The Search for Associations of Serum Proteins with the Presence of Unstable Atherosclerotic Plaque in Coronary Atherosclerosis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Mass Spectrometry Analysis
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grammer, T.B.; Kleber, M.E.; Silbernagel, G.; Pilz, S.; Scharnagl, H.; Lerchbaum, E.; Tomaschitz, A.; Koenig, W.; März, W. Copper, ceruloplasmin, and long-term cardiovascular and total mortality (the Ludwigshafen Risk and Cardiovascular Health Study). Free Radic Res. 2014, 48, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Vlaicu, S.I.; Tatomir, A.; Rus, V.; Mekala, A.P.; Mircea, P.A.; Niculescu, F.; Rus, H. The role of complement activation in atherogenesis: The first 40 years. Immunol. Res. 2016, 64, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wezel, A.; de Vries, M.R.; Lagraauw, H.M.; Foks, A.C.; Kuiper, J.; Quax, P.H.; Bot, I. Complement factor C5a induces atherosclerotic plaque disruptions. J. Cell Mol. Med. 2014, 18, 2020–2030. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, U.O.; Kemper, C.; Bode, M. The role of complement in arterial hypertension and hypertensive end organ damage. Br. J. Pharmacol. 2021, 178, 2849–2862. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Xu, C.; Liu, Y.; Zhu, K.; Zeng, H.; Su, J.; Huang, J.; Ji, Y.; Tan, Y.; Hou, Y. Complement activation in the arteries of patients with severe atherosclerosis. Int. J. Clin. Exp. Pathol. 2018, 11, 1–9. [Google Scholar]
- Zhang, X.; Lv, X.; Li, X.; Wang, Y.; Lin, H.Y.; Zhang, J.; Peng, C. Dysregulated circulating SOCS3 and haptoglobin expression associated with stable coronary artery disease and acute coronary syndrome: An integrated study based on bioinformatics analysis and case-control validation. Anatol. J. Cardiol. 2020, 24, 160–174. [Google Scholar] [CrossRef]
- Cheow, E.S.H.; Cheng, W.C.; Yap, T.; Dutta, B.; Lee, C.N.; Kleijn, D.P.V.; Sorokin, V.; Sze, S.K. Myocardial Injury Is Distinguished from Stable Angina by a Set of Candidate Plasma Biomarkers Identified Using iTRAQ/MRM-Based Approach. J. Proteome. Res. 2018, 17, 499–515. [Google Scholar] [CrossRef]
- Mori, T.; Sasaki, J.; Kawaguchi, H.; Handa, K.; Takada, Y.; Matsunaga, A.; Kono, S.; Arakawa, K. Serum glycoproteins and severity of coronary atherosclerosis. Am. Heart J. 1995, 129, 234–238. [Google Scholar] [CrossRef]
- Chang, X.; Dorajoo, R.; Han, Y.; Wang, L.; Liu, J.; Khor, C.C.; Low, A.F.; Chan, M.Y.; Yuan, J.M.; Koh, W.P.; et al. Interaction between a haptoglobin genetic variant and coronary artery disease (CAD) risk factors on CAD severity in Singaporean Chinese population. Mol. Genet. Genomic. Med. 2020, 8, e1450. [Google Scholar] [CrossRef]
- Tolosano, E.; Fagoonee, S.; Morello, N.; Vinchi, F.; Fiorito, V. Heme scavenging and the other facets of hemopexin. Antioxid. Redox. Signal. 2010, 12, 305–320. [Google Scholar] [CrossRef]
- Lechuga, G.C.; Napoleão-Pêgo, P.; Morel, C.M.; Provance, D.W.; De-Simone, S.G. New Insights into Hemopexin-Binding to Hemin and Hemoglobin. Int. J. Mol. Sci. 2022, 23, 3789. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.M.; Ward, L.J.; Forssell, C.; Siraj, N.; Li, W. Carotid Atheroma from Men Has Significantly Higher Levels of Inflammation and Iron Metabolism Enabled by Macrophages. Stroke 2018, 49, 419–425. [Google Scholar] [CrossRef]
