heptyl-3-methylimidazolium chloride |
[C4mmim]Cl | 1-Butyl-2,3-dimethylimidazolium chloride |
[C4py]Cl | N-Butylpyridinium chloride |
[N4 4 4 4]Cl | Tetrabutylammonium chloride |
[P4 4 4 4]Cl | Tetrabutylphosphonium chloride |
[C4C1pyr]Cl | 1-Butyl-1-methylpyrrolidinium chloride |
[C4C1pip]Cl | 1-Butyl-1-methylpiperidinium chloride |
[C4C1py]Cl | 1-Butyl-4-methylpyridinium chloride |
[C2mim]Br | 1-Ethyl-3-methylimidazolium bromide |
[C4mim]Br | 1-Butyl-3-methylimidazolium bromide |
[C6mim]Br | 1-Hexyl-3-methylimidazolium bromide |
[C8mim]Br | 1-Octyl-3-methylimidazolium bromide |
[C2mim][CH3CO2] | 1-Ethyl-3-methylimidazolium acetate |
[C2mim][MeSO4] | 1-Ethyl-3-methylimidazolium methylsulfate |
[C2mim][C2SO4] | 1-Ethyl-3-methylimidazolium ethylsulfate |
[C2mim][CH3SO3] | 1-Ethyl-3-methylimidazolium methanesulfonate |
[C2mim][CF3SO3] | 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate |
[C4mim][CH3CO2] | 1-Butyl-3-methylimidazolium acetate |
[C4mim][N(CN)2] | 1-Butyl-3-methylimidazolium dicyanamide |
[C4mim][CH3SO3] | 1-Butyl-3-methylimidazolium methanesulfonate |
[C4mim][HSO4] | 1-Butyl-3-methylimidazolium hydrogensulfate |
[C4mim][CF3SO3] | 1-Butyl-3-methyl-imidazolium trifluoromethanesulfonate |
[C4mim][TFA] | 1-Butyl-3-methylimidazolium trifluoroacetate |
[TBA][But] | Tetrabutylammonium butanoate |
[TBA][Pent] | Tetrabutylammonium pentanoate |
[TBA][Hex] | Tetrabutylammonium hexanoate |
[TBA][Hept] | Tetrabutylammonium heptanoate |
[TBA][Oct] | Tetrabutylammonium octanoate |
[TBA][Dec] | Tetrabutylammonium decanoate |
[C4mim][BF4] | 1-Butyl-3-methylimidazolium tetrafluoroborate |
[NH4][OAc] | Ammonium acetate |
[C3NH3][OAc] | Propylammonium acetate |
[C4NH3][OAc] | Butylammonium acetate |
[C6NH3][OAc] | Hexylammonium acetate |
[C8NH3][OAc] | Octylammonium acetate |
[C4NH3][But] | Butylammonium butanoate |
[Amim]Cl | 1-Allyl-3-methylimidazolium chloride |
[Ch]Cl | Cholinium chloride |
[N4 4 4 1][NO3] | Tributylmethylammonium nitrate |
[EOMiM]Br | 1-(2-Methoxyethyl)-3-methylimidazolium bromide |
[C4py]OTF | N-Butylpyridinium trifluoromethanesulfonate |
[C4py][BF4] | N-Butylpyridinium tetrafluoroborate |
[C4mim][NO3] | 1-Butyl-3-methylimidazolium nitrate |
[C6mim][NO3] | 1-Hexyl-3-methylimidazolium nitrate |
[C2mim]DCA | 1-Ethyl-3-methylimidazolium dicyanamide |
[C3mim]DCA | 1-Propyl-3-methylimidazolium dicyanamide |
[C4mim]DCA | 1-Butyl-3-methylimidazolium dicyanamide |
[C6mim]DCA | 1-Hexyl-3-methylimidazolium dicyanamide |
[C4C1pyr]DCA | 1-Butyl-1-methylpyrrolidinium dicyanamide |
[Ch][L-Pro] | Choline L-proline |
[Ch][L-Cys] | Choline L-cysteine |
[Ch][L-His] | Choline L-histidine |
[Ch][L-Val] | Choline L-valine |
[Ch][L-Ser] | Choline L-serine |
[Ch][L-Met] | Choline L-methionine |
[Ch][L-Ala] | Choline L-alanine |
[C2Tr]Br | N-Ethyl-tropinium bromide |
[C3Tr]Br | N-Propyl-tropinium bromide |
[C4Tr]Br | N-Butyl-tropinium bromide |
[C5Tr]Br | N-Pentyl-tropinium bromide |
[C2Qn]Br | N-Ethyl-quinolinium bromide |
[C3Qn]Br | N-Propyl-quinolinium bromide |
[C4Qn]Br | N-Butyl-quinolinium bromide |
[C5Qn]Br | N-Pentyl-quinolinium bromide |
[C6Qn]Br | N-Hexyl-quinolinium bromide |
[C2mim][OAc] | 1-Ethyl-3-methylimidzaolium acetate |
[C4MDEA]Br | N-methyl-N-butyl-N,N-di(hydroxyethyl)ammonium bromide |
[C6MDEA]Br | N-methyl-N-hexyl-N,N-di(hydroxyethyl)ammonium bromide |
[C8MDEA]Br | N-methyl-N-octyl-N,N-di(hydroxyethyl)ammonium bromide |
[C10MDEA]Br | N-methyl-N-decyl-N,N-di(hydroxyethyl)ammonium bromide |
[C4BDEA]Br | N,N-di(butyl)-N,N-di(hydroxyethyl)ammonium bromide |
[P4 4 4 4][NO3] | Tetrabutylphosphonate nitrate |
[N4 4 4 4][NO3] | Tetrabutylammonium nitrate |
[Ch][Leu] | Choline leucine |
[Ch][Gly] | Choline glycine |
[Ch][Lys] | Choline lysine |
[C2TMG][TEMPO-OSO3] | Ethyl-1,1,3,3-tetramethylguanidinium 4-sulfonatooxy-2,2,6,6-tetramethyl piperidine-1-yloxyl |
[C3TMG][TEMPO-OSO3] | Propyl-1,1,3,3-tetramethylguanidinium 4-sulfonatooxy-2,2,6,6-tetramethyl piperidine-1-yloxyl |
[C4TMG][TEMPO-OSO3] | Butyl-1,1,3,3-tetramethylguanidinium 4-sulfonatooxy-2,2,6,6-tetramethyl piperidine-1-yloxyl |
[N1 1 2 2OH][TEMPO-OSO3] | Ethyl-(2-hydroxyethyl)-dimethylammonium 4-sulfonatooxy-2,2,6,6-tetramethyl piperidine-1-yloxyl |
[N1 1 3 2OH][TEMPO-OSO3] | Propyl-(2-hydroxyethyl)-dimethylammonium 4-sulfonatooxy-2,2,6,6-tetramethyl piperidine-1-yloxyl |
[N1 1 4 2OH][TEMPO-OSO3] | Butyl-(2-hydroxyethyl)-dimethylammonium 4-sulfonatooxy-2,2,6,6-tetramethyl piperidine-1-yloxyl |
[N1 1 5 2OH][TEMPO-OSO3] | Pentyl-(2-hydroxyethyl)-dimethylammonium 4-sulfonatooxy-2,2,6,6-tetramethyl piperidine-1-yloxyl |
[C6mim][C12SO3] | 1-Hexyl-3-methyl imidazolium dodecyl sulfonate |
[C2mim][SCN] | 1-Ethyl-3-methylimidazolium thiocyanate |
[C4mim][SCN] | 1-Butyl-3-methylimidazolium thiocyanate |
[Ch][L-Ala] | Cholinium L-alaninate |
[Ch][DHcit] | Cholinium dihydrogen citrate |
[Ch][Bit] | Cholinium bitartrate |
[Ch][Bic] | Cholinium bicarbonate |
[Ch][DHp] | Choline dihydrogen phosphate |
[Ch][Ac] | Cholinium acetate |
[Ch][BES] | Cholinium 2-[bis(2-hydroxyethyl)amino]ethanesulfonate |
UCON | Poly(ethylene glycol-ran-propylene glycol) monobutyl ether |
SDBS | Sodium dodecyl benzene sulfonate |
SDS | Sodium dodecyl sulfonate |
[C2pi][BF4] | 1-Ethylpiperazinium tertrafluoroborate |
[Phpi][BF4] | 1-Phenylpiperazinium tertrafluoroborate |
[N1 1 1 2OH][C4H5O6] | Cholinium bitartrate |
[C2mim][BF4] | 1-Ethyl-3-methylimidazolium tetrafluoroborate |
[C2C1py][C4F9SO3] | 1-Ethyl-3-methylpyridinium perfluorobutanesulfonate |
[C2mim][C4F9SO3] | 1-Ethyl-3-methylimidazolium perfluorobutanesulfonate |
[N1 1 1 2OH][C4F9SO3] | Cholinium perfluorobutanesulfonate |
[C2C1pyr][CF3SO3] | 1-Ethyl-1-methylpyrrolidinium triflate |
DIMCARB | N,N-dimethylammonium N′,N′-dimethylcarbamate |
DPCARB | N,N-dipropylammonium N′N′-dipropylcarbamate |
DACARB | N,N-diallylammonium N′N′-diallylcarbamate |
DBCARB | Bis(2-ethylhexyl)ammonium bis(2-ethylhexyl)carbamate |
References
- Albertsson, P.A. Partition of cell particles and macromolecules in polymer two-phase systems. Adv. Protein Chem. 1970, 24, 309–341. [Google Scholar] [PubMed]
