3-Aminopyridine Salicylidene: A Sensitive and Selective Chemosensor for the Detection of Cu(II), Al(III), and Fe(III) with Application to Real Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of 3APS
2.2. Absorption Behavior of the 3APS Sensor in Different Solvents
2.3. UV–VIS Studies on 3APS as a Metal Sensor
2.4. UV–VIS Titration of Cu(II) against 3APS
2.5. Job’s Plot for the 3APS-Cu(II) System
2.6. Interference of Other Metal Ions with 3APS–Cu(II)
2.7. Fluorescence of the 3APS–Metals System
2.8. Fluorimetric Titration of 3APS with Al(III)
2.9. Job’s Plot for 3APS–Al(III) Interaction
2.10. Interference of Other Cations on the Interaction of 3APS with Al(III)
2.11. Fluorimetric Titration of 3APS with Fe(III)
2.12. Interference of Other Metal Ions on Interaction of the 3APS–Fe(III) Complex
2.13. Application of 3APS to Detect Aluminum in Cosmetic Products
2.14. Synthesis of 3APS–Alum Crystals
3. Materials and Methods
3.1. Reagents and Instruments
Stock Solutions of the Sensor (3APS)
3.2. Synthesis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Delhaize, E.; Ryan, P.R. Aluminum Toxicity and Tolerance in Plants. Plant Physiol. 1995, 107, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alasfar, R.H.; Isaifan, R.J. Aluminum environmental pollution: The silent killer. Environ. Sci. Pollut. Res. 2021, 28, 44587–44597. [Google Scholar] [CrossRef] [PubMed]
- Edzwald, J.K. Aluminum in Drinking Water: Occurrence, Effects, and Control. J. Am. Water Work. Assoc. 2020, 112, 34–41. [Google Scholar] [CrossRef]
- Van Dyke, N.; Yenugadhati, N.; Birkett, N.J.; Lindsay, J.; Turner, M.C.; Willhite, C.C.; Krewski, D. Association between aluminum in drinking water and incident Alzheimer’s disease in the Canadian Study of Health and Aging cohort. Neurotoxicology 2021, 83, 157–165. [Google Scholar] [CrossRef]
- Bast-pettersen, R. Neuropsychological function among workers exposed to aluminum-a mini-review. Ind. Health 2022, 60, 97–105. [Google Scholar] [CrossRef]
- McClure, E.S.; Vasudevan, P.; DeBono, N.; Robinson, W.R.; Marshall, S.W.; Richardson, D. Cancer and noncancer mortality among aluminum smelting workers in Badin, North Carolina. Am. J. Ind. Med. 2020, 63, 755–765. [Google Scholar] [CrossRef]
- Darbre, P.D. Aluminium, antiperspirants and breast cancer. J. Inorg. Biochem. 2005, 99, 1912–1919. [Google Scholar] [CrossRef]
- Cirovic, A.; Cirovic, A. Aluminum bone toxicity in infants may be promoted by iron deficiency. J. Trace Elem. Med. Biol. 2022, 71, 126941. [Google Scholar] [CrossRef]
- Jalili, P.; Huet, S.; Lanceleur, R.; Jarry, G.; Le Hegarat, L.; Nesslany, F.; Hogeveen, K.; Fessard, V. Genotoxicity of Aluminum and Aluminum Oxide Nanomaterials in Rats Following Oral Exposure. Nanomaterials 2020, 10, 305. [Google Scholar] [CrossRef] [Green Version]
- Shang, N.; Zhang, P.; Wang, S.; Chen, J.P.; Fan, R.; Chen, J.; Huang, T.; Wang, Y.H.; Duncan, J.; Zhang, L.; et al. Aluminum-Induced Cognitive Impairment andPI3K/Akt/mTORSignaling Pathway Involvement in Occupational Aluminum Workers. Neurotox. Res. 2020, 38, 344–358. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, R.B.; Barreto, F.C.; Nunes, L.A.; Custodio, M.R. Aluminum Intoxication in Chronic Kidney Disease. J. Bras. De Nefrol. 2021, 43, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.H.M.; Hercz, G.; Kandel, R.; Grynpas, M.D. Association between fluoride, magnesium, aluminum and bone quality in renal osteodystrophy. Bone 2004, 34, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Pierides, A.M.; Edwards, W.G., Jr.; Cullum, U.X., Jr.; McCall, J.T.; Ellis, H.A. Hemodialysis encephalopathy with osteomalacic fractures and muscle weakness. Kidney Int. 1980, 18, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Health Canada. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document—Aluminum. Available online: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality.html (accessed on 1 October 2022).
- USEPA. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals. Available online: https://www.epa.gov/sdwa/drinking-water-regulations-and-contaminants (accessed on 1 October 2022).