- Dieplinger, H.; Dieplinger, B. Afamin--A pleiotropic glycoprotein involved in various disease states. Clin. Chim. Acta. 2015, 446, 105–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrenger, S.; Faust, J.; Friedrich, D.; Hoffmann, T.; Hartig, R.; Lendeckel, U.; Kähne, T.; Thielitz, A.; Neubert, K.; Reinhold, D. Attractin, a dipeptidyl peptidase IV/CD26-like enzyme, is expressed on human peripheral blood monocytes and potentially influences monocyte function. J. Leukoc. Biol. 2006, 80, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arques, S. Human serum albumin in cardiovascular diseases. Eur. J. Intern. Med. 2018, 52, 8–12. [Google Scholar] [CrossRef]
- Dirajlal-Fargo, S.; Kulkarni, M.; Bowman, E.; Shan, L.; Sattar, A.; Funderburg, N.; McComsey, G.A. Serum Albumin Is Associated With Higher Inflammation and Carotid Atherosclerosis in Treated Human Immunodeficiency Virus Infection. Open Forum. Infect. Dis. 2018, 5, ofy291. [Google Scholar] [CrossRef]
- Ward, L.J.; Olausson, P.; Li, W.; Yuan, X.M. Proteomics and multivariate modelling reveal sex-specific alterations in distinct regions of human carotid atheroma. Biol. Sex Differ. 2018, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Wågsäter, D.; Johansson, D.; Fontaine, V.; Vorkapic, E.; Bäcklund, A.; Razuvaev, A.; Mäyränpää, M.I.; Hjerpe, C.; Caidahl, K.; Hamsten, A.; et al. Serine protease inhibitor A3 in atherosclerosis and aneurysm disease. Int. J. Mol. Med. 2012, 30, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Arenas de Larriva, A.P.; Limia-Pérez, L.; Alcalá-Díaz, J.F.; Alonso, A.; López-Miranda, J.; Delgado-Lista, J. Ceruloplasmin and Coronary Heart Disease-A Systematic Review. Nutrients 2020, 12, 3219. [Google Scholar] [CrossRef]
- Tang, W.H.; Wu, Y.; Hartiala, J.; Fan, Y.; Stewart, A.F.; Roberts, R.; McPherson, R.; Fox, P.L.; Allayee, H.; Hazen, S.L. Clinical and genetic association of serum ceruloplasmin with cardiovascular risk. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Stakhneva, E.M.; Meshcheryakova, I.A.; Demidov, E.A.; Starostin, K.V.; Ragino, Y.I.; Peltek, S.E.; Voevoda, M.I. Proteomic Study of Blood Serum in Coronary Atherosclerosis. Bull. Exp. Biol. Med. 2017, 162, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Bertaggia, E.; Scabia, G.; Dalise, S.; Lo Verso, F.; Santini, F.; Vitti, P.; Chisari, C.; Sandri, M.; Maffei, M. Haptoglobin is required to prevent oxidative stress and muscle atrophy. PLoS ONE 2014, 9, e100745. [Google Scholar] [CrossRef] [PubMed]
- Vinchi, F.; Muckenthaler, M.U.; Da Silva, M.C.; Balla, G.; Balla, J.; Jeney, V. Atherogenesis and iron: From epidemiology to cellular level. Front. Pharmacol. 2014, 5, 94. [Google Scholar] [CrossRef] [Green Version]
- Mehta, N.U.; Reddy, S.T. Role of hemoglobin/heme scavenger protein hemopexin in atherosclerosis and inflammatory diseases. Curr. Opin. Lipidol. 2015, 26, 384–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobbert, T.; Raila, J.; Schwarz, F.; Mai, K.; Henze, A.; Pfeiffer, A.F.; Schweigert, F.J.; Spranger, J. Relation between retinol, retinol-binding protein 4, transthyretin and carotid intima media thickness. Atherosclerosis 2010, 213, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xia, K.; Li, C.; Yang, T. Retinol-binding protein 4 as a novel risk factor for cardiovascular disease in patients with coronary artery disease and hyperinsulinemia. Am. J. Med. Sci. 2014, 348, 474–479. [Google Scholar] [CrossRef]
- Perumalsamy, S.; Ahmad, W.A.W.; Huri, H.Z. Retinol-Binding Protein-4-A Predictor of Insulin Resistance and the Severity of Coronary Artery Disease in Type 2 Diabetes Patients with Coronary Artery Disease. Biology 2021, 10, 858. [Google Scholar] [CrossRef]
