miRNA-Mediated Epigenetic Regulation of Treatment Response in RA Patients—A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Studies Selection
2.2. Inclusion and Exclusion Criteria
2.3. Outcome Measures
2.4. Data Extraction and Measures of Study Quality
3. Results and Discussion
3.1. Search
3.2. Characteristics of the Included Studies
3.3. miRNAs as Indicators for Treatment Response
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Han, Y.; Qu, H.; Fang, J.; Ye, M.; Yin, W. Correlation of microRNA expression profile with clinical response to tumor necrosis factor inhibitor in treating rheumatoid arthritis patients: A prospective cohort study. J. Clin. Lab. Anal. 2019, 33, e22953. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Xu, L.; Zhang, R.; Jin, Y.; Jiang, P.; Wei, K.; Xu, L.; Shi, Y.; Zhao, J.; Xiong, M.; et al. MicroRNA-Mediated Epigenetic Regulation of Rheumatoid Arthritis Susceptibility and Pathogenesis. Front. Immunol. 2022, 13, 838884. [Google Scholar] [CrossRef]
- Guo, S.; Zhu, Q.; Jiang, T.; Wang, R.; Shen, Y.; Zhu, X.; Wang, Y.; Bai, F.; Ding, Q.; Zhou, X.; et al. Genome-wide DNA methylation patterns in CD4+ T cells from Chinese Han patients with rheumatoid arthritis. Mod. Rheumatol. 2017, 27, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Xu, L.; Chang, C.; Zhang, R.; Jin, Y.; He, D. Epigenetic Regulation Mediated by Methylation in the Pathogenesis and Precision Medicine of Rheumatoid Arthritis. Front. Genet. 2020, 11, 811. [Google Scholar] [CrossRef] [PubMed]
- Angiolilli, C.; Kabala, P.A.; Grabiec, A.M.; Van Baarsen, I.M.; Ferguson, B.S.; García, S.; Malvar Fernandez, B.; McKinsey, T.A.; Tak, P.P.; Fossati, G.; et al. Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes. Ann. Rheum. Dis. 2017, 76, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Sparks, J.A. Rheumatoid Arthritis. Ann. Intern. Med. 2019, 170, ITC1–ITC16. [Google Scholar] [CrossRef]
- Favalli, E.G.; Raimondo, M.G.; Becciolini, A.; Crotti, C.; Biggioggero, M.; Caporali, R. The management of first-line biologic therapy failures in rheumatoid arthritis: Current practice and future perspectives. Autoimmun. Rev. 2017, 16, 1185–1195. [Google Scholar] [CrossRef]
- Nam, J.L.; Takase-Minegishi, K.; Ramiro, S.; Chatzidionysiou, K.; Smolen, J.S.; van der Heijde, D.; Bijlsma, J.W.; Burmester, G.R.; Dougados, M.; Scholte-Voshaar, M.; et al. Efficacy of biological disease-modifying antirheumatic drugs: A systematic literature review informing the 2016 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 1113–1136. [Google Scholar] [CrossRef] [Green Version]
- Wielinska, J.; Bogunia-Kubik, K. miRNAs as potential biomarkers of treatment outcome in rheumatoid arthritis and ankylosing spondylitis. Pharmacogenomics 2021, 22, 291–301. [Google Scholar] [CrossRef]
- Kmiołek, T.; Paradowska-Gorycka, A. miRNAs as Biomarkers and Possible Therapeutic Strategies in Rheumatoid Arthritis. Cells 2022, 11, 452. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wu, H.; Zhao, M.; Chang, C.; Lu, Q. Clinical significance of miRNAs in autoimmunity. J. Autoimmun. 2020, 109, 102438. [Google Scholar] [CrossRef] [PubMed]
- Cuppen, B.V.; Rossato, M.; Fritsch-Stork, R.D.; Concepcion, A.N.; Schenk, Y.; Bijlsma, J.W.; Radstake, T.R.; Lafeber, F.P.; all SRU investigators. Can baseline serum microRNAs predict response to TNF-alpha inhibitors in rheumatoid arthritis? Arthritis Res. Ther. 2016, 18, 189. [Google Scholar] [CrossRef] [Green Version]