- Rosa, P.A.J.; Azevedo, A.M.; Sommerfeld, S.; Bäcker, W.; Aires-Barros, M.R. Aqueous two-phase extraction as a platform in the biomanufacturing industry: Economical and environmental sustainability. Biotechnol. Adv. 2011, 29, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Zhang, J.; Su, X.; Meng, Q.; Dou, J. Extraction and separation of eight ginsenosides from flower buds of panax ginseng using aqueous ionic liquid-based ultrasonic-assisted extraction coupled with an aqueous biphasic system. Molecules 2019, 24, 778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molino, J.V.D.; Marques, D.V.; Júnior, A.P.; Mazzola, P.G.; Gatti, M. Different types of aqueous two-phase systems for biomolecule and bioparticle extraction and purification. Biotechnol. Progr. 2013, 29, 1343–1353. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Ng, E.P.; Juan, J.C.; Wei, O.C.; Ling, T.C.; Woon, K.L.; Show, P.L. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: A review. Nanotechnology 2016, 27, 332002. [Google Scholar] [CrossRef]
- Grilo, A.L.; Aires-Barros, M.R.; Azevedo, A.M. Partitioning in aqueous two-phase systems: Fundamentals, applications and trends. Sep. Purif. Method. 2016, 45, 68–80. [Google Scholar] [CrossRef]
- He, J.L.; Zhang, S.S.; Zheng, Q.; Lei, Q.F.; Fang, W.J. Phase property, composition and temperature-induced phase inversion of ATPS-C formed by aqueous cationic-anionic surfactant mixtures. Colloid. Surface A 2013, 436, 193–200. [Google Scholar] [CrossRef]
- Teng, H.N.; Wang, X.Y.; Hou, Y.X.; Chen, Y.; Yang, C.Y.; Shen, T. Properties and extraction for [Ni(NH3)6]2+ of ATPS-a formed by aqueous cationic-anionic surfactant mixtures. J. Disper. Sci. Technol. 2016, 37, 830–835. [Google Scholar] [CrossRef]
- Quintao, J.C.; Patricio, P.R.; Veloso, A.C.G.; Carvalho, R.M.M.; Silva, L.H.M.; Hespanhol, M.C. Liquid-liquid equilibrium of the ternary ammonium salt plus poly(propylene glycol) plus water system. Fluid Phase Equilibr. 2017, 442, 96–103. [Google Scholar] [CrossRef]
- Jamshidi, S.; Pazuki, G. Effect of hybrane hyperbranched polymer additive on partitioning of cephalexin antibiotic in aqueous biphasic systems. J. Mol. Liq. 2018, 259, 48–54. [Google Scholar] [CrossRef]
- Vioux, A.; Taubert, A. Ionic liquids 2014 and selected papers from ILMAT 2013: Highlighting the ever-growing potential of ionic liquids. Int. J. Mol. Sci. 2014, 15, 22815–22818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasserscheid, P.; Keim, W. Ionic liquids-new “Solutions” for transition metal catalysis. Angew. Chem. Int. Edit. 2000, 39, 3772–3789. [Google Scholar] [CrossRef]
- Dupont, J.; Souza, R.F.S.; Suarez, P.A.Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 2002, 102, 3667–3692. [Google Scholar] [CrossRef] [PubMed]
- Reshetov, S.A.; Frolkova, A.K. Ionic liquids as entrainers. Fine Chem. Tech. 2009, 4, 27–44. [Google Scholar]
- Reshetov, S.A.; Frolkova, A.K. Influence of some structural characteristics of ionic liquids on homogeneous and heterogeneous characteristics of their mixtures with organic compounds. Fine Chem. Tech. 2010, 5, 73–80. [Google Scholar]
- Lee, S.Y.; Khoiroh, I.; Ooi, C.W.; Ling, T.C.; Show, P.L. Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems. Sep. Purif. Rev. 2017, 46, 291–304. [Google Scholar] [CrossRef]
- Gutowski, K.E.; Broker, G.A.; Willauer, H.D.; Huddleston, J.G.; Swatloski, R.P.; Holbrey, J.D.; Rogers, R.D. Controlling the aqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J. Am. Chem. Soc. 2003, 125, 6632–6633. [Google Scholar] [CrossRef]
- Du, Z.; Yu, Y.L.; Wang, J.H. Extraction of proteins from biological fluids by use of an ionic liquid/aqueous two-phase system. Chem. Eur. J. 2007, 13, 2130–2137. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, H.; Wang, J. Phase behavior for ternary systems composed of ionic liquid + saccharides + water. J. Phys. Chem. B 2008, 112, 6426–6429. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, Y.; Li, N.; Huang, X.; Ding, X.; Lin, X.; Huang, S.; Liu, X. Extraction of proteins with ionic liquid aqueous two-phase system based on guanidine ionic liquid. Talanta 2013, 116, 409–416. [Google Scholar] [CrossRef]
- Pratiwi, A.I.; Yokouchi, T.; Matsumoto, M.; Kondo, K. Extraction of succinic acid by aqueous two-phase system using alcohols/salts and ionic liquids/salts. Sep. Purif. Technol. 2015, 155, 127–132. [Google Scholar] [CrossRef]
- Tian, H.Z.; Bai, X.S.; Xu, J. Extraction of bisphenol A in honey samples using aqueous biphasic systems coupled with high-performance liquid chromatography. Sep. Sci. Plus 2018, 1, 374–381. [Google Scholar] [CrossRef]
- Santos, N.V.D.; Martins, M.; Ventura, S.P.M.; Coutinho, J.A.P.; Valentini, S.R.; Pereira, J.F.B. Aqueous biphasic systems composed of cholinium chloride and polymers as effective platforms for the purification of recombinant green fluorescent protein. ACS Sustain. Chem. Eng. 2018, 6, 9383–9393. [Google Scholar] [CrossRef]
- Zafarani-Moattar, M.T.; Shekaari, H.; Jafari, P. Design of novel biocompatible and green aqueous two-phase systems containing cholinium L-alaninate ionic liquid and polyethylene glycol di-methyl ether 250 or polypropylene glycol 400 for separation of bovine serum albumin (BSA). J. Mol. Liq. 2018, 254, 322–332. [Google Scholar] [CrossRef]
- Tian, H.Z.; Fu, H.L.; Xu, C.Q.; Xu, C.H. Simultaneous determination of three herbicides in honey sSamples using an aqueous biphasic system coupled with HPLC-MS/MS. Chromatographia 2019, 82, 1571–1577. [Google Scholar] [CrossRef]
- Tian, H.; Berton, P.; Rogers, R.D. Aqueous biphasic systems composed of random ethylene/propylene oxide copolymers, choline acetate, and water for triazine-based herbicide partitioning study. Solvent Extr. Ion Exch. 2018, 36, 602–616. [Google Scholar] [CrossRef]
- Tian, H.Z.; Xu, C.Q.; Cai, J.N.; Xu, J. The aqueous biphasic system based on cholinium ionic liquids and nonionic surfactant and its application for triazine-based herbicides extraction. J. Chem. Thermodyn. 2018, 125, 41–49. [Google Scholar] [CrossRef]
- Escudero, N.; Morandeira, L.; Sanromán, M.; Deive, F.J.; Rodríguez, A. Salting out potential of cholinium dihydrogen citrate in aqueous solution of Triton surfactants. J. Chem. Thermodyn. 2018, 118, 235–243. [Google Scholar] [CrossRef]
- Caban, M.; Stepnowski, P. The antagonistic role of chaotropic hexafluorophosphate anions and imidazolium cations composing ionic liquids applied as phase additives in the separation of tri-cyclic antidepressants. Anal. Chim. Acta 2017, 967, 102–110. [Google Scholar] [CrossRef]
- Freire, M.G.; Pereira, J.F.; Francisco, M.; Rodríguez, H.; Rebelo, L.P.N.; Rogers, R.D.; Coutinho, J.A. Insight into the interactions that control the phase behaviour of new aqueous biphasic systems composed of polyethylene glycol polymers and ionic liquids. Chem. Eur. J. 2012, 18, 1831–1839. [Google Scholar] [CrossRef]
- Han, J.; Yu, C.; Wang, Y.; Xie, X.; Yan, Y.; Yin, G.; Guan, W. Liquid-liquid equilibria of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and sodium citrate/tartrate/acetate aqueous two-phase systems at 298.15 K: Experiment and correlation. Fluid Phase Equilibr. 2010, 295, 98–103. [Google Scholar] [CrossRef]
