Biomarkers of Bladder Cancer: Cell-Free DNA, Epigenetic Modifications and Non-Coding RNAs
Abstract
:1. Introduction
2. Cell-Free DNA
3. Epigenetic Modifications
4. Non-Coding RNA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Kaseb, H.; Aeddula, N.R. Bladder Cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Schrier, B.P.; Hollander, M.P.; van Rhijn, B.W.G.; Kiemeney, L.A.L.M.; Alfred Witjes, J. Prognosis of Muscle-Invasive Bladder Cancer: Difference between Primary and Progressive Tumours and Implications for Therapy. Eur. Urol. 2004, 45, 292–296. [Google Scholar] [CrossRef]
- Cho, K.S.; Seo, H.K.; Joung, J.Y.; Park, W.S.; Ro, J.Y.; Han, K.S.; Chung, J.; Lee, K.H. Lymphovascular Invasion in Transurethral Resection Specimens as Predictor of Progression and Metastasis in Patients with Newly Diagnosed T1 Bladder Urothelial Cancer. J. Urol. 2009, 182, 2625–2631. [Google Scholar] [CrossRef]
- Fukumoto, K.; Kikuchi, E.; Mikami, S.; Miyajima, A.; Oya, M. Lymphovascular Invasion Status at Transurethral Resection of Bladder Tumors May Predict Subsequent Poor Response of T1 Tumors to Bacillus Calmette-Guérin. BMC Urol 2016, 16, 5. [Google Scholar] [CrossRef] [Green Version]
- Chair, R.; Bartoletti, R.; Johansen, T.; Bonkat, G.; Bruyère, F.; Cek, M.; Grabe, M.; Tenke, P.; Wagenlehner, F.; Associates, B.; et al. European Association of Urology Guidelines—Urological Infections; EAU: Arnhem, The Netherlands, 2016; ISBN 978-94-92671-07-3. [Google Scholar]
- Ljungberg, B.; Albiges, L.; Bedke, J.; Bex, A.; Capitanio, U.; Giles, R.; Hora, M.; Klatte, T.; Lam, T.; Marconi, L.; et al. European Association of Urology Guidelines on Renal Cell Carcinoma 2021; EAU: Arnhem, The Netherlands, 2021; ISBN 978-94-92671-13-4. [Google Scholar]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer Incidence and Mortality Patterns in Europe: Estimates for 40 Countries and 25 Major Cancers in 2018. Eur. J. Cancer 2018, 103, 356–387. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society | Cancer Facts & Statistics. Available online: http://cancerstatisticscenter.cancer.org/ (accessed on 12 September 2022).
- Burger, M.; Catto, J.W.F.; Dalbagni, G.; Grossman, H.B.; Herr, H.; Karakiewicz, P.; Kassouf, W.; Kiemeney, L.A.; La Vecchia, C.; Shariat, S.; et al. Epidemiology and Risk Factors of Urothelial Bladder Cancer. Eur. Urol. 2013, 63, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, C.; Bertuccio, P.; Chatenoud, L.; Negri, E.; La Vecchia, C.; Levi, F. Trends in Mortality From Urologic Cancers in Europe, 1970–2008. Eur. Urol. 2011, 60, 1–15. [Google Scholar] [CrossRef]
- Chavan, S.; Bray, F.; Lortet-Tieulent, J.; Goodman, M.; Jemal, A. International Variations in Bladder Cancer Incidence and Mortality. Eur. Urol. 2014, 66, 59–73. [Google Scholar] [CrossRef]
- Cambier, S.; Sylvester, R.J.; Collette, L.; Gontero, P.; Brausi, M.A.; van Andel, G.; Kirkels, W.J.; Silva, F.C.D.; Oosterlinck, W.; Prescott, S.; et al. EORTC Nomograms and Risk Groups for Predicting Recurrence, Progression, and Disease-Specific and Overall Survival in Non-Muscle-Invasive Stage Ta-T1 Urothelial Bladder Cancer Patients Treated with 1-3 Years of Maintenance Bacillus Calmette-Guérin. Eur. Urol. 2016, 69, 60–69. [Google Scholar] [CrossRef]
- Babjuk, M.; Burger, M.; Compérat, E.M.; Gontero, P.; Mostafid, A.H.; Palou, J.; van Rhijn, B.W.G.; Rouprêt, M.; Shariat, S.F.; Sylvester, R.; et al. European Association of Urology Guidelines on Non-Muscle-Invasive Bladder Cancer (TaT1 and Carcinoma In Situ)—2019 Update. Eur. Urol. 2019, 76, 639–657. [Google Scholar] [CrossRef]
- Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Compérat, E.M.; Cowan, N.C.; Gakis, G.; Hernández, V.; Linares Espinós, E.; Lorch, A.; Neuzillet, Y.; et al. European Association of Urology Guidelines on Muscle-Invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur. Urol. 2021, 79, 82–104. [Google Scholar] [CrossRef] [PubMed]
- Cathomas, R.; Lorch, A.; Bruins, H.M.; Compérat, E.M.; Cowan, N.C.; Efstathiou, J.A.; Fietkau, R.; Gakis, G.; Hernández, V.; Espinós, E.L.; et al. The 2021 Updated European Association of Urology Guidelines on Metastatic Urothelial Carcinoma. Eur. Urol. 2022, 81, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Compérat, E.; Larré, S.; Roupret, M.; Neuzillet, Y.; Pignot, G.; Quintens, H.; Houéde, N.; Roy, C.; Durand, X.; Varinot, J.; et al. Clinicopathological Characteristics of Urothelial Bladder Cancer in Patients Less than 40 Years Old. Virchows Arch. 2015, 466, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Boorjian, S.A.; Chou, R.; Clark, P.E.; Daneshmand, S.; Konety, B.R.; Pruthi, R.; Quale, D.Z.; Ritch, C.R.; Seigne, J.D.; et al. Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline. J. Urol. 2016, 196, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, R.J.; van der Meijden, A.P.M.; Oosterlinck, W.; Witjes, J.A.; Bouffioux, C.; Denis, L.; Newling, D.W.W.; Kurth, K. Predicting Recurrence and Progression in Individual Patients with Stage Ta T1 Bladder Cancer Using EORTC Risk Tables: A Combined Analysis of 2596 Patients from Seven EORTC Trials. Eur. Urol. 2006, 49, 466–477, discussion 475–477. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.P.; Lieskovsky, G.; Cote, R.; Groshen, S.; Feng, A.C.; Boyd, S.; Skinner, E.; Bochner, B.; Thangathurai, D.; Mikhail, M.; et al. Radical Cystectomy in the Treatment of Invasive Bladder Cancer: Long-Term Results in 1054 Patients. J. Clin. Oncol. 2001, 19, 666–675. [Google Scholar] [CrossRef]