- Schwarzenbach, H.; Nishida, N.; Calin, G.A.; Pantel, K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 2014, 11, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Navickas, R.; Gal, D.; Laucevičius, A.; Taparauskaitė, A.; Zdanytė, M.; Holvoet, P. Identifying circulating microRNAs as biomarkers of cardiovascular disease: A systematic review. Cardiovasc Res. 2016, 111, 322–337. [Google Scholar] [CrossRef] [Green Version]
- Ormseth, M.J.; Wu, Q.; Zhao, S.; Allen, R.M.; Solus, J.; Sheng, Q.; Guo, Y.; Ye, F.; Ramirez-Solano, M.; Bridges, S.L.; et al. Circulating microbial small RNAs are altered in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2020, 79, 1557–1564. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Stanczyk, J.; Pedrioli, D.M.L.; Brentano, F.; Sanchez-Pernaute, O.; Kolling, C.; Gay, R.E.; Detmar, M.; Gay, S.; Kyburz, D. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008, 58, 1001–1009. [Google Scholar] [CrossRef]
- Pauley, K.M.; Satoh, M.; Chan, A.L.; Bubb, M.R.; Reeves, W.H.; Chan, E.K. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res. Ther. 2008, 10, R101. [Google Scholar] [CrossRef] [Green Version]
- Brennan, E.; Wang, B.; McClelland, A.; Mohan, M.; Marai, M.; Beuscart, O.; Derouiche, S.; Gray, S.; Pickering, R.; Tikellis, C.; et al. Protective Effect of let-7 miRNA Family in Regulating Inflammation in Diabetes-Associated Atherosclerosis. Diabetes 2017, 66, 2266–2277. [Google Scholar] [CrossRef]
- Fan, Y.; Ding, S.; Sun, Y.; Zhao, B.; Pan, Y.; Wan, J. MiR-377 Regulates Inflammation and Angiogenesis in Rats After Cerebral Ischemic Injury. J. Cell Biochem. 2018, 119, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Bhanji, R.A.; Eystathioy, T.; Chan, E.K.L.; Bloch, D.B.; Fritzler, M.J. Clinical and serological features of patients with autoantibodies to GW/P bodies. Clin. Immunol. 2007, 125, 247–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filková, M.; Aradi, B.; Senolt, L.; Ospelt, C.; Vettori, S.; Mann, H.; Filer, A.; Raza, K.; Buckley, C.D.; Snow, M.; et al. Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Ann. Rheum. Dis. 2014, 73, 1898–1904. [Google Scholar] [CrossRef] [Green Version]
- Luque-Tévar, M.; Perez-Sanchez, C.; Patiño-Trives, A.M.; Barbarroja, N.; Arias de la Rosa, I.; Abalos-Aguilera, M.C.; Marin-Sanz, J.A.; Ruiz-Vilchez, D.; Ortega-Castro, R.; Font, P.; et al. Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid Arthritis. Front. Immunol. 2021, 12, 631662. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Patro, P.S.; Aggarwal, A. MicroRNA-132, miR-146a, and miR-155 as potential biomarkers of methotrexate response in patients with rheumatoid arthritis. Clin. Rheumatol. 2019, 38, 877–884. [Google Scholar] [CrossRef]
- Krintel, S.B.; Dehlendorff, C.; Hetland, M.L.; Hørslev-Petersen, K.; Andersen, K.K.; Junker, P.; Pødenphant, J.; Ellingsen, T.; Ahlquist, P.; Lindegaard, H.M.; et al. Prediction of treatment response to adalimumab: A double-blind placebo-controlled study of circulating microRNA in patients with early rheumatoid arthritis. Pharm. J. 2016, 16, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Sode, J.; Krintel, S.B.; Carlsen, A.L.; Hetland, M.L.; Johansen, J.S.; Hørslev-Petersen, K.; Stengaard-Pedersen, K.; Ellingsen, T.; Burton, M.; Junker, P.; et al. Plasma MicroRNA Profiles in Patients with Early Rheumatoid Arthritis Responding to Adalimumab plus Methotrexate vs Methotrexate Alone: A Placebo-controlled Clinical Trial. J. Rheumatol. 2018, 45, 53–61. [Google Scholar] [CrossRef]
