Effects of Exogenous α-Naphthaleneacetic Acid and 24-Epibrassinolide on Fruit Size and Assimilate Metabolism-Related Sugars and Enzyme Activities in Giant Pumpkin
Abstract
:1. Introduction
2. Results
2.1. Effects of NAA and EBR on Giant Pumpkin-Fruit Weight
2.2. Effects of NAA and EBR on the Photosynthetic Characteristics of Giant Pumpkin
2.3. Effects of NAA and EBR on Sugar-Metabolism-Related Gene Expression and Enzyme Activities in Giant Pumpkin Leaves
2.4. Effect of NAA and EBR on Soluble Sugar Content in Giant Pumpkin Leaves
2.5. Effects of NAA and EBR on Soluble Sugar Content in the Phloem Sap of Giant Pumpkin Peduncles
2.6. Effects of NAA and EBR on Alkaline α-Galactosidase in Giant Pumpkin Fruits
2.7. Effects of NAA and EBR on Soluble Sugar Content in Giant Pumpkin Fruit
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Cultivation
4.2. Experimental Design
4.2.1. Design of NAA and EBR Combination Treatments
4.2.2. NAA and EBR Period and Frequency of Application
4.3. Sample Collection
4.4. Measurement Methods
4.4.1. Determination of Single-Fruit Weight
4.4.2. Determination of Photosynthetic Characteristics
4.4.3. Determination of the Gene Expression of Sugar-Metabolism-Related Enzyme Encoding Genes
4.4.4. Determination of Sugar-Metabolism-Related Enzyme Activities
4.4.5. Extraction and Determination of Soluble Sugar
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miao, M.M.; Zhang, Z.P. Carbohydrate Metabolism of Cucurbits. In Handbook of Cucurbits Growth, Cultural Practices, and Physiology; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 69–93. [Google Scholar]
- Langevin, D. How-to-Grow World Class Giant Pumpkins III; Annedawn Publishing: Norton, MA, USA, 2003; pp. 80–82. [Google Scholar]
- Sanjur, O.I.; Piperno, D.R.; Andres, T.C. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from mitochondrial gene: Implications for crop plant evolution and areasof origin. Proc. Natl. Acad. Sci. USA 2002, 99, 535–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, L.; Chen, C.; Wang, M.; Shen, Y.F.; Yang, Y.T.; Wang, A.H.; Dai, H.B.; Zhang, Z.P.; Miao, M.M. Comparative analysis of assimilate synthesis, translocation and partitioning between two Cucurbita maxima cultivars “Atlantic giant” and “Hubbard”. Sci. Hortic. 2021, 289, 11041. [Google Scholar] [CrossRef]
- Savage, J.A.; Haines, D.F.; Holbrook, N.M. The making of giant pumpkins: How selective breeding changed the phloem of Cucurbita maxima from source to sink. Plant Cell Environ. 2015, 38, 1543–1554. [Google Scholar] [CrossRef]
- Goldman, A. The Compleat Squash: A Passionate Grower’s Guide to Pumpkins, Squash, and Gourds; Artisan: NewYork, NY, USA, 2004; pp. 15–24. [Google Scholar]
- Hu, D.L.; Richards, P.; Alexeev, A. The growth of giant pumpkins: How extreme weight influences shape. Int. J. NonLin. Mech. 2011, 46, 637–647. [Google Scholar] [CrossRef]
- Yu, J.Q.; Huang, L.F.; Hu, W.H.; Zhou, Y.H.; Mao, W.H.; Ye, S.F.; Nogués, S. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J. Exp. Bot. 2004, 55, 1135–1143. [Google Scholar] [CrossRef]
- Vanneste, S.; Friml, J. Auxin: A trigger for change in plant development. Cell 2009, 136, 1005–1016. [Google Scholar] [CrossRef]
- Benedetto, A.D.; Galmarini, C.; Tognetti, J. Effects of combined or single exogenous auxin and/or cytokinin applications on growth and leaf area development in Epipremnum aureum. J. Hortic. Sci. Biotechnol. 2015, 90, 643–654. [Google Scholar] [CrossRef]