- Shephard, E.A.; Stapley, S.; Neal, R.D.; Rose, P.; Walter, F.M.; Hamilton, W.T. Clinical Features of Bladder Cancer in Primary Care. Br. J. Gen. Pract. 2012, 62, e598–e604. [Google Scholar] [CrossRef] [Green Version]
- Cumberbatch, M.G.K.; Jubber, I.; Black, P.C.; Esperto, F.; Figueroa, J.D.; Kamat, A.M.; Kiemeney, L.; Lotan, Y.; Pang, K.; Silverman, D.T.; et al. Epidemiology of Bladder Cancer: A Systematic Review and Contemporary Update of Risk Factors in 2018. Eur. Urol. 2018, 74, 784–795. [Google Scholar] [CrossRef] [Green Version]
- Farling, K.B. Bladder Cancer: Risk Factors, Diagnosis, and Management. Nurse Pract. 2017, 42, 26–33. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Housman, D.M.; Pei, X.; Alicikus, Z.; Magsanoc, J.M.; Dauer, L.T.; St Germain, J.; Yamada, Y.; Kollmeier, M.; Cox, B.; et al. Incidence of Secondary Cancer Development after High-Dose Intensity-Modulated Radiotherapy and Image-Guided Brachytherapy for the Treatment of Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 953–959. [Google Scholar] [CrossRef]
- Kim, W.-J.; Quan, C. Genetic and Epigenetic Aspects of Bladder Cancer. J. Cell Biochem. 2005, 95, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Han, T.; Ren, H.; Aziz, A.U.R.; Li, N.; Zhang, H.; Zhang, Z.; Liu, B. Bladder Cancer Hunting: A Microfluidic Paper-Based Analytical Device. Electrophoresis 2020, 41, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Karaoglu, I.; van der Heijden, A.G.; Witjes, J.A. The Role of Urine Markers, White Light Cystoscopy and Fluorescence Cystoscopy in Recurrence, Progression and Follow-up of Non-Muscle Invasive Bladder Cancer. World J. Urol. 2014, 32, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Hilton, S.; Jones, L.P. Recent Advances in Imaging Cancer of the Kidney and Urinary Tract. Surg. Oncol. Clin. N. Am. 2014, 23, 863–910. [Google Scholar] [CrossRef] [PubMed]
- Trinh, T.W.; Glazer, D.I.; Sadow, C.A.; Sahni, V.A.; Geller, N.L.; Silverman, S.G. Bladder Cancer Diagnosis with CT Urography: Test Characteristics and Reasons for False-Positive and False-Negative Results. Abdom. Radiol. 2018, 43, 663–671. [Google Scholar] [CrossRef]
- Giannarini, G.; Petralia, G.; Thoeny, H.C. Potential and Limitations of Diffusion-Weighted Magnetic Resonance Imaging in Kidney, Prostate, and Bladder Cancer Including Pelvic Lymph Node Staging: A Critical Analysis of the Literature. Eur. Urol. 2012, 61, 326–340. [Google Scholar] [CrossRef]
- Panebianco, V.; Narumi, Y.; Altun, E.; Bochner, B.H.; Efstathiou, J.A.; Hafeez, S.; Huddart, R.; Kennish, S.; Lerner, S.; Montironi, R.; et al. Multiparametric Magnetic Resonance Imaging for Bladder Cancer: Development of VI-RADS (Vesical Imaging-Reporting And Data System). Eur. Urol. 2018, 74, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Pecoraro, M.; Takeuchi, M.; Vargas, H.A.; Muglia, V.F.; Cipollari, S.; Catalano, C.; Panebianco, V. Overview of VI-RADS in Bladder Cancer. AJR Am. J. Roentgenol. 2020, 214, 1259–1268. [Google Scholar] [CrossRef]
- Kaufman, D.S.; Shipley, W.U.; Feldman, A.S. Bladder Cancer. Lancet 2009, 374, 239–249. [Google Scholar] [CrossRef]
- Tilki, D.; Burger, M.; Dalbagni, G.; Grossman, H.B.; Hakenberg, O.W.; Palou, J.; Reich, O.; Rouprêt, M.; Shariat, S.F.; Zlotta, A.R. Urine Markers for Detection and Surveillance of Non-Muscle-Invasive Bladder Cancer. Eur. Urol. 2011, 60, 484–492. [Google Scholar] [CrossRef]
- Dyrskjøt, L.; Reinert, T.; Algaba, F.; Christensen, E.; Nieboer, D.; Hermann, G.G.; Mogensen, K.; Beukers, W.; Marquez, M.; Segersten, U.; et al. Prognostic Impact of a 12-Gene Progression Score in Non-Muscle-Invasive Bladder Cancer: A Prospective Multicentre Validation Study. Eur. Urol. 2017, 72, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Georgantzoglou, N.; Pergaris, A.; Masaoutis, C.; Theocharis, S. Extracellular Vesicles as Biomarkers Carriers in Bladder Cancer: Diagnosis, Surveillance, and Treatment. Int. J. Mol. Sci. 2021, 22, 2744. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Xu, K.; Zheng, X.; Chen, T.; Wang, J.; Song, Y.; Shao, Y.; Zheng, S. Application of Exosomes as Liquid Biopsy in Clinical Diagnosis. Signal Transduct. Target. Ther. 2020, 5, 144. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Li, Y.; Wang, M.; Gu, J.; Xu, W.; Cai, H.; Fang, X.; Zhang, X. Exosomes as a New Frontier of Cancer Liquid Biopsy. Mol. Cancer 2022, 21, 56. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Yin, H.-B.; Li, X.-Y.; Zhu, G.-M.; He, W.-Y.; Gou, X. Bladder Cancer Cell-secreted Exosomal MiR-21 Activates the PI3K/AKT Pathway in Macrophages to Promote Cancer Progression. Int. J. Oncol. 2020, 56, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q. The Emerging Roles of Exosomal Long Non-Coding RNAs in Bladder Cancer. J. Cell Mol. Med. 2022, 26, 966–976. [Google Scholar] [CrossRef]