- Stakhneva, E.M.; Meshcheryakova, I.A.; Demidov, E.A.; Starostin, K.V.; Peltek, S.E.; Voevoda, M.I.; Ragino, Y.I. Changes in the proteomic profile of blood serum in coronary atherosclerosis. J. Med. Biochem. 2020, 39, 208–214. [Google Scholar] [CrossRef]
- Adam, R.D.; Coriu, D.; Jercan, A.; Bădeliţă, S.; Popescu, B.A.; Damy, T.; Jurcuţ, R. Progress and challenges in the treatment of cardiac amyloidosis: A review of the literature. ESC Heart Fail. 2021, 8, 2380–2396. [Google Scholar] [CrossRef]
- Cubedo, J.; Padró, T.; Alonso, R.; Cinca, J.; Mata, P.; Badimon, L. Differential proteomic distribution of TTR (pre-albumin) forms in serum and HDL of patients with high cardiovascular risk. Atherosclerosis 2012, 222, 263–269. [Google Scholar] [CrossRef]
- Ravnsborg, T.; Svaneklink, S.; Andersen, L.L.T.; Larsen, M.R.; Jensen, D.M.; Overgaard, M. First-trimester proteomic profiling identifies novel predictors of gestational diabetes mellitus. PLoS ONE 2019, 14, e0214457. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Almorós, A.; Hang, T.; Peiró, C.; Soriano-Guillén, L.; Egido, J.; Tuñón, J.; Lorenzo, Ó. Predictive and diagnostic biomarkers for gestational diabetes and its associated metabolic and cardiovascular diseases. Cardiovasc. Diabetol. 2019, 18, 140. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, J.; Beutner, F.; Teren, A.; Thiery, J.; Burkhardt, R.; Scholz, M.; Ceglarek, U. Plasma levels of apolipoproteins C-III, A-IV, and E are independently associated with stable atherosclerotic cardiovascular disease. Atherosclerosis 2019, 281, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Patzelt, J.; Verschoor, A.; Langer, H.F. Platelets and the complement cascade in atherosclerosis. Front. Physiol. 2015, 6, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, A.M. Complement activation: An emerging player in the pathogenesis of cardiovascular disease. Scientifica 2012, 2012, 402783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Ventura, J.L.; Martinez-Lopez, D.; Roldan-Montero, R.; Gomez-Guerrero, C.; Blanco-Colio, L.M. Role of complement system in pathological remodeling of the vascular wall. Mol. Immunol. 2019, 114, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Hu, W.; Shahsafaei, A.; Song, W.; Dobarro, M.; Sukhova, G.K.; Bronson, R.R.; Shi, G.P.; Rother, R.P.; Halperin, J.A.; et al. Complement regulator CD59 protects against atherosclerosis by restricting the formation of complement membrane attack complex. Circ. Res. 2009, 104, 550–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.; Cassimjee, I.; Huang, H.; Lapolla, P.; Ngetich, E.; Chandrashekar, A.; Charles, P.; Kessler, B.; Fischer, R.; Handa, A. Integrated Plasma and Tissue Proteomics Reveals Attractin Release by Intraluminal Thrombus of Abdominal Aortic Aneurysms and Improves Aneurysm Growth Prediction in Humans. Ann. Surg. 2022, 275, 1206–1211. [Google Scholar] [CrossRef]
№ | Protein Name | Protein Concentration, fmol/µL | p | |
---|---|---|---|---|
Group 1 (St) | Group 2 (Ns) | |||
1 | Ceruloplasmin | 1891.77 ± 511.66 | 1646.48 ± 418.60 | 0.021 |
2 | Serum albumin | 374,440.00 ± 61,793.83 | 354,465.00 ± 58,076.57 | 0.140 |
3 | α-1-acid glycoprotein | 18,027.10 ± 7298.18 | 13,287.65 ± 4678.42 | 0.001 |
4 | α-1-antichymotrypsin | 6224.75 ± 3299.37 | 4545.25 ± 2367.32 | 0.011 |
5 | α-1-antitrypsin | 27,696.0 ± 7929.29 | 23,672.0 ± 9887.34 | 0.048 |
6 | Hemoglobin subunit α | 4785.9 ± 2342.02 | 4204.15 ± 2608.95 | 0.297 |
7 | Haptoglobin | 589.55 ± 261.55 | 479.60 ± 194.18 | 0.036 |
8 | Hemopexin | 1973.6 ± 247.48 | 1756.55 ± 310.65 | 0.001 |
9 | Serotransferrin | 19,999.50 ± 3002.74 | 18,329.50 ± 3243.45 | 0.019 |