- Shahriari, S.; Neves, C.M.; Freire, M.G.; Coutinho, J.O.A. Role of the Hofmeister series in the formation of ionic-liquid-based aqueous biphasic systems. J. Phys. Chem. B 2012, 116, 7252–7258. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Han, J.; Hu, Y.; Wang, Y.; Lu, Y.; Chen, T.; Ni, L. The study of phase behavior of aqueous two-phase system containing [Cnmim]BF4 (n = 2,3,4) + (NH4)2SO4 + H2O at different temperatures. Fluid Phase Equilibr. 2014, 383, 100–107. [Google Scholar] [CrossRef]
- Havlová, M.; Dohnal, V. Phase equilibria and thermophysical properties of aqueous solutions of two bis(fluorosulfonyl)imide-based ionic liquids. Fluid Phase Equilibr. 2021, 547, 113137. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Y.; Zeng, Q.; Ding, X.; Chen, J. Extraction and separation of proteins by ionic liquid aqueous two-phase system. Analyst 2013, 138, 6445–6453. [Google Scholar] [CrossRef]
- Bridges, N.J.; Gutowski, K.E.; Rogers, R.D. Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt-salt ABS). Green Chem. 2007, 9, 177–183. [Google Scholar] [CrossRef]
- Freire, M.G.; Cláudio, A.F.M.; Araújo, J.M.M.; Coutinho, J.A.P.; Rebelo, L. Aqueous biphasic systems: A boost brought about by using ionic liquids. Chem. Soc. Rev. 2012, 41, 4966–4995. [Google Scholar] [CrossRef]
- Ventura, S.; Sousa, S.G.; Serafim, L.S.; Lima, Á.S.; Freire, M.G.; Coutinho, J. Ionic liquid based aqueous biphasic systems with controlled PH: The ionic liquid cation effect. J. Chem. Eng. Data 2012, 56, 4253–4260. [Google Scholar] [CrossRef]
- Freire, M.G.; Louros, C.L.S.; Rebelo, L.P.N.; Coutinho, J.A.P. Aqueous biphasic systems composed of a water-stable ionic liquid + carbohydrates and their applications. Green Chem. 2011, 13, 1536–1545. [Google Scholar] [CrossRef]
- Neves, C.S.; Granjo, J.O.; Freire, M.; Robertson, A.; Oliveira, N.C.; Coutinho, J.P. Separation of ethanol-water mixtures by liquid-liquid extraction using phosphonium-based ionic liquids. Green Chem. 2011, 13, 1517–1526. [Google Scholar] [CrossRef]
- Claudio, A.F.M.; Freire, M.G.; Freire, C.S.R.; Silvestre, A.J.D.; Coutinho, J.A.P. Extraction of vanillin using ionic-liquid-based aqueous two-phase systems. Sep. Purif. Technol. 2010, 75, 39–47. [Google Scholar] [CrossRef] [Green Version]
- He, A.; Dong, B.; Feng, X.; Yao, S. Extraction of bioactive ginseng saponins using aqueous two-phase systems of ionic liquids and salts. Sep. Purif. Technol. 2018, 196, 270–280. [Google Scholar] [CrossRef]
- Belchior, D.C.; Almeida, M.R.; Sintra, T.E.; Ventura, S.; Duarte, I.F.; Freire, M.G. Odd-even effect in the formation and extraction performance of ionic-liquid-based aqueous biphasic systems. Ind. Eng. Chem. Res. 2019, 58, 8323–8331. [Google Scholar] [CrossRef]
- Malekghasemi, S.; Mokhtarani, B.; Hamzehzadeh, S.; Sharifi, A.; Mirzaei, M. Liquid-liquid equilibria of aqueous biphasic systems of ionic liquids and dipotassium hydrogen phosphate at different temperatures: Experimental study and thermodynamic modeling. J. Mol. Liq. 2016, 219, 95–103. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Pei, Y.; Wang, J. A green separation strategy for neodymium (III) from cobalt (II) and nickel (II) using an ionic liquid-based aqueous two-phase system. Talanta 2018, 182, 450–455. [Google Scholar] [CrossRef]
- Shill, K.; Padmanabhan, S.; Xin, Q.; Prausnitz, J.M.; Clark, D.S.; Blanch, H.W. Ionic liquid pretreatment of cellulosic biomass: Enzymatic hydrolysis and ionic liquid recycle. Biotechnol. Bioeng. 2011, 108, 511–520. [Google Scholar] [CrossRef]
- Deive, F.J.; Rivas, M.A.; Rodríguez, A. Sodium carbonate as phase promoter in aqueous solutions of imidazolium and pyridinium ionic liquids. J. Chem. Thermodyn. 2011, 43, 1153–1158. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, W.; Wang, W.; Guo, Q.; Yang, Y. Thermodynamic studies of partitioning behavior of cytochrome c in ionic liquid-based aqueous two-phase system. Talanta 2011, 85, 1621–1626. [Google Scholar] [CrossRef]
- Pei, Y.; Wang, J.; Li, L.; Wu, K.; Yang, Z. Liquid-liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts. J. Chem. Eng. Data 2007, 52, 2026–2031. [Google Scholar] [CrossRef]
- Freire, M.G.; Neves, C.; Lopes, J.C.; Marrucho, I.M.; Coutinho, J.; Rebelo, L. Impact of self-aggregation on the formation of ionic-liquid-based aqueous biphasic systems. J. Phys. Chem. B 2012, 116, 7660–7668. [Google Scholar] [CrossRef]
- Neves, C.; Ventura, S.; Freire, M.G.; Marrucho, I.M.; Coutinho, J. Evaluation of cation influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems. J. Phys. Chem. B 2009, 113, 5194–5199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claudio, A.; Ferreira, A.M.; Shahriari, S.; Freire, M.G.; Coutinho, J. Critical assessment of the formation of ionic-liquid-based aqueous two-phase systems in acidic media. J. Phys. Chem. B. 2011, 115, 11145–11153. [Google Scholar] [CrossRef] [PubMed]
- Ventura, S.P.M.; Neves, C.M.S.S.; Freire, M.G.; Marrucho, I.M.; Oliveira, J.; Coutinho, J.A.P. Evaluation of anion influence on the formation and extraction capacity of ionic-liquid-based aqueous biphasic systems. J. Phys. Chem. B 2009, 113, 9304–9310. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Yang, Q.; Su, B.; Bao, Z.; Ren, Q.; Xing, H. Enhancing the basicity of ionic liquids by tuning the cation-anion interaction strength and via the anion-tethered strategy. J. Phys. Chem. B 2014, 118, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xu, D.; Zhang, J.; Zhu, Y.; Xing, H. Long-chain fatty acid-based phosphonium ionic liquids with strong hydrogen-bond basicity and good lipophilicity: Synthesis, characterization, and application in extraction. ACS Sustain. Chem. Eng. 2015, 3, 309–316. [Google Scholar] [CrossRef]
- Deive, F.J.; Rodríguez, A.; Marrucho, I.M.; Rebelo, L. Aqueous biphasic systems involving alkylsulfate-based ionic liquids. J. Chem. Thermodyn. 2011, 43, 1565–1572. [Google Scholar] [CrossRef]
- Basaiahgari, A.; Gardas, R.L. Evaluation of anion chain length impact on aqueous two phase systems formed by carboxylate anion functionalized ionic liquids. J. Chem. Thermodyn. 2018, 120, 88–96. [Google Scholar] [CrossRef]
- Jimenez, Y.P.; Freijeiro, C.R.; Soto, A.; Rodríguez, O. Phase equilibrium for polymer/ionic liquid aqueous two-phase systems. Fluid Phase Equilibr. 2020, 506, 112387. [Google Scholar] [CrossRef]