- Castro-Villegas, C.; Pérez-Sánchez, C.; Escudero, A.; Filipescu, I.; Verdu, M.; Ruiz-Limón, P.; Aguirre, M.A.; Jiménez-Gomez, Y.; Font, P.; Rodriguez-Ariza, A.; et al. Circulating miRNAs as potential biomarkers of therapy effectiveness in rheumatoid arthritis patients treated with anti-TNFα. Arthritis Res. Ther. 2015, 17, 49. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.; Wang, J. The potential of circulating microRNA-125a and microRNA-125b as markers for inflammation and clinical response to infliximab in rheumatoid arthritis patients. J. Clin. Lab. Anal. 2020, 34, e23329. [Google Scholar] [CrossRef] [Green Version]
- Ciechomska, M.; Bonek, K.; Merdas, M.; Zarecki, P.; Swierkot, J.; Gluszko, P.; Bogunia-Kubik, K.; Maslinski, W. Changes in MiRNA-5196 Expression as a Potential Biomarker of Anti-TNF-α Therapy in Rheumatoid Arthritis and Ankylosing Spondylitis Patients. Arch. Immunol. Ther. Exp. 2018, 66, 389–397. [Google Scholar] [CrossRef]
- Anderson, J.K.; Zimmerman, L.; Caplan, L.; Michaud, K. Measures of rheumatoid arthritis disease activity: Patient (PtGA) and Provider (PrGA) Global Assessment of Disease Activity, Disease Activity Score (DAS) and Disease Activity Score with 28-Joint Counts (DAS28), Simplified Disease Activity Index (SDAI), C. Arthritis Care Res. 2011, 63 (Suppl. S1), S14–S36. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.; Becker, J.-C.; Teng, J.; Dougados, M.; Schiff, M.; Smolen, J.; Aletaha, D.; van Riel, P.L. Validation of the 28-joint Disease Activity Score (DAS28) and European League Against Rheumatism response criteria based on C-reactive protein against disease progression in patients with rheumatoid arthritis, and comparison with the DAS28 based on eryth. Ann. Rheum. Dis. 2009, 68, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Miller, J. The Scottish Intercollegiate Guidelines Network (SIGN). Br. J. Diabetes Vasc. Dis. 2002, 2, 47–49. [Google Scholar] [CrossRef]
- Duroux-Richard, I.; Pers, Y.-M.; Fabre, S.; Ammari, M.; Baeten, D.; Cartron, G.; Touitou, I.; Jorgensen, C.; Apparailly, F. Circulating miRNA-125b is a potential biomarker predicting response to rituximab in rheumatoid arthritis. Mediat. Inflamm. 2014, 2014, 342524. [Google Scholar] [CrossRef]
- Hørslev-Petersen, K.; Hetland, M.L.; Junker, P.; Pødenphant, J.; Ellingsen, T.; Ahlquist, P.; Lindegaard, H.; Linauskas, A.; Schlemmer, A.; Dam, M.Y.; et al. Adalimumab added to a treat-to-target strategy with methotrexate and intra-articular triamcinolone in early rheumatoid arthritis increased remission rates, function and quality of life. The OPERA Study: An investigator-initiated, randomised, double-blind. Ann. Rheum. Dis. 2014, 73, 654–661. [Google Scholar] [CrossRef] [Green Version]
- de Hair, M.J.H.; Jacobs, J.W.G.; Schoneveld, J.L.M.; van Laar, J.M. Difficult-to-treat rheumatoid arthritis: An area of unmet clinical need. Rheumatology 2018, 57, 1135–1144. [Google Scholar]
- Mena-Vázquez, N.; Ruiz-Limón, P.; Moreno-Indias, I.; Manrique-Arija, S.; Tinahones, F.J.; Fernández-Nebro, A. Expansion of Rare and Harmful Lineages is Associated with Established Rheumatoid Arthritis. J. Clin. Med. 2020, 9, 1044. [Google Scholar] [CrossRef] [Green Version]
- Niimoto, T.; Nakasa, T.; Ishikawa, M.; Okuhara, A.; Izumi, B.; Deie, M.; Suzuki, O.; Adachi, N.; Ochi, M. MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet Disord. 2010, 11, 209. [Google Scholar] [CrossRef] [Green Version]