- EL Andaloussi, S.; Mäger, I.; Breakefield, X.O.; Wood, M.J.A. Extracellular Vesicles: Biology and Emerging Therapeutic Opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357. [Google Scholar] [CrossRef]
- Geng, H.; Zhou, Q.; Guo, W.; Lu, L.; Bi, L.; Wang, Y.; Min, J.; Yu, D.; Liang, Z. Exosomes in Bladder Cancer: Novel Biomarkers and Targets. J. Zhejiang Univ. Sci. B 2021, 22, 341–347. [Google Scholar] [CrossRef]
- Sieverink, C.A.; Batista, R.P.M.; Prazeres, H.J.M.; Vinagre, J.; Sampaio, C.; Leão, R.R.; Máximo, V.; Witjes, J.A.; Soares, P. Clinical Validation of a Urine Test (Uromonitor-V2®) for the Surveillance of Non-Muscle-Invasive Bladder Cancer Patients. Diagnostics 2020, 10, 745. [Google Scholar] [CrossRef]
- Batista, R.; Vinagre, N.; Meireles, S.; Vinagre, J.; Prazeres, H.; Leão, R.; Máximo, V.; Soares, P. Biomarkers for Bladder Cancer Diagnosis and Surveillance: A Comprehensive Review. Diagnostics 2020, 10, 39. [Google Scholar] [CrossRef]
- Laukhtina, E.; Shim, S.R.; Mori, K.; D‘Andrea, D.; Soria, F.; Rajwa, P.; Mostafaei, H.; Compérat, E.; Cimadamore, A.; Moschini, M.; et al. Diagnostic Accuracy of Novel Urinary Biomarker Tests in Non–Muscle-Invasive Bladder Cancer: A Systematic Review and Network Meta-Analysis. Eur. Urol. Oncol. 2021, 4, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Sugeeta, S.S.; Sharma, A.; Ng, K.; Nayak, A.; Vasdev, N. Biomarkers in Bladder Cancer Surveillance. Front. Surg 2021, 8, 735868. [Google Scholar] [CrossRef] [PubMed]
- van Rhijn, B.W.G.; van der Poel, H.G.; van der Kwast, T.H. Urine Markers for Bladder Cancer Surveillance: A Systematic Review. Eur. Urol. 2005, 47, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Que, H.; Suo, C.; Han, Z.; Tao, J.; Huang, Z.; Ju, X.; Tan, R.; Gu, M. Evaluation of the NMP22 BladderChek Test for Detecting Bladder Cancer: A Systematic Review and Meta-Analysis. Oncotarget 2017, 8, 100648–100656. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Fan, W.; Deng, Q.; Tang, S.; Wang, P.; Xu, P.; Wang, J.; Yu, M. The Prognostic and Diagnostic Value of Circulating Tumor Cells in Bladder Cancer and Upper Tract Urothelial Carcinoma: A Meta-Analysis of 30 Published Studies. Oncotarget 2017, 8, 59527–59538. [Google Scholar] [CrossRef] [Green Version]
- Hajdinjak, T. UroVysion FISH Test for Detecting Urothelial Cancers: Meta-Analysis of Diagnostic Accuracy and Comparison with Urinary Cytology Testing. Urol. Oncol. 2008, 26, 646–651. [Google Scholar] [CrossRef]
- He, H.; Han, C.; Hao, L.; Zang, G. ImmunoCyt Test Compared to Cytology in the Diagnosis of Bladder Cancer: A Meta-Analysis. Oncol. Lett. 2016, 12, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Batista, R.; Vinagre, J.; Prazeres, H.; Sampaio, C.; Peralta, P.; Conceição, P.; Sismeiro, A.; Leão, R.; Gomes, A.; Furriel, F.; et al. Validation of a Novel, Sensitive, and Specific Urine-Based Test for Recurrence Surveillance of Patients With Non-Muscle-Invasive Bladder Cancer in a Comprehensive Multicenter Study. Front. Genet. 2019, 10, 1237. [Google Scholar] [CrossRef] [Green Version]
- Yeo, J.C.; Lim, C.T. Potential of Circulating Biomarkers in Liquid Biopsy Diagnostics. Biotechniques 2018, 65, 187–189. [Google Scholar] [CrossRef] [Green Version]
- Brisuda, A.; Pazourkova, E.; Soukup, V.; Horinek, A.; Hrbáček, J.; Capoun, O.; Svobodova, I.; Pospisilova, S.; Korabecna, M.; Mares, J.; et al. Urinary Cell-Free DNA Quantification as Non-Invasive Biomarker in Patients with Bladder Cancer. Urol. Int. 2016, 96, 25–31. [Google Scholar] [CrossRef]
- Lu, T.; Li, J. Clinical Applications of Urinary Cell-Free DNA in Cancer: Current Insights and Promising Future. Am. J. Cancer Res. 2017, 7, 2318–2332. [Google Scholar] [PubMed]
- Sangster, A.G.; Gooding, R.J.; Garven, A.; Ghaedi, H.; Berman, D.M.; Davey, S.K. Mutually Exclusive Mutation Profiles Define Functionally Related Genes in Muscle Invasive Bladder Cancer. PLoS ONE 2022, 17, e0259992. [Google Scholar] [CrossRef] [PubMed]
- van Kessel, K.E.M.; Beukers, W.; Lurkin, I.; Ziel-van der Made, A.; van der Keur, K.A.; Boormans, J.L.; Dyrskjøt, L.; Márquez, M.; Ørntoft, T.F.; Real, F.X.; et al. Validation of a DNA Methylation-Mutation Urine Assay to Select Patients with Hematuria for Cystoscopy. J. Urol. 2017, 197, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.E.; Sjöström, M.; Egusa, E.A.; Gibb, E.A.; Badura, M.L.; Zhu, J.; Koshkin, V.S.; Stohr, B.A.; Meng, M.V.; Pruthi, R.S.; et al. Heterogeneity in NECTIN4 Expression Across Molecular Subtypes of Urothelial Cancer Mediates Sensitivity to Enfortumab Vedotin. Clin. Cancer Res. 2021, 27, 5123–5130. [Google Scholar] [CrossRef]