- Marcus, Y. Thermodynamics of solvation of ions. Part 5.-gibbs free energy of hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 1991, 87, 2995–2999. [Google Scholar] [CrossRef]
- Song, C.P.; Ramanan, R.N.; Vijayaraghavan, R.; MacFarlane, D.R.; Chan, E.S.; Ooi, C.W. Green, aqueous two-phase systems based on cholinium aminoate ionic liquids with tunable hydrophobicity and charge density. ACS Sustain. Chem. Eng. 2015, 3, 3291–3298. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Chang, Y.; Tan, Z.; Li, F. Phase behavior of aqueous biphasic systems composed of novel choline amino acid ionic liquids and salts. J. Mol. Liq. 2016, 222, 836–844. [Google Scholar] [CrossRef]
- Korchak, P.A.; Alopina, E.V.; Pukinsky, I.B.; Safonova, E.A. Liquid-liquid equilibria of aqueous biphasic systems containing 1-alkyl-3-methylimidazolium amino acid ionic liquids with different anions (L-Leucine, L-Valine, L-Lysine) and inorganic salt (tripotassium phosphate, potassium carbonate). Fluid Phase Equilibr. 2020, 525, 112789. [Google Scholar] [CrossRef]
- Sun, D.; Wang, R.; Li, F.; Liu, L.; Tan, Z. Enantioselective extraction of phenylalanine enantiomers using environmentally friendly aqueous two-phase systems. Processes 2018, 6, 212. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Sen, K. Impact of pH and temperature on phase diagrams of different aqueous biphasic systems. J. Chromatogr. A 2016, 1433, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Zafarani-Moattar, M.T.; Hamzehzadeh, S. Phase diagrams for the aqueous two-phase ternary system containing the ionic liquid 1-butyl-3-methylimidazolium bromide and tri-potassium citrate at T = (278.15, 298.15, and 318.15). J. Chem. Eng. Data 2009, 54, 833–841. [Google Scholar] [CrossRef]
- Zafarani-Moattar, M.T.; Hamzehzadeh, S. Salting-out effect preferential exclusion, and phase separation in aqueous solutions of chaotropic water-miscible ionic liquids and kosmotropic salts: Effects of temperature, anions, and cations. J. Chem. Eng. Data 2010, 55, 1598–1610. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, X.H.; Yan, Y.S.; Han, J.; Zhang, Z.L. Phase behavior for the [Bmim]BF4 aqueous two-phase systems containing ammonium sulfate/sodium carbonate salts at different temperatures: Experimental and correlation. Thermochim. Acta 2010, 501, 112–118. [Google Scholar] [CrossRef]
- Li, Y.; Huang, R.; He, Z.; Li, N.; Lu, X. Phase behavior of an aqueous two-phase ionic liquid containing (n-butylpyridiniumtetrafluoroborate + sulfate salts + water) at different temperatures. J. Mol. Liq. 2016, 216, 174–184. [Google Scholar] [CrossRef]
- Chen, Y.H.; Zhang, S.J. Phase, behavior of (1-alkyl-3-methyl imidazolium tetrafluoroborate+6-(hydroxymethyl)oxane-2,3,4,5-tetrol+water). J. Chem. Eng. Data 2010, 55, 278–282. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Zhang, S.J.; Chen, Y.H.; Zhang, J.M. Aqueous biphasic systems composed of ionic liquid and fructose. Fluid Phase Equilibr. 2007, 257, 173–176. [Google Scholar] [CrossRef]
- Chen, Y.H.; Meng, Y.S.; Zhang, S.M.; Zhang, Y.; Liu, X.W.; Yang, J. Liquid-liquid equilibria of aqueous biphasic systems composed of 1-butyl-3-methyl imidazolium tetrafluoroborate + sucrose/maltose + water. J. Chem. Eng. Data 2010, 55, 3612–3616. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, Y.M.; Wang, H.P.; Yang, L.L. Temperature dependence of phase behavior for ternary systems composed of ionic liquid + sucrose + water. J. Phys. Chem. B 2008, 112, 13163–13165. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Wang, Y.G.; Cheng, Q.Y.; Liu, X.L.; Zhang, S.J. Carbohydrates-tailored phase tunable systems composed of ionic liquids and water. J. Chem. Thermodyn. 2009, 41, 1056–1059. [Google Scholar] [CrossRef]
- Pirdashti, M.; Bozorgzadeh, A.; Ketabi, M.; Khoiroh, I. Phase equilibria of aqueous mixtures of PEG with formate salt: Effects of pH, type of cation, polymer molecular weight and temperature. Fluid Phase Equilibr. 2019, 485, 158–167. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, N.; Xu, S.; Zhu, Q.; Hu, J. The influence of temperature on the phase behavior of ionic liquid aqueous two-phase systems. J. Disper. Sci. Technol. 2019, 40, 874–883. [Google Scholar] [CrossRef]
- Bonifacio, P.L.; Aguiar, C.; Alvarenga, B.G.; Lemes, N.; Virtuoso, L.S. Phase behavior in aqueous two-phase systems based-ionic liquid composed of 1-butyl-3-methylimidazolium tetrafluoroborate and copper sulfate in different temperatures. J. Chem. Eng. Data 2019, 64, 2143–2152. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, Q.; Luo, Q.; Li, Y.L. Influence of ions and temperature on aqueous biphasic systems containing ionic liquid and ammonium sulfate. J. Chem. Eng. Data 2019, 64, 3139–3147. [Google Scholar] [CrossRef]
- Gao, J.; Guo, J.; Nie, F.; Ji, H.; Liu, S. LCST-type phase behavior of aqueous biphasic systems composed of phosphonium-based ionic liquids and potassium phosphate. J. Chem. Eng. Data 2017, 62, 1335–1340. [Google Scholar] [CrossRef]
- Neves, C.M.S.S.; Shahriari, S.; Lemus, J.; Pereira, J.; Freire, M.G.; Coutinho, J. Aqueous biphasic systems composed of ionic liquids and polypropylene glycol: Insights into their liquid–liquid demixing mechanisms. Phys. Chem. Chem. Phys. 2016, 18, 20571–20582. [Google Scholar] [CrossRef] [Green Version]
- Song, C.P.; Yi, Y.Q.; Chong, M.; Ramanan, R.N.; Vijayaraghavan, R.; Macfarlane, D.R.; Chan, E.S.; Ooi, C.W. Environmentally benign and recyclable aqueous two-phase system composed of distillable CO2-based alkyl carbamate ionic liquids. ACS Sustain. Chem. Eng. 2018, 6, 10344–10354. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Pei, Y.; Wang, H.; Wang, J.J. (Liquid + liquid) equilibria for (cholinium-based ionic liquids + polymers) aqueous two-phase systems. J. Chem. Thermodyn. 2013, 60, 1–8. [Google Scholar] [CrossRef]
- Pereira, J.F.B.; Kurnia, K.A.; Cojocaru, O.A.; Gurau, G.; Rebelo, L.P.N.; Rogers, R.D.; Freire, M.G.; Coutinho, J.A.P. Molecular interactions in aqueous biphasic systems composed of polyethylene glycol and crystalline vs. liquid cholinium-based salts. Phys. Chem. Chem. Phys. 2014, 16, 5723–5731. [Google Scholar] [CrossRef] [PubMed]
- Fischer, V.; Borchard, W.; Karas, M. Thermodynamic properties of poly(ethylene glycol)/water systems. 1. a polymer sample with a narrow molar mass distribution. J. Phys. Chem. 1996, 100, 15992–15999. [Google Scholar] [CrossRef]