- Rossi, L.; Lombardo, M.F.; Ciriolo, M.R.; Rotilio, G. Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance. Neurochem. Res. 2004, 29, 493–504. [Google Scholar] [CrossRef]
- Osredkar, J.; Sustar, N. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J. Clin. Toxicol. 2011, 3, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Rehman, M.; Liu, L.J.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D.X. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. 2019, 26, 18003–18016. [Google Scholar] [CrossRef]
- Taylor, A.A.; Tsuji, J.S.; Garry, M.R.; McArdle, M.E.; Goodfellow, W.L.; Adams, W.J.; Menzie, C.A. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environ. Manag. 2020, 65, 131–159. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Pandita, S.; Sidhu, G.P.S.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810. [Google Scholar] [CrossRef]
- Isidori, A.; Borin, L.; Elli, E.; Latagliata, R.; Martino, B.; Palumbo, G.; Pilo, F.; Loscocco, F.; Visani, G.; Cianciulli, P. Iron toxicity—Its effect on the bone marrow. Blood Rev. 2018, 32, 473–479. [Google Scholar] [CrossRef]
- Núñez, M.T.; Urrutia, P.; Mena, N.; Aguirre, P.; Tapia, V.; Salazar, J. Iron toxicity in neurodegeneration. BioMetals 2012, 25, 761–776. [Google Scholar] [CrossRef]
- Torti, S.V.; Torti, F.M. Iron: The cancer connection. Mol. Asp. Med. 2020, 75, 100860. [Google Scholar] [CrossRef] [PubMed]
- Mascitelli, L.; Pezzetta, F.; Goldstein, M.R. Diabetes, cancer and iron. Diabetologia 2010, 53, 2071–2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brotanek, J.M.; Gosz, J.; Weitzman, M.; Flores, G. Iron deficiency in early childhood in the United States: Risk factors and racial/ethnic disparities. Pediatrics 2007, 120, 568–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoes, M.F.; Beverborg, N.G.; Kijlstra, J.D.; Kuipers, J.; Swinkels, D.; Giepmans, B.N.G.; Rodenburg, R.J.; van Veldhuisen, D.J.; de Boer, R.A.; van der Meer, P. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur. J. Heart Fail. 2018, 20, 910–919. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2016, 387, 907–916. [Google Scholar] [CrossRef]
- Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
- Goshisht, M.K.; Patra, G.K.; Tripathi, N. Fluorescent Schiff base sensors as a versatile tool for metal ion detection: Strategies, mechanistic insights, and applications. Mater. Adv. 2022, 3, 2612–2669. [Google Scholar] [CrossRef]
- Yan, Z.; Cai, Y.; Zhang, J.; Zhao, Y. Fluorescent sensor arrays for metal ions detection: A review. Measurement 2022, 187, 110355. [Google Scholar] [CrossRef]
- Berhanu, A.L.; Gaurav; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Kumar, V.; Kim, K.H. A review of the applications of Schiff bases as optical chemical sensors. Trac-Trends Anal. Chem. 2019, 116, 74–91. [Google Scholar] [CrossRef]
- Banerjee, S.; Brandão, P.; Saha, A. A robust fluorescent chemosensor for aluminium ion detection based on a Schiff base ligand with an azo arm and application in a molecular logic gate. RSC Adv. 2016, 6, 101924–101936. [Google Scholar] [CrossRef]
- Arduini, M.; Felluga, F.; Mancin, F.; Rossi, P.; Tecilla, P.; Tonellato, U.; Valentinuzzi, N. Aluminium fluorescence detection with a FRET amplified chemosensor. Chem. Commun. 2003, 13, 1606–1607. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Saikia, G.; Iyer, P.K. Aqueous polyfluorene probe for the detection and estimation of Fe3+ and inorganic phosphate in blood serum. J. Mater. Chem. 2011, 21, 2502–2507. [Google Scholar] [CrossRef]
- Gao, L.; Wang, Y.; Wang, J.; Huang, L.; Shi, L.; Fan, X.; Zou, Z.; Yu, T.; Zhu, M.; Li, Z. A Novel ZnII-Sensitive Fluorescent Chemosensor Assembled within Aminopropyl-Functionalized Mesoporous SBA-15. Inorg. Chem. 2006, 45, 6844–6850. [Google Scholar] [CrossRef]
- Guo, Z.-Q.; Chen, W.-Q.; Duan, X.-M. Highly Selective Visual Detection of Cu(II) Utilizing Intramolecular Hydrogen Bond-Stabilized Merocyanine in Aqueous Buffer Solution. Org. Lett. 2010, 12, 2202–2205. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhou, Y.; Yoon, J.; Kim, Y.; Kim, S.J.; Kim, J.S. Naphthalimide Modified Rhodamine Derivative: Ratiometric and Selective Fluorescent Sensor for Cu2+ Based on Two Different Approaches. Org. Lett. 2010, 12, 3852–3855. [Google Scholar] [CrossRef]
- Kim, S.H.; Choi, H.S.; Kim, J.; Lee, S.J.; Quang, D.T.; Kim, J.S. Novel Optical/Electrochemical Selective 1,2,3-Triazole Ring-Appended Chemosensor for the Al3+ Ion. Org. Lett. 2010, 12, 560–563. [Google Scholar] [CrossRef]