- Bellmunt, J.; Kim, J.; Reardon, B.; Perera-Bel, J.; Orsola, A.; Rodriguez-Vida, A.; Wankowicz, S.A.; Bowden, M.; Barletta, J.A.; Morote, J.; et al. Genomic Predictors of Good Outcome, Recurrence, or Progression in High-Grade T1 Non-Muscle-Invasive Bladder Cancer. Cancer Res. 2020, 80, 4476–4486. [Google Scholar] [CrossRef]
- Verma, S.; Shankar, E.; Lin, S.; Singh, V.; Chan, E.R.; Cao, S.; Fu, P.; MacLennan, G.T.; Ponsky, L.E.; Gupta, S. Identification of Key Genes Associated with Progression and Prognosis of Bladder Cancer through Integrated Bioinformatics Analysis. Cancers 2021, 13, 5931. [Google Scholar] [CrossRef] [PubMed]
- Descotes, F.; Kara, N.; Decaussin-Petrucci, M.; Piaton, E.; Geiguer, F.; Rodriguez-Lafrasse, C.; Terrier, J.E.; Lopez, J.; Ruffion, A. Non-Invasive Prediction of Recurrence in Bladder Cancer by Detecting Somatic TERT Promoter Mutations in Urine. Br. J. Cancer 2017, 117, 583–587. [Google Scholar] [CrossRef]
- Dudley, J.C.; Schroers-Martin, J.; Lazzareschi, D.V.; Shi, W.Y.; Chen, S.B.; Esfahani, M.S.; Trivedi, D.; Chabon, J.J.; Chaudhuri, A.A.; Stehr, H.; et al. Detection and Surveillance of Bladder Cancer Using Urine Tumor DNA. Cancer Discov. 2019, 9, 500–509. [Google Scholar] [CrossRef]
- Keegan, K.; Johnson, D.E.; Williams, L.T.; Hayman, M.J. Isolation of an Additional Member of the Fibroblast Growth Factor Receptor Family, FGFR-3. Proc. Natl. Acad. Sci. USA 1991, 88, 1095–1099. [Google Scholar] [CrossRef] [Green Version]
- Intini, D.; Baldini, L.; Fabris, S.; Lombardi, L.; Ciceri, G.; Maiolo, A.T.; Neri, A. Analysis of FGFR3 Gene Mutations in Multiple Myeloma Patients with t(4;14). Br. J. Haematol. 2001, 114, 362–364. [Google Scholar] [CrossRef]
- Wu, R.; Connolly, D.; Ngelangel, C.; Bosch, F.X.; Muñoz, N.; Cho, K.R. Somatic Mutations of Fibroblast Growth Factor Receptor 3 (FGFR3) Are Uncommon in Carcinomas of the Uterine Cervix. Oncogene 2000, 19, 5543–5546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowles, M.A. FGFR3—A Central Player in Bladder Cancer Pathogenesis? Bladder Cancer 2020, 6, 403–423. [Google Scholar] [CrossRef]
- Hernández, S.; López-Knowles, E.; Lloreta, J.; Kogevinas, M.; Amorós, A.; Tardón, A.; Carrato, A.; Serra, C.; Malats, N.; Real, F.X. Prospective Study of FGFR3 Mutations as a Prognostic Factor in Nonmuscle Invasive Urothelial Bladder Carcinomas. J. Clin. Oncol. 2006, 24, 3664–3671. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, W.; Geng, D.; He, J.; Zhao, Y.; Yu, L. Clinical Significance of Fibroblast Growth Factor Receptor-3 Mutations in Bladder Cancer: A Systematic Review and Meta-Analysis. Genet. Mol. Res. 2014, 13, 1109–1120. [Google Scholar] [CrossRef]
- Wilson, C.B.; Leopard, J.; Cheresh, D.A.; Nakamura, R.M. Extracellular Matrix and Integrin Composition of the Normal Bladder Wall. World J. Urol. 1996, 14 (Suppl. S1), S30–S37. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.V.; Hurst, C.D.; Knowles, M.A. Oncogenic FGFR3 Gene Fusions in Bladder Cancer. Hum. Mol. Genet. 2013, 22, 795–803. [Google Scholar] [CrossRef]
- Gómez-Román, J.J.; Saenz, P.; Molina, M.; Cuevas González, J.; Escuredo, K.; Santa Cruz, S.; Junquera, C.; Simón, L.; Martínez, A.; Gutiérrez Baños, J.L.; et al. Fibroblast Growth Factor Receptor 3 Is Overexpressed in Urinary Tract Carcinomas and Modulates the Neoplastic Cell Growth. Clin. Cancer Res. 2005, 11, 459–465. [Google Scholar] [CrossRef]
- Maeng, Y.-H.; Eun, S.-Y.; Huh, J.-S. Expression of Fibroblast Growth Factor Receptor 3 in the Recurrence of Non-Muscle-Invasive Urothelial Carcinoma of the Bladder. Korean J. Urol. 2010, 51, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Poyet, C.; Hermanns, T.; Zhong, Q.; Drescher, E.; Eberli, D.; Burger, M.; Hofstaedter, F.; Hartmann, A.; Stöhr, R.; Zwarthoff, E.C.; et al. Positive Fibroblast Growth Factor Receptor 3 Immunoreactivity Is Associated with Low-Grade Non-Invasive Urothelial Bladder Cancer. Oncol. Lett. 2015, 10, 2753–2760. [Google Scholar] [CrossRef] [Green Version]
- Le Goux, C.; Vacher, S.; Schnitzler, A.; Barry Delongchamps, N.; Zerbib, M.; Peyromaure, M.; Sibony, M.; Allory, Y.; Bieche, I.; Damotte, D.; et al. Assessment of Prognostic Implication of a Panel of Oncogenes in Bladder Cancer and Identification of a 3-Gene Signature Associated with Recurrence and Progression Risk in Non-Muscle-Invasive Bladder Cancer. Sci. Rep. 2020, 10, 16641. [Google Scholar] [CrossRef]
- Nectin4/PRR4, a New Afadin-Associated Member of the Nectin Family That Trans-Interacts with Nectin1/PRR1 through V Domain Interaction—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/11544254/ (accessed on 12 September 2022).