- Cláudio, A.F.; Pereira, J.F.B.; Mccrary, P.D.; Freire, M.G.; Coutinho, J.A.P.; Rogers, R.D. A critical assessment of the mechanisms governing the formation of aqueous biphasic systems composed of protic ionic liquids and polyethylene glycol. Phys. Chem. Chem. Phys. 2016, 18, 30009–30019. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pei, Y.; Wang, H.; Fan, J.; Wang, J. Ionic liquid-based aqueous two-phase systems and their applications in green separation processes. Trac-Trend. Anal. Chem. 2010, 29, 1336–1346. [Google Scholar] [CrossRef]
- Ren, J.; Li, Z.Y.; Liu, J.; Pei, Y.C.; Wang, H.Y.; Wang, J.J. Choline derivative ionic liquids-based aqueous two-phase systems: Phase diagrams and partition of purine alkaloids. J. Chem. Thermodyn. 2018, 118, 51–57. [Google Scholar] [CrossRef]
- Shu, Y.; Gao, M.C.; Wang, X.Y.; Song, R.S.; Lu, J.; Chen, X.W. Separation of curcuminoids using ionic liquid based aqueous two-phase system coupled with in situ dispersive liquid-liquid microextraction. Talanta 2016, 14, 6–12. [Google Scholar] [CrossRef]
- Tan, Z.J.; Wang, C.Y.; Yang, Z.Z.; Yi, Y.J.; Wang, H.Y.; Zhou, W.L.; Li, F.F. Ionic liquid based ultrasonic-assisted extraction of secoisolariciresinol diglucoside from flaxseed (Linum usitatissimum L.) with further purification by an aqueous two-phase system. Molecules 2015, 20, 17929–17943. [Google Scholar] [CrossRef] [Green Version]
- Tome, L.I.N.; Varanda, F.R.; Freire, M.G.; Marrucho, I.M.; Coutinho, J.A.P. Towards an understanding of the mutual solubilities of water and hydrophobic ionic liquids in the presence of salts: The anion effect. J. Phys. Chem. B 2009, 113, 2815–2825. [Google Scholar] [CrossRef] [Green Version]
- Lv, H.; Guo, D.; Jiang, Z.; Li, Y.; Ren, B. Phase behavior of aqueous two-phase systems composed of 1-ethyl-3-methylimidazolium tetrafluoroborate and phosphate-based salts at different temperatures. Fluid Phase Equilibr. 2013, 341, 23–29. [Google Scholar] [CrossRef]
- Li, C.; Han, J.; Wang, Y.; Yan, Y.; Pan, J.; Xu, X.; Zhang, Z. Phase behavior for the aqueous two-phase systems containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and kosmotropic salts. J. Chem. Eng. Data 2010, 55, 1087–1092. [Google Scholar] [CrossRef]
- Holz, M.; Grunder, R.; Sacco, A.; Meleleo, A. Nuclear magnetic resonance study of self-association of small hydrophobic solutes in water: Salt effects and the lyotropic series. J. Chem. Soc. Faraday Trans. 1993, 89, 1215–1222. [Google Scholar] [CrossRef]
- Li, Z.Y.; Liu, X.X.; Pei, Y.C.; Wang, J.J.; He, M.Y. Design of environmentally friendly ionic liquid aqueous two-phase systems for the efficient and high activity extraction of proteins. Green Chem. 2012, 14, 2941–2950. [Google Scholar] [CrossRef]
- Ruiz-Angel, M.J.; Pino, V.; Carda-Broch, S.; Berthod, A. Solvent systems for countercurrent chromatography: An aqueous two phase liquid system based on a room temperature ionic liquid. J. Chromatogr. A 2007, 1151, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; Sharma, M.; Quental, M.V.; Tavares, A.P.; Prasad, K.; Freire, M.G. Suitability of bio-based ionic liquids for the extraction and purification of IgG antibodies. Green Chem. 2016, 18, 6071–6081. [Google Scholar] [CrossRef] [Green Version]
- Quental, M.V.; Caban, M.; Pereira, M.M.; Stepnowski, P.; Coutinho, J.A.; Freire, M.G. Enhanced extraction of proteins using cholinium-based ionic liquids as phase-forming components of aqueous biphasic systems. Biotechnol. J. 2015, 10, 1457–1466. [Google Scholar] [CrossRef]
- Vahidnia, M.; Pazuki, G.; Abdolrahimi, S. Impact of polyethylene glycol as additive on the formation and extraction behavior of ionic-liquid based aqueous two-phase system. Aiche J. 2016, 62, 264–274. [Google Scholar] [CrossRef]
- Mourao, T.; Tomé, L.; Florindo, C.; Rebelo, L.P.N.; Marrucho, I.M. Understanding the role of cholinium carboxylate ionic liquids in PEG-based aqueous biphasic systems. ACS Sustain. Chem. Eng. 2014, 2, 2426–2434. [Google Scholar] [CrossRef]
- Pereira, J.F.; Vicente, F.; Santos-Ebinuma, V.C.; Araújo, J.M.; Pessoa, A.; Freire, M.G.; Coutinho, J.A. Extraction of tetracycline from fermentation broth using aqueous two-phase systems composed of polyethylene glycol and cholinium-based salts. Process Biochem. 2013, 48, 716–722. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Liu, L. Recovery of natural active molecules using aqueous two-phase systems comprising of ionic liquids/deep eutectic solvents. Green Chem. Eng. 2022, 3, 5–14. [Google Scholar] [CrossRef]
- Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M.A.B.; et al. Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Proced. Online 2016, 18, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assis, R.C.; Mageste, A.B.; Lemos, L.; Orlando, R.M.; Rodrigues, G.D. Application of aqueous two-phase system for selective extraction and clean-up of emerging contaminants from aqueous matrices. Talanta 2021, 223, 121697. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, K.; Amau, M.; Kume, R.; Suga, K.; Umakoshi, H. Characterization of ionic liquid aqueous two-phase systems: Phase separation behaviors and hydrophobicity index between the two phases. J. Phys. Chem. B 2019, 123, 5866–5874. [Google Scholar] [CrossRef]
- Li, Q.; Liu, W.; Zhu, X. Green choline amino acid ionic liquid aqueous two-phase extraction coupled with HPLC for analysis sunset yellow in beverages. Food Anal. Method. 2019, 12, 2527–2534. [Google Scholar] [CrossRef]
- Zafarani-Moattar, M.T.; Shekaari, H.; Jafari, P. The role of water soluble polymers in the phase separation of aqueous cholinium phenylalaninate solution as a green and biocompatible ionic liquid. Fluid Phase Equilibr. 2019, 485, 199–210. [Google Scholar] [CrossRef]
- Hayashi, S.; Hamaguchi, H. Structure of an ionic liquid, 1-n-butyl-3-methylimidazolium iodide, studied by wide-angle X-ray scattering and Raman spectroscopy. Chem. Phys. Lett. 2004, 33, 1590–1591. [Google Scholar]
- Jiang, Y.; Guo, C.; Liu, H. Magnetically rotational reactor for absorbing benzene emissions by ionic liquids. Particuology 2007, 5, 130–133. [Google Scholar] [CrossRef]
- Deng, N.; Li, M.; Zhao, L.; Lu, C.; de Rooy, S.L.; Warner, I.M. Highly efficient extraction of phenolic compounds by use of magnetic room temperature ionic liquids for environmental remediation. J. Hazard. Mater. 2011, 192, 1350–1357. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, Y.; Xu, B.; Li, X.; Jin, R.; Zhang, H.; Song, D. Magnetic ionic liquid-based dispersive liquid-liquid microextraction for the determination of triazine herbicides in vegetable oils by liquid chromatography. J. Chromatogr. A 2014, 1373, 9–16. [Google Scholar] [CrossRef]
- Wang, J.; Yao, H.; Nie, Y.; Bai, L.; Zhang, X.; Li, J. Application of iron-containing magnetic ionic liquids in extraction process of coal direct liquefaction residues. Ind. Eng. Chem. Res. 2012, 51, 3776–3782. [Google Scholar] [CrossRef]