- Sen, S.; Mukherjee, T.; Chattopadhyay, B.; Moirangthem, A.; Basu, A.; Marek, J.; Chattopadhyay, P. A water soluble Al3+ selective colorimetric and fluorescent turn-on chemosensor and its application in living cell imaging. Analyst 2012, 137, 3975–3981. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.-W.; Peng, Y. A Selective and Ratiometric Bifunctional Fluorescent Probe for Al3+ Ion and Proton. Org. Lett. 2012, 14, 3420–3423. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, S.Y.; Kang, J.H.; Kim, M.S.; Kim, A.; Kim, C. Colorimetric detection of Fe3+/2+ and fluorescent detection of Al3+ in aqueous media: Applications and DFT calculations. J. Coord. Chem. 2018, 71, 2401–2414. [Google Scholar] [CrossRef]
- Boonkitpatarakul, K.; Wang, J.; Niamnont, N.; Liu, B.; McDonald, L.; Pang, Y.; Sukwattanasinitt, M. Novel Turn-On Fluorescent Sensors with Mega Stokes Shifts for Dual Detection of Al3+ and Zn2+. ACS Sens. 2016, 1, 144–150. [Google Scholar] [CrossRef]
- Smith, H.E.; Cook, S.L.; Warren, M.E. Optically Active Amines. II. The Optical Rotatory Dispersion Curves of the N-Benzylidene and Substituted N-Benzylidene Derivatives of Some Open-Chain Primary Amines1,2. J. Org. Chem. 1964, 29, 2265–2272. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, W.; Yang, C. Fluorescent 1:2 demultiplexer and half-subtractor based on the hydrolysis of N-salicylidene-3-aminopyridine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 117, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Al-Allaf, T.A.K.; Sheet, A.Z.M. Platinum group metal Schiff base complexes—I. Platinum complexes. Polyhedron 1995, 14, 239–248. [Google Scholar] [CrossRef]
- Cimerman, Z.; Kiralj, R.; Galić, N. The structure and tautomeric properties of 2-(3-pyridylmethyliminomethyl)phenol. J. Mol. Struct. 1994, 323, 7–14. [Google Scholar] [CrossRef]
- Lohani, C.R.; Kim, J.-M.; Chung, S.-Y.; Yoon, J.; Lee, K.-H. Colorimetric and fluorescent sensing of pyrophosphate in 100% aqueous solution by a system comprised of rhodamine B compound and Al3+ complex. Analyst 2010, 135, 2079–2084. [Google Scholar] [CrossRef]
- USEPA. National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 2 October 2022).
- Wang, D.; Zheng, X.-J. A colorimetric chemosensor for Cu(II) ion in aqueous medium. Inorg. Chem. Commun. 2017, 84, 178–181. [Google Scholar] [CrossRef]
- Zhao, L.; Sui, D.; Wang, Y. Luminescent properties of N-salicylidene-3-aminopyridine and selective sensing behavior to Ba2+. J. Lumines. 2015, 162, 81–86. [Google Scholar] [CrossRef]
- Ono, A.; Togashi, H. Highly Selective Oligonucleotide-Based Sensor for Mercury(II) in Aqueous Solutions. Angew. Chem. Int. Ed. 2004, 43, 4300–4302. [Google Scholar] [CrossRef]
- Tsui, Y.-K.; Devaraj, S.; Yen, Y.-P. Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: A new selective chromogenic and fluorogenic sensor for cyanide ion. Sens. Actuators B Chem. 2012, 161, 510–519. [Google Scholar] [CrossRef]
- Li, L.; Xiang, H.; Zhou, X.; Li, M.; Wu, D. Detection of Fe3+ and Al3+ by Test Paper. J. Chem. Educ. 2012, 89, 559–560. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hijji, Y.M.; Rajan, R.; Shraim, A.M. 3-Aminopyridine Salicylidene: A Sensitive and Selective Chemosensor for the Detection of Cu(II), Al(III), and Fe(III) with Application to Real Samples. Int. J. Mol. Sci. 2022, 23, 13113. https://doi.org/10.3390/ijms232113113
Hijji YM, Rajan R, Shraim AM. 3-Aminopyridine Salicylidene: A Sensitive and Selective Chemosensor for the Detection of Cu(II), Al(III), and Fe(III) with Application to Real Samples. International Journal of Molecular Sciences. 2022; 23(21):13113. https://doi.org/10.3390/ijms232113113
Chicago/Turabian StyleHijji, Yousef M., Rajeesha Rajan, and Amjad M. Shraim. 2022. "3-Aminopyridine Salicylidene: A Sensitive and Selective Chemosensor for the Detection of Cu(II), Al(III), and Fe(III) with Application to Real Samples" International Journal of Molecular Sciences 23, no. 21: 13113. https://doi.org/10.3390/ijms232113113
APA StyleHijji, Y. M., Rajan, R., & Shraim, A. M. (2022). 3-Aminopyridine Salicylidene: A Sensitive and Selective Chemosensor for the Detection of Cu(II), Al(III), and Fe(III) with Application to Real Samples. International Journal of Molecular Sciences, 23(21), 13113. https://doi.org/10.3390/ijms232113113