- Huang, Y.S.; Dong, H.; Mou, C.L.; Wang, P.; Hao, Q.X.; Zhang, M.; Wu, H.M.; Zhang, F.L.; Ma, T.F.; Miao, R.; et al. Ribonuclease H-like gene Small Grain2 regulates grain size in rice through the brassinosteroid signaling pathway. J. Integr. Plant Biol. 2022; first published. [Google Scholar]
- Prisca, C.; Peter, N. Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol. 2005, 137, 939–948. [Google Scholar]
- Gill, P.; Bal, J.S. Effect of growth regulator and nutrients spray on control of fruit drop, fruit size and quality of ber under sub-montane zone of Punjab. J. Hortic. Sci. 2009, 4, 161–163. [Google Scholar]
- Stern, R.A.; Flaishman, M.; Ben-Arie, R. Effect of synthetic auxins on fruit size of five cultivars of Japanese plum (Prunus salicina Lindl.). Sci. Hortic. 2009, 112, 304–309. [Google Scholar] [CrossRef]
- Singh, K.; Sharma, M.; Singh, S. Effect of Plant Growth Regulators on Fruit Yield and Quality of Guava (Psidium guajava) cv. Allahabad Safeda. J. Pure Appl. Microbiol. 2017, 11, 1149–1154. [Google Scholar] [CrossRef]
- Milić, B.; Tarlanović, J.; Keserović, Z.; Magazin, N.; Miodragović, M.; Popara, G. Bioregulators can improve fruit size, yield and plant growth of northern highbush blueberry (Vaccinium corymbosum L.). Sci. Hortic. 2018, 235, 214–220. [Google Scholar] [CrossRef]
- Janeczko, A.; Biesaga-Koscielniak, J.; Oklestkova, J.; Filek, M.; Dziurka, M.; Szarek-Lukaszewska, G.; Koscielniak, J. Role of 24-Epibrassinolide in wheat production: Physiological effects and uptake. J. Agron. Crop Sci. 2010, 196, 311–321. [Google Scholar] [CrossRef]
- Pan, L.; Wang, M.; Yang, Y.T.; Chen, C.; Dai, H.B.; Zhang, Z.P.; Hua, B.; Miao, M.M. Whole-genome resequencing identified QTLs, candidate genes and Kompetitive Allele-Specific PCR markers associated with the large fruit of Atlantic Giant (Cucurbita maxima). Front. Plant Sci. 2022, 13, 942004. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, L.M. Fruit development and ripening. Plant Growth Dev. 2002, 413–429. [Google Scholar]
- Liang, P.; Xing, X.H.; Zhou, Q.; Han, L.L.; Tian, Y.D.; Zhang, G.Z.; Xing, H.; Jiang, H.D. Effect of NAA on growth and photosynthetic characteristic of soybean seedling under drought and re-watering. Soybean Sci. 2011, 30, 50–55. [Google Scholar]
- Shi, L.; Yuan, T.T.; Xu, Z.Q.; Xie, Y.F. Effects of naphthylacetic acid on photosynthetic characteristics of Pseudostellaria heterophylla. Acta Agric. Univ. Jiangxiensi 2021, 43, 253–260. [Google Scholar]
- Brenner, M.L. The role of hormones in photosynthate partitioning and seed filling. In Plant Hormones and Their Role in Plant Growth and Development; Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; New York, NY, USA; London, UK, 1987; pp. 474–493. [Google Scholar]
- Darussalam; Cole, M.A.; Patrick, J.W. Auxin control of photoassimilate transport to and within developing grains of wheat. Aust. J. Plant Physiol. 1998, 25, 69–77. [Google Scholar] [CrossRef]
- Zhang, J.J.; Gu, H.; Dai, H.B.; Zhang, Z.P.; Miao, M.M. Alternative polyadenylation of the stacyose synthase gene mediates source-sink regulation in cucumber. J. Plant Physiol. 2020, 245, 153111. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, A.A.; Pharr, D.M.; Madore, M.A. Cucurbits. In Photoassimilate Distribution in Plants and Crops; Zamski, E., Schaffer, A.A., Eds.; Marcel Dekker: New York, NY, USA, 1996; pp. 729–957. [Google Scholar]