10 | Retinol-binding protein 4 | 1237.08 ± 287.36 | 1372.42 ± 413.33 | 0.093 |
11 | Transthyretin | 510.13 ± 179.43 | 640.23 ± 456.87 | 0.098 |
12 | Afamin | 330.12 ± 117.85 | 264.59 ± 73.53 | 0.004 |
13 | Apolipoprotein A-I | 21,096.25 ± 6127.08 | 21,626.0 ± 3662.74 | 0.640 |
14 | Apolipoprotein B-100 | 276.24 ± 79.53 | 211.04 ± 68.84 | 0.0001 |
15 | Apolipoprotein C-I | 5019.2 ± 1251.40 | 5069.6 ± 1353.80 | 0.863 |
16 | Apolipoprotein L1 | 590.28 ± 158.45 | 501.25 ± 200.51 | 0.031 |
17 | Complement C1q subcomponent subunit B | 75.86 ± 31.96 | 67.07 ± 17.17 | 0.129 |
18 | Complement C1q subcomponent subunit C | 117.84 ± 36.25 | 120.22 ± 35.42 | 0.768 |
19 | Complement C1r subcomponent | 230.49 ± 51.37 | 210.20 ± 70.84 | 0.147 |
20 | Complement C1s subcomponent | 47.18 ± 10.83 | 48.99 ± 22.84 | 0.652 |
21 | Complement C3 | 590.51 ± 137.97 | 516.46 ± 139.39 | 0.019 |
22 | Complement component C7 | 73.23 ± 19.38 | 61.94 ± 11.18 | 0.002 |
23 | Complement component C9 | 167.05 ± 66.10 | 138.93 ± 56.85 | 0.045 |
24 | Complement factor B | 4951.7 ± 1358.16 | 4215.7 ± 1135.39 | 0.010 |
25 | Complement factor H | 530.54 ± 79.29 | 577.37 ± 84.59 | 0.014 |
26 | Attractin | 48.43 ± 9.97 | 55.17 ± 17.14 | 0.035 |
Proteins | B | Exp B | 95.0% C.I. for Exp B | p |
---|---|---|---|---|
Complement component C3 | 0.014 | 1.014 | 1.003–1.026 | 0.016 |
Complement component C7 | −0.054 | 0.948 | 0.911–0.985 | 0.007 |
Complement component C9 | 0.038 | 1.039 | 1.004–1.076 | 0.030 |
Complement factor H | 0.030 | 1.031 | 1.008–1.055 | 0.009 |
Afamin | −0.012 | 0.988 | 0.981–0.994 | 0.0001 |
Attractin | 0.044 | 1.045 | 1.005–1.086 | 0.027 |
Retinol-binding protein 4 | 0.011 | 1.011 | 1.004–1.017 | 0.001 |
Hemopexin | −0.003 | 0.997 | 0.995–1.000 | 0.020 |
Haptoglobin | −0.034 | 0.967 | 0.947–0.986 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stakhneva, E.M.; Kashtanova, E.V.; Polonskaya, Y.V.; Striukova, E.V.; Shramko, V.S.; Sadovski, E.V.; Kurguzov, A.V.; Murashov, I.S.; Chernyavskii, A.M.; Ragino, Y.I. The Search for Associations of Serum Proteins with the Presence of Unstable Atherosclerotic Plaque in Coronary Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 12795. https://doi.org/10.3390/ijms232112795
Stakhneva EM, Kashtanova EV, Polonskaya YV, Striukova EV, Shramko VS, Sadovski EV, Kurguzov AV, Murashov IS, Chernyavskii AM, Ragino YI. The Search for Associations of Serum Proteins with the Presence of Unstable Atherosclerotic Plaque in Coronary Atherosclerosis. International Journal of Molecular Sciences. 2022; 23(21):12795. https://doi.org/10.3390/ijms232112795
Chicago/Turabian StyleStakhneva, Ekaterina Mikhailovna, Elena Vladimirovna Kashtanova, Yana Vladimirovna Polonskaya, Eugeniia Vitalievna Striukova, Viktoriya Sergeevna Shramko, Evgeny Viktorovich Sadovski, Alexey Vitalievich Kurguzov, Ivan Sergeevich Murashov, Alexander Mikhailovich Chernyavskii, and Yuliya Igorevna Ragino. 2022. "The Search for Associations of Serum Proteins with the Presence of Unstable Atherosclerotic Plaque in Coronary Atherosclerosis" International Journal of Molecular Sciences 23, no. 21: 12795. https://doi.org/10.3390/ijms232112795
APA StyleStakhneva, E. M., Kashtanova, E. V., Polonskaya, Y. V., Striukova, E. V., Shramko, V. S., Sadovski, E. V., Kurguzov, A. V., Murashov, I. S., Chernyavskii, A. M., & Ragino, Y. I. (2022). The Search for Associations of Serum Proteins with the Presence of Unstable Atherosclerotic Plaque in Coronary Atherosclerosis. International Journal of Molecular Sciences, 23(21), 12795. https://doi.org/10.3390/ijms232112795