- Clark, K.D.; Nacham, O.; Yu, H.; Li, T.; Yamsek, M.M.; Ronning, D.R.; Anderson, J.L. Extraction of DNA by magnetic ionic liquids: Tunable solvents for rapid and selective DNA analysis. Anal. Chem. 2015, 87, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.; Albo, J.; Irabien, A. Magnetic ionic liquids: Synthesis, properties and applications. RSC Adv. 2014, 4, 40008–40018. [Google Scholar] [CrossRef]
- Yao, T.; Zang, H.; Yao, S.; Dai, X.; Song, H. Measurement and correlation of phase equilibria in aqueous two-phase systems containing functionalized magnetic ionic liquids and potassium phosphate at different temperatures. J. Mol. Liq. 2018, 263, 72–80. [Google Scholar] [CrossRef]
- Yao, T.; Huang, X.; Zang, H.; Hang, S.; Yao, S. Measurement and correlation of phase equilibria in aqueous two-phase systems containing functionalized magnetic ionic liquids and K2HPO4/K2CO3/NaCO3 at 298.15K. J. Mol. Liq. 2017, 231, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Nie, L.R.; Song, H.; Alula, Y.; Liang, S.; Yao, S. Extraction in cholinium-based magnetic ionic liquid aqueous two-phase system for the determination of berberine hydrochloride in rhizoma coptidis. RSC Adv. 2018, 8, 25201–25209. [Google Scholar] [CrossRef] [Green Version]
- Zafarani-Moattar, M.T.; Hosseinpour-Hashemi, V. Effect of temperature on the aqueous two-phase system containing poly(ethylene glycol) dimethyl ether 2000 and dipotassium oxalate. J. Chem. Eng. Data 2012, 57, 532–540. [Google Scholar] [CrossRef]
- Freire, M.G.; Carvalho, P.J.; Silva, A.M.; Santos, L.M.; Rebelo, L.P.; Marrucho, I.M.; Coutinho, J.A. Ion specific effects on the mutual solubilities of water and hydrophobic ionic liquids. J. Phys. Chem. B 2008, 113, 202–211. [Google Scholar] [CrossRef]
- Freire, M.G.; Neves, C.M.S.S.; Silva, A.M.S.; Santos, L.M.N.B.F. 1H NMR and molecular dynamics evidence for an unexpected interaction on the origin of salting- in/salting-out phenomena. J. Phys. Chem. B 2010, 114, 2004–2014. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wei, N.; Wang, Y.; Hou, Y.; Wei, Q. Single-step purification of c-phycocyanin from arthrospira platensis using aqueous two-phase system based on natural deep eutectic solvents. J. Appl. Phycol. 2020, 32, 1–11. [Google Scholar] [CrossRef]
- Osloob, M.; Roosta, A. Experimental study of choline chloride and K2HPO4 aqueous two-phase system, and its application in the partitioning of penicillin G. J. Mol. Liq. 2019, 279, 171–176. [Google Scholar] [CrossRef]
- Lima, Á.S.; Soares, C.; Paltram, R.; Halbwirth, H.; Bica, K. Extraction and consecutive purification of anthocyanins from grape pomace using ionic liquid solutions. Fluid Phase Equilibr. 2017, 451, 68–78. [Google Scholar] [CrossRef]
- Bao, X.; Chen, Z.; Han, J.; Wang, Y.; Ni, L. Liquid-liquid equilibrium of imidazolium ionic liquids + phosphate + water aqueous two-phase systems and correlation. J. Solution Chem. 2019, 48, 1167–1187. [Google Scholar] [CrossRef]
- Sun, P.; Huang, K.; Song, W.; Gao, Z.; Liu, H. Separation of rare earths from the transition metals using a novel ionic-liquid-based aqueous two-phase system: Toward green and efficient recycling of rare earths from the NdFeB magnets. Ind. Eng. Chem. Res. 2018, 57, 16934–16943. [Google Scholar] [CrossRef]
- Xu, H.; Li, X.; Hao, Y.; Zhao, X.; Zhang, J. Highly selective separation of acteoside from cistanche tubulosa using an ionic liquid based aqueous two-phase system. J. Mol. Liq. 2021, 333, 115982. [Google Scholar] [CrossRef]
- Li, M.; Yu, X.J.; Zhou, C.S.; Yagoub, A.E.A.; Ji, Q.H.; Chen, L. Construction of an integrated platform for 5-HMF production and separation based on ionic liquid aqueous two-phase system. J. Mol. Liq. 2020, 313, 113529. [Google Scholar] [CrossRef]
- Wang, D.D.; Lu, Y.; Sun, Z.; Liang, W.; Sun, D.S.; Qi, C.L.; Sheng, C.Z.; Yu, X.P. Measurement and correlation of phase equilibria in aqueous two-phase systems containing ionic liquid ([EOMiM]Br) and potassium citrate/ammonium citrate/potassium tartrate at different temperatures. Korean J. Chem. Eng. 2020, 37, 332–340. [Google Scholar] [CrossRef]
- Li, Y.L.; Lu, X.J.; He, W.T.; Huang, R.; Zhao, Y.J.; Wang, Z.H. Influence of the salting-out ability and temperature on the liquid-liquid equilibria of aqueous two-phase systems based on ionic liquid-organic salts-water. J. Chem. Eng. Data 2016, 61, 475–486. [Google Scholar] [CrossRef]
- Gómez, E.; Macedo, E.A. Partitioning of DNP-amino acids in ionic liquid/citrate salt based aqueous two-phase system. Fluid Phase Equilibr. 2019, 484, 82–87. [Google Scholar] [CrossRef]
- Li, Q.; Liu, W.; Zhu, X. Green choline amino acid ionic liquids aqueous two-phase extraction coupled with synchronous fluorescence spectroscopy for analysis naphthalene and pyrene in water samples. Talanta 2020, 219, 121305. [Google Scholar] [CrossRef]
- Liu, L.L.; Sun, D.Y.; Li, F.F.; Ma, S.P.; Tan, Z.J. Enantioselective liquid-liquid extraction of valine enantiomers in the aqueous two-phase system formed by the cholinium amino acid ionic liquid copper complexes and salt. J. Mol. Liq. 2019, 294, 111599. [Google Scholar] [CrossRef]
- Visak, Z.P.; Lopes, J.; Rebelo, L. Ionic liquids in polyethylene glycol aqueous solutions: Salting-in and salting-out effects. Monatsh. Chem. 2007, 138, 1153–1157. [Google Scholar] [CrossRef]
- Tomé, L.I.N.; Pereira, J.F.B.; Rogers, R.D.; Freire, M.G.; Gomes, J.R.B.; Coutinho, J.A.P. “Washing-out” ionic liquids from polyethylene glycol to form aqueous biphasic systems. Phys. Chem. Chem. Phys. 2014, 16, 2271–2274. [Google Scholar] [CrossRef] [PubMed]
- Ola, P.D.; Matsumoto, M. Extraction mechanism of ferric and manganese ions with aqueous two-phase system formed by ionic liquid and polyethylene glycol. Chem. Biochem. Eng. Q. 2019, 33, 229–234. [Google Scholar] [CrossRef]
- Lu, X.X.; Lu, Z.Z.; Zhang, R.; Zhao, L.J.; Xie, H.J. Distribution of pigments in the aqueous two-phase system formed with piperazinium-based ionic liquid and anionic surfactant. J. Mol. Liq. 2021, 330, 115677. [Google Scholar] [CrossRef]
- Wu, C.; Wang, J.; Pei, Y.; Wang, H.; Li, Z. Salting-out effect of ionic liquids on poly (propyleneglycol) (PPG): Formation of PPG + ionic liquid aqueous two-phase systems. J. Chem. Eng. Data 2010, 55, 5004–5008. [Google Scholar] [CrossRef]
- Zafarani-Moattar, M.T.; Hamzehzadeh, S.; Nasiri, S. A new aqueous biphasic system containing polypropylene glycol and a water-miscible ionic liquid. Biotechnol. Progr. 2012, 28, 146–156. [Google Scholar] [CrossRef]