- Rosenberg, J.; Sridhar, S.S.; Zhang, J.; Smith, D.; Ruether, D.; Flaig, T.W.; Baranda, J.; Lang, J.; Plimack, E.R.; Sangha, R.; et al. EV-101: A Phase I Study of Single-Agent Enfortumab Vedotin in Patients With Nectin-4-Positive Solid Tumors, Including Metastatic Urothelial Carcinoma. J. Clin. Oncol. 2020, 38, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Challita-Eid, P.M.; Satpayev, D.; Yang, P.; An, Z.; Morrison, K.; Shostak, Y.; Raitano, A.; Nadell, R.; Liu, W.; Lortie, D.R.; et al. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res. 2016, 76, 3003–3013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mumberg, D.; Wick, M.; Bürger, C.; Haas, K.; Funk, M.; Müller, R. Cyclin ET, a New Splice Variant of Human Cyclin E with a Unique Expression Pattern during Cell Cycle Progression and Differentiation. Nucleic Acids Res. 1997, 25, 2098–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keyomarsi, K.; O’Leary, N.; Molnar, G.; Lees, E.; Fingert, H.J.; Pardee, A.B. Cyclin E, a Potential Prognostic Marker for Breast Cancer. Cancer Res. 1994, 54, 380–385. [Google Scholar] [PubMed]
- Yao, S.; Meric-Bernstam, F.; Hong, D.; Janku, F.; Naing, A.; Piha-Paul, S.A.; Tsimberidou, A.M.; Karp, D.; Subbiah, V.; Yap, T.A.; et al. Clinical Characteristics and Outcomes of Phase I Cancer Patients with CCNE1 Amplification: MD Anderson Experiences. Sci. Rep. 2022, 12, 8701. [Google Scholar] [CrossRef] [PubMed]
- Robertson, K.D.; Jones, P.A. Tissue-Specific Alternative Splicing in the Human INK4a/ARF Cell Cycle Regulatory Locus. Oncogene 1999, 18, 3810–3820. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.K.; Han, S.J.; Choy, W.; Beleford, D.; Aghi, M.K.; Berger, M.S.; Shieh, J.T.; Bollen, A.W.; Perry, A.; Phillips, J.J.; et al. Familial Melanoma-Astrocytoma Syndrome: Synchronous Diffuse Astrocytoma and Pleomorphic Xanthoastrocytoma in a Patient with Germline CDKN2A/B Deletion and a Significant Family History. Clin. Neuropathol. 2017, 36, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.J.; Goldstein, A.M.; Gordon, P.L.; Harbaugh, K.S.; Mackley, H.B.; Glantz, M.J.; Drabick, J.J. An Interstitial Deletion within 9p21.3 and Extending beyond CDKN2A Predisposes to Melanoma, Neural System Tumours and Possible Haematological Malignancies. J. Med. Genet. 2016, 53, 721–727. [Google Scholar] [CrossRef] [Green Version]
- Grünewald, T.G.P.; Cidre-Aranaz, F.; Surdez, D.; Tomazou, E.M.; de Álava, E.; Kovar, H.; Sorensen, P.H.; Delattre, O.; Dirksen, U. Ewing Sarcoma. Nat. Rev. Dis. Prim. 2018, 4, 5. [Google Scholar] [CrossRef]
- Hartmann, A.; Moser, K.; Kriegmair, M.; Hofstetter, A.; Hofstaedter, F.; Knuechel, R. Frequent Genetic Alterations in Simple Urothelial Hyperplasias of the Bladder in Patients with Papillary Urothelial Carcinoma. Am. J. Pathol. 1999, 154, 721–727. [Google Scholar] [CrossRef]
- Bartoletti, R.; Cai, T.; Nesi, G.; Roberta Girardi, L.; Baroni, G.; Dal Canto, M. Loss of P16 Expression and Chromosome 9p21 LOH in Predicting Outcome of Patients Affected by Superficial Bladder Cancer. J. Surg. Res. 2007, 143, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Rebouissou, S.; Hérault, A.; Letouzé, E.; Neuzillet, Y.; Laplanche, A.; Ofualuka, K.; Maillé, P.; Leroy, K.; Riou, A.; Lepage, M.-L.; et al. CDKN2A Homozygous Deletion Is Associated with Muscle Invasion in FGFR3-Mutated Urothelial Bladder Carcinoma: CDKN2A Homozygous Deletion in FGFR3-Mutated Bladder Carcinoma. J. Pathol. 2012, 227, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Trybek, T.; Kowalik, A.; Góźdź, S.; Kowalska, A. Telomeres and Telomerase in Oncogenesis (Review). Oncol. Lett. 2020, 20, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Chiba, K.; Lorbeer, F.K.; Shain, A.H.; McSwiggen, D.T.; Schruf, E.; Oh, A.; Ryu, J.; Darzacq, X.; Bastian, B.C.; Hockemeyer, D. Mutations in the Promoter of the Telomerase Gene TERT Contribute to Tumorigenesis by a Two-Step Mechanism. Science 2017, 357, 1416–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calado, R.T.; Regal, J.A.; Hills, M.; Yewdell, W.T.; Dalmazzo, L.F.; Zago, M.A.; Lansdorp, P.M.; Hogge, D.; Chanock, S.J.; Estey, E.H.; et al. Constitutional Hypomorphic Telomerase Mutations in Patients with Acute Myeloid Leukemia. Proc. Natl. Acad. Sci. USA 2009, 106, 1187–1192. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Huang, P.; Li, C.; Huang, Y.; Li, X.; Wang, Y.; Chen, C.; Lv, Z.; Tang, A.; Sun, X.; et al. Telomerase Reverse Transcriptase Gene Promoter Mutations Help Discern the Origin of Urogenital Tumors: A Genomic and Molecular Study. Eur. Urol. 2014, 65, 274–277. [Google Scholar] [CrossRef]
- Rachakonda, P.S.; Hosen, I.; de Verdier, P.J.; Fallah, M.; Heidenreich, B.; Ryk, C.; Wiklund, N.P.; Steineck, G.; Schadendorf, D.; Hemminki, K.; et al. TERT Promoter Mutations in Bladder Cancer Affect Patient Survival and Disease Recurrence through Modification by a Common Polymorphism. Proc. Natl. Acad. Sci. USA 2013, 110, 17426–17431. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, R.; Ingelmo-Torres, M.; Gómez, A.; Roldán, F.L.; Segura, N.; Ribal, M.J.; Alcaraz, A.; Izquierdo, L.; Mengual, L. Prognostic Implication of TERT Promoter Mutation and Circulating Tumor Cells in Muscle-Invasive Bladder Cancer. World J. Urol. 2022, 40, 2033–2039. [Google Scholar] [CrossRef]