- Venetsanopoulou, A.I.; Voulgari, P.V.; Drosos, A.A. Janus kinase versus TNF inhibitors: Where we stand today in rheumatoid arthritis. Expert Rev. Clin. Immunol. 2022, 18, 485–493. [Google Scholar] [CrossRef]
- Donate, P.B.; Alves de Lima, K.; Peres, R.S.; Almeida, F.; Fukada, S.Y.; Silva, T.A.; Nascimento, D.C.; Cecilio, N.T.; Talbot, J.; Oliveira, R.D.; et al. Cigarette smoke induces miR-132 in Th17 cells that enhance osteoclastogenesis in inflammatory arthritis. Proc. Natl. Acad. Sci. USA 2021, 118, e2017120118. [Google Scholar] [CrossRef]
- Calin, G.A.; Sevignani, C.; Dumitru, C.D.; Hyslop, T.; Noch, E.; Yendamuri, S.; Shimizu, M.; Rattan, S.; Bullrich, F.; Negrini, M.; et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 2004, 101, 2999–3004. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Q.; Chen, J.; Feng, R.; Yang, C. Upregulating miR-27a-3p inhibits cell proliferation and inflammation of rheumatoid arthritis synovial fibroblasts through targeting toll-like receptor 5. Exp. Ther. Med. 2021, 22, 1227. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Zhou, Y.; Feng, X.; Ye, S.; Wang, H.; Wu, W.; Tan, W.; Yu, C.; Hu, J.; Zheng, R.; et al. MicroRNA-16 is putatively involved in the NF-κB pathway regulation in ulcerative colitis through adenosine A2a receptor (A2aAR) mRNA targeting. Sci. Rep. 2016, 6, 30824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, E.; Eftekhari, R.; Oraei, M.; Gharib, A.; Bidad, K. MicroRNAs in rheumatoid arthritis. Clin. Rheumatol. 2015, 34, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.K.; You, S.; Yoo, S.A.; Park, D.; Hwang, D.; Cho, C.S.; Kim, W.U. MicroRNA-143 and -145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritis. Exp. Mol. Med. 2017, 49, e363. [Google Scholar] [CrossRef] [Green Version]
- Lai, N.-S.; Yu, H.-C.; Yu, C.-L.; Koo, M.; Huang, H.-B.; Lu, M.-C. Anti-citrullinated protein antibodies suppress let-7a expression in monocytes from patients with rheumatoid arthritis and facilitate the inflammatory responses in rheumatoid arthritis. Immunobiology 2015, 220, 1351–1358. [Google Scholar] [CrossRef]
- Bao, X.; Ma, L.; He, C. MicroRNA-23a-5p regulates cell proliferation, migration and inflammation of TNF-α-stimulated human fibroblast-like MH7A synoviocytes by targeting TLR4 in rheumatoid arthritis. Exp. Ther. Med. 2021, 21, 479. [Google Scholar] [CrossRef]
- Moran-Moguel, M.C.; Petarra-Del Rio, S.; Mayorquin-Galvan, E.E.; Zavala-Cerna, M.G. Rheumatoid Arthritis and miRNAs: A Critical Review through a Functional View. J. Immunol. Res. 2018, 2018, 2474529. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Haupt, S.; Kreuzer, J.T.; Hammitzsch, A.; Proft, F.; Neumann, C.; Leipe, J.; Witt, M.; Schulze-Koops, H.; Skapenko, A. Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2015, 74, 1265–1274. [Google Scholar] [CrossRef]
- Chen, P.; Li, Y.; Li, L.; Yu, Q.; Chao, K.; Zhou, G.; Qiu, Y.; Feng, R.; Huang, S.; He, Y.; et al. Circulating microRNA146b-5p is superior to C-reactive protein as a novel biomarker for monitoring inflammatory bowel disease. Aliment Pharmacol. Ther. 2019, 49, 733–743. [Google Scholar] [CrossRef]
- Schönauen, K.; Le, N.; von Arnim, U.; Schulz, C.; Malfertheiner, P.; Link, A. Circulating and Fecal microRNAs as Biomarkers for Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2018, 24, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.M.; Micolucci, L.; Islam, M.S.; Olivieri, F.; Procopio, A.D. Bioinformatic tools for microRNA dissection. Nucleic Acids Res. 2016, 44, 24–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duroux-Richard, I.; Jorgensen, C.; Apparailly, F. What do microRNAs mean for rheumatoid arthritis? Arthritis Rheum. 2012, 64, 11–20. [Google Scholar] [CrossRef]