- Ruiz, C.A.S.; Kwaijtaal, J.; Peinado, O.C.; van den Berg, C.; Wijffels, R.H.; Eppink, M.H.M. Multistep fractionation of microalgal biomolecules using selective aqueous two-phase systems. ACS Sustain. Chem. Eng. 2020, 8, 2441–2452. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, R. Green Chemistry and Sustainable Technology: Chapter 4-ABS Composed of Ionic Liquids and Polymers; Springer: Berlin/Heidelberg, Germany, 2016; pp. 61–88. [Google Scholar]
- Bubalo, M.C.; Radosevic, K.; Redovnikovic, I.R.; Halambek, J.; Srcek, V.G. A brief overview of the potential hazards of ionic liquids. Ecotoxicol. Environ. Saf. 2014, 99, 1–12. [Google Scholar] [CrossRef]
- Lee, S.Y.; Khoiroh, I.; Ling, T.C.; Show, P.L. Enhanced recovery of lipase derived from burkholderia cepacia from fermentation broth using recyclable ionic liquid/polymer-based aqueous two-phase systems. Sep. Purif. Technol. 2017, 179, 152–160. [Google Scholar] [CrossRef]
- Aziz, N.; Abbasiliasi, S.; Hui, S.N.; Phapugrangkul, P.; Tan, J.S. Purification of β-mannanase derived from bacillus subtilis ATCC 11774 using ionic liquid as adjuvant in aqueous two-phase system. J. Chromatogr. B 2017, 1055, 104–112. [Google Scholar] [CrossRef]
- Zheng, Y.; Tong, Y.; Wang, S.B.; Zhang, H.; Yang, Y.Z. Mechanism of gold (III) extraction using a novel ionic liquid-based aqueous two phase system without additional extractants. Sep. Purif. Technol. 2015, 154, 123–127. [Google Scholar] [CrossRef]
- Wei, X.L.; Wei, Z.B.; Wang, X.H.; Wang, Z.N.; Sun, D.Z.; Liu, J.; Zhao, H.H. Phase behavior of new aqueous two-phase systems: 1-butyl-3-methylimidazolium tetrafluoroborate + anionic surfactants + water. Soft Matter 2011, 7, 5200–5207. [Google Scholar] [CrossRef]
- Yu, W.; Liu, Z.; Li, Q.; Zhang, H.; Yu, Y. Determination of Sudan I-IV in candy using ionic liquid/anionic surfactant aqueous two-phase extraction coupled with high-performance liquid chromatography. Food Chem. 2015, 173, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Li, K.; Liu, Z.L.; Zhang, H.Q.; Jin, X.Q. Novelty aqueous two-phase extraction system based on ionic liquid for determination of sulfonamides in blood coupled with high-performance liquid chromatography. Microchem. J. 2018, 136, 263–269. [Google Scholar] [CrossRef]
- Li, S.; He, C.; Liu, H.; Kean, L.; Feng, L. Ionic liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids. J. Chromatogr. B 2005, 826, 58–62. [Google Scholar] [CrossRef]
- Alvarez, M.S.; Rivas, M.; Deive, F.J.; Sanroman, M.A.; Rodriguez, A. Ionic liquids and non-ionic surfactants: A new marriage for aqueous segregation. RSC Adv. 2014, 4, 32698–32700. [Google Scholar] [CrossRef]
- Alvarez, M.S.; Patino, F.M.; Deive, F.J.; Sanroman, M.A.; Rodriguez, A. Aqueous immiscibility of cholinium chloride ionic liquid and Triton surfactants. J. Chem. Thermodyn. 2015, 91, 86–93. [Google Scholar] [CrossRef]
- Zhao, L.H.; Zhang, X.H.; Wang, Z.L. Extraction of anionic dyes with ionic liquid-nonionic surfactant aqueous two-phase system. Sep. Sci. Technol. 2017, 52, 804–811. [Google Scholar] [CrossRef]
- Alvarez, M.S.; Esperança, J.M.S.S.; Deive, F.J.; Sanroman, M.A.; Rodriguez, A. A biocompatible stepping stone for the removal of emerging contaminants. Sep. Purif. Technol. 2015, 153, 91–98. [Google Scholar] [CrossRef]
- Souza, R.L.; Lima, R.A.; Coutinho, J.A.P.; Soares, C.M.F.; Lima, A.S. Aqueous two-phase systems based on cholinium salts and tetrahydrofuran and their use for lipase purification. Sep. Purif. Technol. 2015, 155, 118–126. [Google Scholar] [CrossRef]
- Escudero, N.; Deive, F.J.; Sanromán, M.Á.; Álvarez, M.S.; Rodríguez, A. Design of eco-friendly aqueous two-phase systems for the efficient extraction of industrial finishing dyes. J. Mol. Liq. 2019, 284, 625–632. [Google Scholar] [CrossRef]
- Álvarez, M.S.; Gómez, L.; Ulloa, R.G.; Deive, F.J.; Sanromán, M.A.; Rodríguez, A. Antibiotics in swine husbandry effluents: Laying the foundations for their efficient removal with a biocompatible ionic liquid. Chem. Eng. J. 2016, 298, 10–16. [Google Scholar] [CrossRef]
- Palǒić, A.; Puškarić, A.; Mazaj, M.; Žunkoviǒ, E.; Logar, N.Z.; Bronić, J. Structural and degradation studies of a new biocompatible chiral Zn-L-tartrate metal-organic framework. J. Solid State Chem. 2015, 225, 59–64. [Google Scholar] [CrossRef]
- Salabat, A.; Moghadam, S.T.; Far, R.M. Liquid-liquid equilibria of aqueous two-phase systems composed of TritonX-100 and sodium citrate or magnesium sulfate salts. Calphad-Comput. Coupling Phase Diagr. Thermochem. 2010, 34, 81–83. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Lin, W. Phase equilibrium and protein partitioning in aqueous two-phase systems containing imidazolium ionic liquids and surfactant at low voltage levels. J. Mol. Liq. 2018, 256, 372–379. [Google Scholar] [CrossRef]
- Ferreira, A.; Esteves, P.D.O.; Boal-Palheiros, I.; Pereiro, A.B.; Freire, M.G. Enhanced tunability afforded by aqueous biphasic systems formed by fluorinated ionic liquids and carbohydrates. Green Chem. 2016, 18, 1070–1079. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.M.; Zhang, Y.Q.; Chen, Y.H.; Zhang, S.J. Mutual coexistence curve measurement of aqueous biphasic systems composed of [bmim][BF4] and Glycine, L-Serine, and L-Proline, respectively. J. Chem. Eng. Data 2007, 52, 2488–2490. [Google Scholar] [CrossRef]
- Domínguez-Pérez, M.; Tomé, L.I.; Coutinho, A.P.; Freire, M.G. Extraction of biomolecules using aqueous biphasic systems formed by ionic liquids and amino acids. Sep. Purif. Technol. 2010, 72, 85–91. [Google Scholar] [CrossRef]
- Lungwitz, R.; Friedrich, M.; Linert, W.; Spange, S. New aspects on the hydrogen bond donor (HBD) strength of 1-butyl-3-methylimidazolium room temperature ionic liquids. New J. Chem. 2008, 32, 1493–1499. [Google Scholar] [CrossRef]
- Tomé, L.I.N.; Domínguez-Pérez, M.; Freire, M.G.; Marrucho, I.M.; Cabeza, O.; Coutinho, J.A.P. On the interactions between amino acids and ionic liquids in aqueous media. J. Phys. Chem. B 2009, 113, 13971–13979. [Google Scholar] [CrossRef]
- Pereiro, A.B.; Araújo, J.M.M.; Martinho, S.; Alves, F.; Nunes, S.; Matias, A.; Duarte, C.M.M.; Rebelo, L.P.N.; Marrucho, I.M. Fluorinated ionic liquids: Properties and applications. ACS Sustain. Chem. Eng. 2013, 1, 427–439. [Google Scholar] [CrossRef]
- Shahriari, S.; Tome, L.C.; Araújo, J.M.M.; Rebelo, L.P.N.; Coutinho, J.A.P.; Marrucho, I.M.; Freire, M.G. Aqueous biphasic systems: A benign route using cholinium-based ionic liquids. RSC Adv. 2013, 3, 1835–1843. [Google Scholar] [CrossRef]