- Kotoh, J.; Sasaki, D.; Matsumoto, K.; Maeda, A. Plekhs1 and Prdx3 Are Candidate Genes Responsible for Mild Hyperglycemia Associated with Obesity in a New Animal Model of F344-Fa-Nidd6 Rat. J. Vet. Med. Sci. 2016, 78, 1683–1691. [Google Scholar] [CrossRef] [Green Version]
- Pignot, G.; Le Goux, C.; Vacher, S.; Schnitzler, A.; Radvanyi, F.; Allory, Y.; Lallemand, F.; Delongchamps, N.B.; Zerbib, M.; Terris, B.; et al. PLEKHS1: A New Molecular Marker Predicting Risk of Progression of Non-Muscle-Invasive Bladder Cancer. Oncol. Lett. 2019, 18, 3471–3480. [Google Scholar] [CrossRef]
- Xing, X.; Yuan, X.; Liu, T.; Dai, M.; Fan, Y.; Liu, C.; Strååt, K.; Björkholm, M.; Xu, D. Regulatory Region Mutations of TERT, PLEKHS1 and GPR126 Genes as Urinary Biomarkers in Upper Tract Urothelial Carcinomas. J. Cancer 2021, 12, 3853–3861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, J.; Zhang, Q.; Liang, Y.; Du, Y.; Wang, G. Identification of Prognostic Biomarkers for Bladder Cancer Based on DNA Methylation Profile. Front. Cell Dev. Biol. 2022, 9, 817086. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Zhang, X.; Nie, Q.; Hu, J.; Zhou, S.; Wang, C. Improved Urine DNA Methylation Panel for Early Bladder Cancer Detection. BMC Cancer 2022, 22, 237. [Google Scholar] [CrossRef] [PubMed]
- El Azzouzi, M.; El Ahanidi, H.; Hafidi Alaoui, C.; Chaoui, I.; Benbacer, L.; Tetou, M.; Hassan, I.; Bensaid, M.; Oukabli, M.; Ameur, A.; et al. Evaluation of DNA Methylation in Promoter Regions of HTERT, TWIST1, VIM and NID2 Genes in Moroccan Bladder Cancer Patients. Cancer Genet. 2022, 260–261, 41–45. [Google Scholar] [CrossRef]
- van der Heijden, A.G.; Mengual, L.; Ingelmo-Torres, M.; Lozano, J.J.; van Rijt-van de Westerlo, C.C.M.; Baixauli, M.; Geavlete, B.; Moldoveanud, C.; Ene, C.; Dinney, C.P.; et al. Urine Cell-Based DNA Methylation Classifier for Monitoring Bladder Cancer. Clin. Epigenet. 2018, 10, 71. [Google Scholar] [CrossRef]
- Deng, L.; Chao, H.; Deng, H.; Yu, Z.; Zhao, R.; Huang, L.; Gong, Y.; Zhu, Y.; Wang, Q.; Li, F.; et al. A Novel and Sensitive DNA Methylation Marker for the Urine-Based Liquid Biopsies to Detect Bladder Cancer. BMC Cancer 2022, 22, 510. [Google Scholar] [CrossRef]
- van Kessel, K.E.M.; Van Neste, L.; Lurkin, I.; Zwarthoff, E.C.; Van Criekinge, W. Evaluation of an Epigenetic Profile for the Detection of Bladder Cancer in Patients with Hematuria. J. Urol. 2016, 195, 601–607. [Google Scholar] [CrossRef]
- Beukers, W.; van der Keur, K.A.; Kandimalla, R.; Vergouwe, Y.; Steyerberg, E.W.; Boormans, J.L.; Jensen, J.B.; Lorente, J.A.; Real, F.X.; Segersten, U.; et al. FGFR3, TERT and OTX1 as a Urinary Biomarker Combination for Surveillance of Patients with Bladder Cancer in a Large Prospective Multicenter Study. J. Urol. 2017, 197, 1410–1418. [Google Scholar] [CrossRef]
- Jiang, L.; Zuo, Z.; Lin, J.; Yang, C. Orthodenticle Homeobox OTX1 Is a Potential Prognostic Biomarker for Bladder Cancer. Bioengineered 2021, 12, 6559–6571. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, G.; Zhang, N.; Liu, S.; Lin, X.; Perschon, C.; Zheng, S.L.; Ding, Q.; Wang, X.; Na, R.; et al. HOXA9, PCDH17, POU4F2, and ONECUT2 as a Urinary Biomarker Combination for the Detection of Bladder Cancer in Chinese Patients with Hematuria. Eur. Urol. Focus 2020, 6, 284–291. [Google Scholar] [CrossRef]
- Beukers, W.; Kandimalla, R.; van Houwelingen, D.; Kovacic, H.; Chin, J.-F.D.; Lingsma, H.F.; Dyrskjot, L.; Zwarthoff, E.C. The Use of Molecular Analyses in Voided Urine for the Assessment of Patients with Hematuria. PLoS ONE 2013, 8, e77657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Chen, S.; Wu, L.; Wu, Y.; Jiang, G.; Shao, J.; Chen, L.; Sun, J.; Na, R.; Wang, X.; et al. Identification of Cancer-Specific Methylation of Gene Combination for the Diagnosis of Bladder Cancer. J. Cancer 2019, 10, 6761–6766. [Google Scholar] [CrossRef] [PubMed]
- Reinert, T.; Borre, M.; Christiansen, A.; Hermann, G.G.; Ørntoft, T.F.; Dyrskjøt, L. Diagnosis of Bladder Cancer Recurrence Based on Urinary Levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 Hypermethylation. PLoS ONE 2012, 7, e46297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, V.L.; Henrique, R.; Danielsen, S.A.; Duarte-Pereira, S.; Eknaes, M.; Skotheim, R.I.; Rodrigues, A.; Magalhães, J.S.; Oliveira, J.; Lothe, R.A.; et al. Three Epigenetic Biomarkers, GDF15, TMEFF2, and VIM, Accurately Predict Bladder Cancer from DNA-Based Analyses of Urine Samples. Clin. Cancer Res. 2010, 16, 5842–5851. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.-Q.; Xiong, G.-Y.; Yang, K.-W.; Zhang, L.; He, S.-M.; Gong, Y.-Q.; He, Q.; Li, X.-Y.; Wang, Z.-C.; Bao, Z.-Q.; et al. Detection of Urothelial Carcinoma, Upper Tract Urothelial Carcinoma, Bladder Carcinoma, and Urothelial Carcinoma with Gross Hematuria Using Selected Urine-DNA Methylation Biomarkers: A Prospective, Single-Center Study. Urol. Oncol. 2018, 36, 342.e15–342.e23. [Google Scholar] [CrossRef]