- Cheng, H.H.; Yi, H.S.; Kim, Y.; Kroh, E.M.; Chien, J.W.; Eaton, K.D.; Goodman, M.T.; Tait, J.F.; Tewari, M.; Pritchard, C.C.; et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS ONE 2013, 8, e64795. [Google Scholar] [CrossRef] [Green Version]
- Ormseth, M.J.; Solus, J.F.; Sheng, Q.; Ye, F.; Wu, Q.; Guo, Y.; Oeser, A.M.; Allen, R.M.; Vickers, K.C.; Stein, C.M. Development and validation of a microrna panel to differentiate between patients with rheumatoid arthritis, systemic lupus erythematosus, and control subjects. Arthritis Rheumatol. 2018, 70, 2070. [Google Scholar]
- De La Cruz-Castillejos, J.C.; Barbosa-Cobos, R.E.; Becerril-Mendoza, L.T.; Lugo-Zamudio, G.E.; Ramírez-Bello, J.; Matias-Carmona, M.; Alemán-Avila, I. Evaluation of variants in miR-146a, miR-196a-2 and miR-499 and their association with susceptibility for rheumatoid arthritis and its extra-articular manifestations. Ann. Rheum. Dis. 2017, 76, 1133. [Google Scholar]
- Heinicke, F.; Zhong, X.; Flåm, S.T.; Breidenbach, J.; Leithaug, M.; Mæhlen, M.T.; Lillegraven, S.; Aga, A.B.; Norli, E.S.; Mjaavatten, M.D. MicroRNA Expression Differences in Blood-Derived CD19+ B Cells of Methotrexate Treated Rheumatoid Arthritis Patients. Front. Immunol. 2021, 12, 663736. [Google Scholar] [CrossRef]
- Pallio, G.; Mannino, F.; Irrera, N.; Eid, A.H.; Squadrito, F.; Bitto, A. Polymorphisms involved in response to biological agents used in rheumatoid arthritis. Biomolecules 2020, 10, 1203. [Google Scholar] [CrossRef]
- Abdelaziz, M.M.; Gamal, R.M.; Khalifa, F.; Mosad, E.; Sadek, R.; Abd El Razik, D.I.; Kamal, D. MicroRNA146a gene polymorphism in patients with rheumatoid arthritis and the relevant value with disease activity and extra-articular manifestations. Egypt Rheumatol. 2022, 44, 97–101. [Google Scholar] [CrossRef]
- Kádár, G.; Czibula, Á.; Szalay, B.; Nagy, K.; Pusztai, A.; Balog, A.; Monostori, E.; Vásárhelyi, B.; Szekanecz, Z.; Kovács, L. Predictors of disease course after the discontinuation of biologic therapy in rheumatoid arthritis patients with long-term remission. Ann. Rheum. Dis. 2016, 75, 1007. [Google Scholar] [CrossRef]
- Lim, M.-K.; Song, J.; Kim, S.A.; Yoo, J. MicroRNA-1915-3p in serum exosome is associated with disease activity of rheumatoid arthritis in Korea. Ann. Rheum. Dis. 2018, 77, 266. [Google Scholar]
- Schordan, E.; Bilger, G.; Coq, M.; Danilin, S.; Mehdi, M.; Schumacher, M.; Firat, H. MiRNA profiling using HTG-EDGESEQ platform predicts response to anti-TNF alpha therapy in rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 228. [Google Scholar] [CrossRef]
- Jekic, B.; Vejnovic, D.; Milic, V.; Maksimovic, N.; Damnjanovic, T.; Bunjevacki, V.; Novakovic, I.; Lukovic, L.; Damjanov, N.; Krajinovic, M. Association of 63/91 length polymorphism in the DHFR gene major promoter with toxicity of methotrexate in patients with rheumatoid arthritis. Pharmacogenomics 2016, 17, 1687–1691. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-Z.; Zhang, X.-D.; Chen, Y.; Wu, Y.-B. The role of circulating miR-146a in patients with rheumatoid arthritis treated by Tripterygium wilfordii Hook F. Medicine 2017, 96, e6775. [Google Scholar] [CrossRef]
- Liu, Y.; Jeon, S.-M.; Caterina, M.J.; Qu, L. miR-544-3p mediates arthritis pain through regulation of FcγRI. Pain 2021, 163, 1497–1510. [Google Scholar] [CrossRef]