- Galema, S.A.; Engberts, J.; Hoiland, H.; Forland, G.M. Informative thermodynamic properties of the effect of stereochemistry on carbohydrate hydration. J. Phys. Chem. 1993, 97, 6885–6889. [Google Scholar] [CrossRef]
- Mason, P.E.; Neilson, G.W.; Enderby, J.E.; Saboungi, M.L.; Brady, J.W. Structure of aqueous glucose solutions as determined by neutron diffraction with isotopic substitution experiments and molecular dynamics calculations. J. Phys. Chem. B 2005, 109, 13104–13111. [Google Scholar] [CrossRef]
- Katayanagi, H.; Nishikawa, K.; Shimozaki, H.; Mike, K.; Weath, P.; Koga, Y. Mixing schemes in ionic liquid-H2O systems: A thermodynamic study. J. Phys. Chem. B 2004, 108, 19451–19457. [Google Scholar] [CrossRef]
- Shekaari, H.; Kazempour, A.; Ghasedi-Khajeh, Z. Structure-making tendency of ionic liquids in the aqueous D-glucose solutions. Fluid Phase Equilibr. 2012, 316, 102–108. [Google Scholar] [CrossRef]
Salts | ILs | Temperature/K | Refs. |
---|---|---|---|
K3PO4, K2HPO4, K2CO3, KOH, and (NH4)2SO4 | [C4mim]Cl, [C4mmim]Cl, [C4py]Cl, [N4 4 4 4]Cl, [P4 4 4 4]Cl | 298.15 | [36] |
K2HPO4, KH2PO4 | [C4C1pyr]Cl, [C4mim]Cl, [C4C1pip]Cl, [C4C1py]Cl | 298.15 | [38] |
K3PO4, K2CO3, K2HPO4, K3C6H5O7, Na3C6H5O7, NaH2PO4 | [C2Tr]Br, [C3Tr]Br, [C4Tr]Br, [C5Tr]Br, [C2Qn]Br, [C2Qn]Br, [C3Qn]Br, [C4Qn]Br, [C5Qn]Br, [C6Qn]Br, | 298.15~318.15 | [42] |
K3PO4, K2CO3, Na2CO3, (NH4)2SO4 | [C2mim][CnSO4] (n = 2, 4, 6, or 8) | 298.15 | [56] |
K3PO4, K2CO3 | [Cnmim]X (n = 4, 8; X = [Lys], [Val], [Leu], Cl, Br) | 298.15 | [62] |
K2CO3, Na2HPO4, Na2SO4, Na3C6H5O7, Na2CO3, K2HPO4, KH2PO4, (NH4)2SO4, (NH4)3PO4, K3PO4, NaNO3 | [Ch][L-Pro], [Ch][L-Cys], [Ch][L-His], [Ch][L-Val], [Ch][L-Ser], [Ch][L-Met], [Ch][L-Ala] | 298.15 | [63] |
K2HPO4 | [Ch][CnCO2] (n = 1~7), [Ch]Cl | 298.15 | [43,119,120] |
K2CO3 | [C4mim][NO3], [C6mim][NO3], [C2mim]OAc | 288.15~308.15 | [76,121] |
NaNO3, NH3NO3 | [P4 4 4 4][NO3], [N4444][NO3] | 288.15~308.15 | [45] |
K3PO4, K3C6H5O7, K2CO3 | [C4MDEA]Br, [C6MDEA]Br, [C8MDEA]Br, [C10MDEA]Br, [C4BDEA]Br | 298.15 | [86] |
K2CO3, K2HPO4 | [Amim]Cl, [C4mmim]Cl | 278.15~318.15 | [103] |
(NH4)2SO4, KH2PO4, Na2CO3, K3PO4 | [Ch][Ala], [Ch][Gly]; [Ch][Lys], [Ch][Arg] | 298.15~338.15 | [104] |
K2HPO4, K2CO3, Na2CO3 | [C2TMG][TEMPO-OSO3], [C3TMG][TEMPO-OSO3], [C4TMG][TEMPO-OSO3] | 298.15 | [114] |
K3PO4, K2HPO4, K2CO3, K3C6H5O7, Na3C6H5O7 | [N1 1 2 2OH][TEMPO-OSO3], [N1 1 3 2OH][TEMPO-OSO3], [N1 1 4 2OH][TEMPO-OSO3], [N1 1 5 2OH][TEMPO-OSO3] | 298.15~318.15 | [115] |
Na3PO4, (NH4)3PO4 | [C4mim]BF4 | 288.15~318.15 | [122] |
NaNO3 | [N4441][NO3] | 298.15 | [123] |
(NH4)2SO4, NaH2PO4, Na2SO4, Na2HPO4, K2HPO4, NaCl, Na3C6H5O7 | [C4mim][CF3SO3], [C4mim]Cl, [C4mim][BF4], [C2mim]Br, [C4mim]Br, [C6mim]Br, [C8mim]Br | 278.15~318.15 | [124] |
Na3PO4, Na2CO3, Na2SO4, Na3C6H5O7, K3C6H5O7, NaH2PO4, NaCl, MgCl2, CaCl2 | [C4mim][CF3SO3] | 278.15~318.15 | [125] |
K3C6H5O7, (NH4)3C6H5O7, K2C4H4O6 | [EOMiM]Br | 288.15~308.15 | [126] |
(NH4)3C6H5O7, Na2C4H4O4 | [C4py]OTF | 298.15~328.15 | [127] |
Na3C6H5O7 | [C2mim]DCA, [C3mim]DCA, [C4mim]DCA, [C6mim]DCA, [C4C1pyr]DCA | 298.15 | [128] |
K3PO4 | [C4mim]Cl, [C4mim]Cl; [C4C1C1im]Cl, [C6mim]Cl, [C2mim][CF3SO3], [C2mim][C2SO4], [C2mim][MeSO4], [C2mim][Br], [C2mim]Cl, [C2mim][CH3CO2], [C2mim][CH3SO3], [C4mim][CF3SO3], [C4mim][N(CN)2], [C4mim][HSO4], [C4mim][TFA], [C4mim]Br, [C4mim]Cl, [C4mim][CH3CO2], [C4mim][CH3SO3], [TBA][But], [TBA][Pent], [TBA]Br, [TBA][Hex], [TBA][Hept], [TBA][Dec], [TBA][Oct], [Ch][Leu], [Ch][Ala], [Ch][Gly], [Ch][Lys] | 298.15 | [17,37,53,57,129] |
K3PO4, K2HPO4 | [Ch][Pro], [Ch][Cys], [Ch][Ala], [Ch][His], [Ch][Met] | 298.15 | [130] |
Polymers | ILs | Temperature/K | Ref. |
---|---|---|---|
PEGDME-250, PPG-400 | Ch[L-Ala] | 298.15~318.15 | [24] |
UCON | [C2mim]Cl, [C2mim]Br, [C2mim][SCN], [C2mim][OAc] | 288.15~308.15 | [58] |
PPG-400 | [N4444]Cl, [P4 4 4 4]Cl, [C4mim][C2H5SO4], [C4mim][CF3SO3], [C4mim][N(CN)2], [C4mim][SCN], [C5mim]Cl, [C6mim]Cl, [C7mim]Cl | 298.15~318.15 | [79] |
PPG-400, PPG-700, PPG-1000 | DIMCARB, DPCARB, DACARB, DBCARB | 288.15~308.15 | [80] |
EO10PO90, PPG-1000, PPG-400 | Cholinium glycollate, cholinium propionate, cholinium lactate, choline chloride | 288.15 | [81] |
PEG-600, PEG-1000, PEG-2000, PEG-3400 | [C8NH3][OAc] | 323.15 | [84] |
PEG-3500 | [Cnmim]Cl (n = 2~10) | 298.15 | [131] |
PEG-1500 | [C4mim]Cl | 323.15, 333.15 | [132] |
PEG-4000, PEG-6000, PEG-8000, | [C6mim][C12SO3] | 298.15 | [133] |
PEG-400, PPG-400 | [Ch]Cl, [Ch][DHcit], [Ch][Bit], [Ch][Bic], [Ch][DHp], [Ch][Ac] | 298.15 | [137] |
PPG-400 | [Ch][BES] | 298.15 | [140] |
PEG-6000 | [C2mim][BF4], [C4mim][BF4], [C2mim]Br, [C4mim]Br | 298.15 | [141] |
PEG-2000, PEG-4000, PEG-6000 | [C6mim][C12SO3] | 298.15 | [142] |
Surfactants/Saccharides | ILs | Temperature/K | Refs. |
---|---|---|---|
Glucose | [C3mim][BF4], [C4mim][BF4] | 242.15~308.15 | [69] |
Fructose | [C4mim][BF4] | 298.15~318.15 | [70] |
Glucose, sucrose, maltose, and xylose | [Cnmim][BF4] (n = 3~10) | 242.15~373.15 | [73] |
SDBS | [C4mim][BF4] | 283.15~303.15 | [143] |
SDS | [C4min]Cl, [C6mim]Cl, [C8mim]Cl | 303.15 | [145] |
SDS, SDBS | [C2pi][BF4], [Phpi][BF4] | 298.15~323.15 | [134] |
Triton X-100, Triton X-102 | [C2mim][C2SO4], [Ch]Cl | 298.15~333.15 | [147,148] |
Tween 20, Tween 80 | [Ch]Cl, [N1112OH][C4H5O6] | 293.2~333.15 | [149,152] |
Triton X-100 | [C2mim]Cl | 288.15~308.15 | [156] |
D-(+)-Glucose, D-(+)-galactose, D-(+)-fructose, D-(+)-mannose, D-(-)-arabinose, L-(+)-arabinose, D-(+)-xylose, D-(+)-maltose, D-sorbitol, maltitol, xylitol, sucrose | [C2C1py][C4F9SO3], [N1112OH][C4F9SO3], [C2mim][C4F9SO3], [C2mim][CF3SO3], [C4mim][CF3SO3], [C2C1pyr][CF3SO3] | 298.15 | [157] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, L.; Zheng, Z.; Lu, M.; Yao, S.; Guo, D. Phase Behavior of Ionic Liquid-Based Aqueous Two-Phase Systems. Int. J. Mol. Sci. 2022, 23, 12706. https://doi.org/10.3390/ijms232012706
Nie L, Zheng Z, Lu M, Yao S, Guo D. Phase Behavior of Ionic Liquid-Based Aqueous Two-Phase Systems. International Journal of Molecular Sciences. 2022; 23(20):12706. https://doi.org/10.3390/ijms232012706
Chicago/Turabian StyleNie, Lirong, Ziwei Zheng, Mingxia Lu, Shun Yao, and Dong Guo. 2022. "Phase Behavior of Ionic Liquid-Based Aqueous Two-Phase Systems" International Journal of Molecular Sciences 23, no. 20: 12706. https://doi.org/10.3390/ijms232012706
APA StyleNie, L., Zheng, Z., Lu, M., Yao, S., & Guo, D. (2022). Phase Behavior of Ionic Liquid-Based Aqueous Two-Phase Systems. International Journal of Molecular Sciences, 23(20), 12706. https://doi.org/10.3390/ijms232012706