- Braun, D.M.; Wang, L.; Ruan, Y.L. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 2014, 65, 1713–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Yu, Y.C.; Hu, Y.X.; Ma, L.; Lin, Y.; Wu, Y.; Wang, Z.; Wang, Z.T.; Bai, J.Q.; Ding, Y.F.; et al. Auxin-mediated regulation of dorsal vascular cell development may be responsible for sucrose phloem unloading in large panicle rice. Front. Plant Sci. 2021, 12, 630997. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Trieu, A.; Radhakrishnan, P.; Kwok, S.F.; Harris, S.; Zhang, K.; Wang, J.L.; Wan, J.; Zhai, H.Q.; Takatsuto, S. Brassinosteroids regulate grain filling in rice. Plant Cell 2008, 20, 2130–2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Xi, Z.M.; Zhang, H.; Zhang, C.J.; Zhang, Z.W. Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera ‘Cabernet Sauvignon’ berries during véraison. Plant Physiol. Biochem. 2015, 94, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Clouse, S.D.; Sasse, J.M. Brassinosteroids: Essential regulators of plant growth and development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 427–451. [Google Scholar] [CrossRef] [Green Version]
- Holá, D. Brassinosteroids and photosynthesis. In Brassinosteroids: A Class of Plant Hormone; Hayat, S., Ahmad, A., Eds.; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; New York, NY, USA; London, UK, 2011; Volume 6, pp. 143–192. [Google Scholar]
- Ogweno, J.O.; Song, X.S.; Shi, K.; Hu, W.H.; Miao, W.H.; Zhou, Y.H.; Yu, J.Q.; Nogues, S. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul. 2008, 27, 49–57. [Google Scholar] [CrossRef]
- Li, J.; Yang, P.; Kang, J.G.; Gan, Y.T.; Yu, J.H.; Calderón-Urrea, A.; Lyu, J.; Zhang, G.B.; Feng, Z.; Xie, J.M. Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-epibrassinolide in response to chilling. Front. Plant Sci. 2016, 29, 1281. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.J.; Huang, Y.Y.; Wang, L.; Huang, L.F.; Yu, Y.L.; Zhou, Y.H.; Yu, J.Q. Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pestic. Biochem. Phys. 2006, 86, 42–48. [Google Scholar] [CrossRef]
- Li, M.; Shu, S.; Guo, S.R.; Du, J.; Wang, J.W. Effect of 24-Brassinolides on photosynthetic characteristics and fruit quality of cherry tomato. Acta. Bot. Boreal. Occident. Sin. 2015, 35, 0138–0145. [Google Scholar]
- Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7, 235–246. [Google Scholar] [CrossRef]
- Kim, S.K.; Chang, S.C.; Lee, E.J.; Chung, W.S.; Kim, Y.S.; Hwang, S.; Lee, J.S. Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol. 2000, 123, 997–1004. [Google Scholar] [CrossRef] [Green Version]
- Xi, Z.M.; Zhang, Z.W.; Huo, S.S.; Luan, L.Y.; Gao, X.; Ma, L.N.; Fang, Y.L. Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chem. 2013, 141, 3056–3065. [Google Scholar] [CrossRef]
- An, L.; Ma, J.W.; Qin, D.M.; Wang, H.; Yuan, Y.L.; Li, H.L.; Na, R.S.; Wu, X.J. Novel strategy to decipher the regulatory mechanism of 1-naphthaleneacetic acid in strawberry maturation. J. Agric. Food Chem. 2019, 67, 1292–1301. [Google Scholar] [CrossRef]
- Xu, A.D. Research advance in the toxicity and residue of plant growth regulator in vegetables in China. China Veg. 2009, 4, 1–6. [Google Scholar]
- Song, W.; Wang, Q. Comparison and analysis on the maximum residue limits for plant growth regulators in foodstuffs. Chin. J. Pestic. Sci. 2021, 23, 226–236. [Google Scholar]
- Guan, W.B.; Xu, P.J.; Wang, K.; Song, Y.; Zhang, H.Y. Determination and study on dissipation of 1-naphthylacetic acid in garlic and soil using high performance liquid chromatography–tandem mass spectrometry. Food. Chem. Toxicol. 2011, 49, 2869–2874. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.K.; Zang, Y.L.; Li, M.; Li, T.; Zhou, J.; An, L.; Ma, J.W.; Song, J.; Wu, X.J. Risk assessment of naphthylacetic acid residues in cucumber and dietaryIntake. Pestic. Sci. Adm. 2022, 43, 54–60. [Google Scholar]