- Lopez-Pedrera, C.; Luque-Tevar, M.; Pérez-Sánchez, C.; Font, P.; Patiño-Trives, A.; Arias de la Rosa, I.; Abalos-Aguilera, M.; Torres-Granados, C.; Romero-Gomez, M.; Ruiz-Vilchez, D.; et al. Circulating Biomolecules as Potential Biomarkers of Early and Establishedresponse to TNFi Therapy in Rheumatoid Arthritis Patients. Arthritis Rheumatol. 2020, 72 (Suppl. S10), 4015–4017. [Google Scholar]
- Ciesla, M.; Kolarz, B.; Dryglewska, M.; Majdan, M. FCER1G gene methylation and mir-106/miR-17 as a new potential epigenetic markers in rheumatoid arthritis. Ann. Rheum. Dis. 2020, 79 (Suppl. S1), 1347–1348. [Google Scholar] [CrossRef]
Author | Year | Country | microRNAs | Patients | Healthy Donors | Sex (% Women) | Age | Autoantibodies Information | Sample |
---|---|---|---|---|---|---|---|---|---|
Luque-Tevar et al. [24] | 2012 | Spain | Whole miRNome | 104 RA patients | 29 healthy donors | Patients: 65.5% Controls: 81.0% | Patients (mean ± SD): 47 ± 17.0 Controls (mean ± SD): 51.2 ± 10.5 | ACPA, IU/mL (mean ± SD): 343.3 ± 762.6 RF, IU/mL (mean ± SD): 112.9 ± 205.8 | Serum from whole blood |
Krintel et al. [26] | 2015 | Denmark | 377 miRNAs | 180 RA patients (OPERA cohort) | None | Treatment group: 63% Placebo group: 69% | Treatment group: 56.2 (25.8–77.6) Placebo group: 54.2 (28.3–76.7) | Treatment group: ACPA positive: 60% RF positive: 70% Placebo group: ACPA positive: 70% RF positive: 74% | Whole blood |
Sode et al. [27] | 2017 | Denmark | 91 miRNAs | 180 RA patients (OPERA cohort) | None | Treatment group: 63% Placebo group: 69% | Treatment group: 56.2 (25.8–77.6) Placebo group: 54.2 (28.3–76.7) | Treatment group: ACPA positive: 60% RF positive: 70% Placebo group: ACPA positive: 70% RF positive: 74% | Plasma from whole blood |
Singh et al. [25] | 2018 | India | miR-132 miR-146a miR-155 let-7a | 94 RA patients | None | 86.2% | Patients (mean ± SD): 40 ± 17 | RF positive: 85% | Whole blood |
Ciechomska et al. [30] | 2018 | Poland | miRNA-5196 | 10 RA patients 13 AS patients | 15 healthy controls | RA patients: 60% AS patients: 76.9% Controls: no data | RA patients: 59 (27–74) AS patients: 50 (32–59) Controls: no data | ACPA positive: 30% RF positive: 90% | Serum from whole blood |
Castro-Villegas et al. [28] | 2015 | Spain | 84 miRNAs. | Discovery cohort: 10 RA patients. Validation cohort: 85 RA patients. | None | Exploratory cohort: 90%. Validation cohort: 87.1% | Exploratory cohort: 54.6 (38–74) Validation cohort: 53.6 (24–72) | ACPA positive: 66.3% RF positive: 70.5% | Serum from whole blood |
Duroux-Richard et al. [34] | 2014 | France | miR-125b | 48 RA patients (32 treated with RTX) | 13 healthy donors | 84.7% | Patients (mean ± SD): 58.8 ± 7 Controls: | ACPA positive: 82.5% | Whole blood and serum |
Cheng et al. [29] | 2020 | China | miR-125a miR-125b | 96 active RA patients | None | 80.2% | Patients (mean ± SD): 58.6 ± 10.0 | ACPA positive: 62.5% RF positive: 71.9% | Plasma from whole blood |
Cuppen et al. [13] | 2016 | Netherlands | 758 miRNAs | RA patients were selected from the BiOCURA cohort. Discovery cohort: 80 RA patients. Validation cohort: 40 RA patients. | None | Discovery cohort: 76.3% Validation cohort: 67.5% | Discovery cohort (mean ± SD): 55 ± 11.0 Validation cohort (mean ± SD): 56 ± 10.0 | Discovery cohort: ACPA positive: 71.3% RF positive: 73.8% Validation cohort: ACPA positive: 60% RF positive: 55% | Serum from whole blood |