- Monteiro-Reis, S.; Blanca, A.; Tedim-Moreira, J.; Carneiro, I.; Montezuma, D.; Monteiro, P.; Oliveira, J.; Antunes, L.; Henrique, R.; Lopez-Beltran, A.; et al. A Multiplex Test Assessing MiR663ame and VIMme in Urine Accurately Discriminates Bladder Cancer from Inflammatory Conditions. J. Clin. Med. 2020, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, J.; Ruan, W.; Huang, M.; Wang, C.; Wang, H.; Jiang, Z.; Wang, S.; Liu, Z.; Liu, C.; et al. Urine DNA Methylation Assay Enables Early Detection and Recurrence Monitoring for Bladder Cancer. J. Clin. Investig. 2020, 130, 6278–6289. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Guo, X.; Yao, H.; Wang, G.; Li, C. Non-Coding RNA in Bladder Cancer. Cancer Lett. 2020, 485, 38–44. [Google Scholar] [CrossRef]
- Berindan-Neagoe, I.; del C Monroig, P.; Pasculli, B.; Calin, G.A. MicroRNAome Genome: A Treasure for Cancer Diagnosis and Therapy. CA Cancer J. Clin. 2014, 64, 311–336. [Google Scholar] [CrossRef]
- Fuessel, S.; Lohse-Fischer, A.; Vu Van, D.; Salomo, K.; Erdmann, K.; Wirth, M.P. Quantification of MicroRNAs in Urine-Derived Specimens. Methods Mol. Biol. 2018, 1655, 201–226. [Google Scholar] [CrossRef]
- Humayun-Zakaria, N.; Ward, D.G.; Arnold, R.; Bryan, R.T. Trends in Urine Biomarker Discovery for Urothelial Bladder Cancer: DNA, RNA, or Protein? Transl. Urol. 2021, 10, 2787–2808. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Q.; Niu, X.; Wang, G.; Zheng, S.; Fu, G.; Wang, Z. MiR-143 Inhibits Bladder Cancer Cell Proliferation and Enhances Their Sensitivity to Gemcitabine by Repressing IGF-1R Signaling. Oncol. Lett. 2017, 13, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Hu, J.; Li, H.; Ma, H.; Othmane, B.; Ren, W.; Yi, Z.; Qiu, D.; Ou, Z.; Chen, J.; et al. Emerging Biomarkers for Predicting Bladder Cancer Lymph Node Metastasis. Front. Oncol. 2021, 11, 648968. [Google Scholar] [CrossRef]
- Dyrskjøt, L.; Ostenfeld, M.S.; Bramsen, J.B.; Silahtaroglu, A.N.; Lamy, P.; Ramanathan, R.; Fristrup, N.; Jensen, J.L.; Andersen, C.L.; Zieger, K.; et al. Genomic Profiling of MicroRNAs in Bladder Cancer: MiR-129 Is Associated with Poor Outcome and Promotes Cell Death in Vitro. Cancer Res. 2009, 69, 4851–4860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Zhou, C.; Jiang, X.; Chen, J.; Shi, B. Increased Expression of MiR-222 Is Associated with Poor Prognosis in Bladder Cancer. World J. Surg. Oncol. 2014, 12, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.-H.; Qi, F.; Cao, Y.-H.; Zu, X.-B.; Chen, M.-F. Expression and Clinical Significance of MicroRNA-21, Maspin and Vascular Endothelial Growth Factor-C in Bladder Cancer. Oncol. Lett. 2015, 10, 2610–2616. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Ma, X.; Chen, L.; Li, H.; Gu, L.; Gao, Y.; Zhang, Y.; Li, X.; Fan, Y.; Chen, J.; et al. MicroRNAs with Prognostic Significance in Bladder Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2017, 7, 5619. [Google Scholar] [CrossRef]
- Lenherr, S.M.; Tsai, S.; Silva Neto, B.; Sullivan, T.B.; Cimmino, C.B.; Logvinenko, T.; Gee, J.; Huang, W.; Libertino, J.A.; Summerhayes, I.C.; et al. MicroRNA Expression Profile Identifies High Grade, Non-Muscle-Invasive Bladder Tumors at Elevated Risk to Progress to an Invasive Phenotype. Genes 2017, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Zhang, Q.; Zhu, J.; Yin, G.; Lin, L.; Liang, C. Identification of Urinary Hsa_circ _0137439 as Potential Biomarker and Tumor Regulator of Bladder Cancer. Neoplasma 2020, 67, 137–146. [Google Scholar] [CrossRef]
- Cheng, F.; Zheng, B.; Si, S.; Wang, J.; Zhao, G.; Yao, Z.; Niu, Z.; He, W. The Roles of CircRNAs in Bladder Cancer: Biomarkers, Tumorigenesis Drivers, and Therapeutic Targets. Front. Cell Dev. Biol. 2021, 9, 666863. [Google Scholar] [CrossRef]
- Taheri, M.; Omrani, M.D.; Ghafouri-Fard, S. Long Non-Coding RNA Expression in Bladder Cancer. Biophys. Rev. 2018, 10, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Gielchinsky, I.; Gilon, M.; Abu-Lail, R.; Matouk, I.; Hochberg, A.; Gofrit, O.N.; Ben-Dov, I.Z. H19 Non-Coding RNA in Urine Cells Detects Urothelial Carcinoma: A Pilot Study. Biomarkers 2017, 22, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, R.; Han, C.; Wang, Z.; Jin, X. A Panel of Urinary Long Non-Coding RNAs Differentiate Bladder Cancer from Urocystitis. J. Cancer 2020, 11, 781–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yafi, F.A.; Brimo, F.; Steinberg, J.; Aprikian, A.G.; Tanguay, S.; Kassouf, W. Prospective Analysis of Sensitivity and Specificity of Urinary Cytology and Other Urinary Biomarkers for Bladder Cancer. Urol. Oncol. 2015, 33, 66.e25–66.e31. [Google Scholar] [CrossRef]
- Johnson, D.C.; Greene, P.S.; Nielsen, M.E. Surgical Advances in Bladder Cancer: At What Cost? Urol. Clin. N. Am. 2015, 42, 235–252. [Google Scholar] [CrossRef]