- Zhu, L.; Chen, H.P.; Chai, Y.F.; Ma, G.C.; Hao, Z.X.; Wang, C.; Liu, X.; Lu, C.Y. Determination of 2,4-epibrassinolide in different teas by ultra performance liquid chromatography coupled to tandem mass spectrometry with dispersive solid phase extraction. J. Tea Sci. 2018, 8, 589–594. [Google Scholar]
- Mitchell, D.E.; Madore, M.A. Patterns of assimilate production and translocation in muskmelon (Cucumis melo L.): II. Low Temperature Effects. J. Plant Physiol. 1992, 99, 966–971. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhuo, J.J.; Jing, Y.; Liu, X.; Wang, X.F. Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development. J. Plant Physiol. 2011, 168, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.H.; Yao, W.; Song, Y.; Liu, W.C.; Wang, Z.Z. Molecular characterization and expression of three galactinol synthase genes that confer stress tolerance in Salvia miltiorrhiza. J. Plant Physiol. 2012, 169, 1838–1848. [Google Scholar] [CrossRef]
- Miao, M.M.; Xu, X.F.; Chen, X.H.; Xue, L.B.; Cao, B.S. Cucumber carbohydrate metabolism and translocation under chilling night temperature. J. Plant Physiol. 2007, 164, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Zhang, Z.; Miao, M.M. SNF1-related protein kinase (SnRK) 1 involved in the regulation of raffinose family oligosaccharides metabolism in cucumber (Cucumis sativus L.) calli. J. Plant Growth Regul. 2016, 35, 851–864. [Google Scholar] [CrossRef]
Treatments | NAA mg∙L−1 | EBR mg∙L−1 | Treatments | NAA mg∙L−1 | EBR mg∙L−1 |
---|---|---|---|---|---|
Control | 0 | 0 | T8 | 20 | 0 |
T1 | 0 | 0.5 | T9 | 20 | 0.5 |
T2 | 0 | 1.0 | T10 | 20 | 1.0 |
T3 | 0 | 1.5 | T11 | 20 | 1.5 |
T4 | 10 | 0 | T12 | 30 | 0 |
T5 | 10 | 0.5 | T13 | 30 | 0.5 |
T6 | 10 | 1.0 | T14 | 30 | 1.0 |
T7 | 10 | 1.5 | T15 | 30 | 1.5 |
Treatments | Times | Application Period | ||||
---|---|---|---|---|---|---|
20 d after Planting | 0 DPA | 10 DPA | 20 DPA | 30 DPA | ||
Control | 0 | — | — | — | — | — |
T16 | 2 | — | S | — | S | — |
T17 | 3 | — | S | S | S | — |
T18 | 4 | S | S | S | S | — |
T19 | 5 | S | S | S | S | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Wu, X.-M.; Pan, L.; Yang, Y.-T.; Dai, H.-B.; Hua, B.; Miao, M.-M.; Zhang, Z.-P. Effects of Exogenous α-Naphthaleneacetic Acid and 24-Epibrassinolide on Fruit Size and Assimilate Metabolism-Related Sugars and Enzyme Activities in Giant Pumpkin. Int. J. Mol. Sci. 2022, 23, 13157. https://doi.org/10.3390/ijms232113157
Chen C, Wu X-M, Pan L, Yang Y-T, Dai H-B, Hua B, Miao M-M, Zhang Z-P. Effects of Exogenous α-Naphthaleneacetic Acid and 24-Epibrassinolide on Fruit Size and Assimilate Metabolism-Related Sugars and Enzyme Activities in Giant Pumpkin. International Journal of Molecular Sciences. 2022; 23(21):13157. https://doi.org/10.3390/ijms232113157
Chicago/Turabian StyleChen, Chen, Xuan-Min Wu, Liu Pan, Ya-Ting Yang, Hai-Bo Dai, Bing Hua, Min-Min Miao, and Zhi-Ping Zhang. 2022. "Effects of Exogenous α-Naphthaleneacetic Acid and 24-Epibrassinolide on Fruit Size and Assimilate Metabolism-Related Sugars and Enzyme Activities in Giant Pumpkin" International Journal of Molecular Sciences 23, no. 21: 13157. https://doi.org/10.3390/ijms232113157
APA StyleChen, C., Wu, X. -M., Pan, L., Yang, Y. -T., Dai, H. -B., Hua, B., Miao, M. -M., & Zhang, Z. -P. (2022). Effects of Exogenous α-Naphthaleneacetic Acid and 24-Epibrassinolide on Fruit Size and Assimilate Metabolism-Related Sugars and Enzyme Activities in Giant Pumpkin. International Journal of Molecular Sciences, 23(21), 13157. https://doi.org/10.3390/ijms232113157