Liu et al. [1] | 2019 | China | microRNA array | 92 active RA patients | None | 80% | Patients (mean ± SD): 55.6 ± 8.8 | ACPA positive: 77% RF positive: 82% | Peripheral blood mononuclear cells |
Study | Treatment Groups | Treatment Response | Associated miRNA |
---|---|---|---|
Luque-Tevar et al. [24] | (1) IFX (2) ETN (3) ADA (4) GOL (5) CZP | At 3 months: Good: 35.4% Moderate: 31.7% No response: 32.9% At 6 months: Good: 49.4% Moderate: 20.2% No response: 30.4% | High levels of miR-106a were associated with good response. |
Krintel et al. [26] | (1) ADA (2) Placebo | At 12 months: Good response (ADA): 72% Good response (Placebo): 63% | The combination of high expression of miR-886 with low expression of miR-22 was associated with a good response. |
Sode et al. [27] | (1) MTX-ADA (2) MTX-Saline | At 3 months: Responders (MTX-ADA): 42.7% Responders (MTX-Saline): 24.2% At 12 months: Responders (MTX-ADA): 44.9% Responders (MTX-Saline): 28.6% | High levels of miR-27a were associated with a good response to MTX/ADA. High levels of miR-16 and miR-22 were associated with a good response to MTX |
Singh et al. [25] | (1) MTX | At 4 months: Responders: 77.7% | Low levels of miR-132, miR-146a and miR-155 were associated with treatment response. |
Ciechomska et al. [30] | (1) MTX-ETN (2) MTX-ADA | At 6 months: Responders: 100% | Expression of miR-5196 correlates with the RA state. (Low-size sample) |
Castro-Villegas et al. [28] | (1) IFX (2) ETN (3) ADA | At 6 months: Responders: 89.5% | Expression of miR-23 and miR-223 as biomarkers and predictors of anti-TNFα/DMARDs combination therapy |
Duroux-Richard et al. [34] | (1) RTX | At 3 months: Responders (Good/Moderate): 50%. | High expression of miR-125b was associated with good response in active RA patients. |
Cheng et al. [29] | (1) IFX | At 24 weeks: Responders: 71.7% | miR-125b predicts treatment response at 24 weeks. |
Cuppen et al. [13] | (1) ADA (2) ETN | At 12 months: Responders (ADA): 50% Responders (ETN): 50% | High levels of miR-99a and low levels of miR-143 were associated with ADA response. High levels of miR-23a and miR-197 were associated with ETN response. |
Liu et al. [1] | (1) ETN | At 24 weeks: Responders: 65.2% | miR-146a predictive factor for good response. let-7a predictive factor for a worse response. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mucientes, A.; Lisbona, J.M.; Mena-Vázquez, N.; Ruiz-Limón, P.; Manrique-Arija, S.; Fernández-Nebro, A. miRNA-Mediated Epigenetic Regulation of Treatment Response in RA Patients—A Systematic Review. Int. J. Mol. Sci. 2022, 23, 12989. https://doi.org/10.3390/ijms232112989
Mucientes A, Lisbona JM, Mena-Vázquez N, Ruiz-Limón P, Manrique-Arija S, Fernández-Nebro A. miRNA-Mediated Epigenetic Regulation of Treatment Response in RA Patients—A Systematic Review. International Journal of Molecular Sciences. 2022; 23(21):12989. https://doi.org/10.3390/ijms232112989
Chicago/Turabian StyleMucientes, Arkaitz, Jose Manuel Lisbona, Natalia Mena-Vázquez, Patricia Ruiz-Limón, Sara Manrique-Arija, and Antonio Fernández-Nebro. 2022. "miRNA-Mediated Epigenetic Regulation of Treatment Response in RA Patients—A Systematic Review" International Journal of Molecular Sciences 23, no. 21: 12989. https://doi.org/10.3390/ijms232112989
APA StyleMucientes, A., Lisbona, J. M., Mena-Vázquez, N., Ruiz-Limón, P., Manrique-Arija, S., & Fernández-Nebro, A. (2022). miRNA-Mediated Epigenetic Regulation of Treatment Response in RA Patients—A Systematic Review. International Journal of Molecular Sciences, 23(21), 12989. https://doi.org/10.3390/ijms232112989