- Ng, K.; Stenzl, A.; Sharma, A.; Vasdev, N. Urinary Biomarkers in Bladder Cancer: A Review of the Current Landscape and Future Directions. Urol. Oncol. 2021, 39, 41–51. [Google Scholar] [CrossRef]
- Gong, Y.-W.; Wang, Y.-R.; Fan, G.-R.; Niu, Q.; Zhao, Y.-L.; Wang, H.; Svatek, R.; Rodriguez, R.; Wang, Z.-P. Diagnostic and Prognostic Role of BTA, NMP22, Survivin and Cytology in Urothelial Carcinoma. Transl. Cancer Res. 2021, 10, 3192–3205. [Google Scholar] [CrossRef]
- Chou, R.; Gore, J.L.; Buckley, D.; Fu, R.; Gustafson, K.; Griffin, J.C.; Grusing, S.; Selph, S. Urinary Biomarkers for Diagnosis of Bladder Cancer: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2015, 163, 922–931. [Google Scholar] [CrossRef] [Green Version]
- Campagna, R.; Pozzi, V.; Spinelli, G.; Sartini, D.; Milanese, G.; Galosi, A.B.; Emanuelli, M. The Utility of Nicotinamide N-Methyltransferase as a Potential Biomarker to Predict the Oncological Outcomes for Urological Cancers: An Update. Biomolecules 2021, 11, 1214. [Google Scholar] [CrossRef]
- Pozzi, V.; Di Ruscio, G.; Sartini, D.; Campagna, R.; Seta, R.; Fulvi, P.; Vici, A.; Milanese, G.; Brandoni, G.; Galosi, A.B.; et al. Clinical Performance and Utility of a NNMT-Based Urine Test for Bladder Cancer. Int. J. Biol. Markers 2018, 33, 94–101. [Google Scholar] [CrossRef]
- Mobley, A.; Zhang, S.; Bondaruk, J.; Wang, Y.; Majewski, T.; Caraway, N.P.; Huang, L.; Shoshan, E.; Velazquez-Torres, G.; Nitti, G.; et al. Aurora Kinase A Is a Biomarker for Bladder Cancer Detection and Contributes to Its Aggressive Behavior. Sci. Rep. 2017, 7, 40714. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; van Haren, M.J.; Buijs, N.; Innocenti, P.; Zhang, Y.; Sartini, D.; Campagna, R.; Emanuelli, M.; Parsons, R.B.; Jespers, W.; et al. Potent Inhibition of Nicotinamide N-Methyltransferase by Alkene-Linked Bisubstrate Mimics Bearing Electron Deficient Aromatics. J. Med. Chem. 2021, 64, 12938–12963. [Google Scholar] [CrossRef] [PubMed]
- van Haren, M.J.; Gao, Y.; Buijs, N.; Campagna, R.; Sartini, D.; Emanuelli, M.; Mateuszuk, L.; Kij, A.; Chlopicki, S.; Escudé Martinez de Castilla, P.; et al. Esterase-Sensitive Prodrugs of a Potent Bisubstrate Inhibitor of Nicotinamide N-Methyltransferase (NNMT) Display Cellular Activity. Biomolecules 2021, 11, 1357. [Google Scholar] [CrossRef]
- van Haren, M.J.; Zhang, Y.; Thijssen, V.; Buijs, N.; Gao, Y.; Mateuszuk, L.; Fedak, F.A.; Kij, A.; Campagna, R.; Sartini, D.; et al. Macrocyclic Peptides as Allosteric Inhibitors of Nicotinamide N -Methyltransferase (NNMT). RSC Chem. Biol. 2021, 2, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Inamoto, T.; Uehara, H.; Akao, Y.; Ibuki, N.; Komura, K.; Takahara, K.; Takai, T.; Uchimoto, T.; Saito, K.; Tanda, N.; et al. A Panel of MicroRNA Signature as a Tool for Predicting Survival of Patients with Urothelial Carcinoma of the Bladder. Dis. Markers 2018, 2018, 5468672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usuba, W.; Urabe, F.; Yamamoto, Y.; Matsuzaki, J.; Sasaki, H.; Ichikawa, M.; Takizawa, S.; Aoki, Y.; Niida, S.; Kato, K.; et al. Circulating MiRNA Panels for Specific and Early Detection in Bladder Cancer. Cancer Sci. 2019, 110, 408–419. [Google Scholar] [CrossRef] [PubMed]
Marker | Approval | Pooled Statistical Significance | Ref. |
---|---|---|---|
BTA stat | FDA | 56–83% SN/64–86% SP | [46] |
BTA TRAK | FDA | 62–76% SN/51–98% SP | [46] |
NMP22—(ELISA) | FDA and EAU | 71% SN/73% SP | [47] |
NMP22—(BladderChek Test) | FDA and EAU | 56% SN/88% SP | [48] |
Cell Search | FDA | 35% SN/97% SP | [49] |
UroVysion | FDA and EAU | 72% SN/83% SP | [50] |
uCyt+ | FDA | 72.5% SN/65.7% SP | [51] |
Uromonitor | EAU | 73.5% SN/93.2% SP | [52] |
Gene | Modification | Cancer-Associated Gene Function | Statistical Significance | Ref. |
---|---|---|---|---|
FGFR3 | mutation, gene overexpression | deregulation of the cell cycle, | 93% SN, 86% SP, AUC 0.96 (overall) | [57] |
PVRL4 | gene overexpression | metastasis | p < 0.0001 | [58] |
CCNE1 | copy-number variations | recurrence, progression | p = 0.04 | [59] |
CDKN2A | mutation | deregulation of the cell cycle, progression | 95.5% SN, 100% SP | [60] |
TERT | mutation | telomere maintenance | 80.5% SN, 89.8% SP | [61] |
PLEKHS1 | mutation, gene overexpression | unknown function | 84% SN, 96% SP | [62] |
Gene | Modification | Affected Variable | Statistical Significance | Ref. |
---|---|---|---|---|
PCDH17, POU4F2, PENK | hypermethylation | detection | 87% SN/97% SP | [98] |
TWIST1 hTERT | hypermethylation | recurrence/ progression | found in 66.67%/80% found in 83.34%/80% | [99] |
DMRTA2 | hypermethylation | detection and recurrence | 82.9% SN/92.5% SP | [101] |
OTX1 + FGFR3, TERT | hypermethylation gene mutation | recurrence/ prognosis | SN 57%—LG-NMIBCSN 83%—T1 and higher | [103] |
ONECUT2 + HOXA9, PCDH17, POU4F2 | hypermethylation | detection/ progression | 90.5% SN/73.2% SP | [105] |
ONECUT 2 + OSR1, SIM2, OTX1, MEIS1 | hypermethylation | detection/ progression | 82% SN/82% SP/ 0.84 AUC | [106] |
VIM + GDF15, TMEFF2 | hypermethylation | detection | tissue SN/SP—100% urine SN/SP—94%/100% | [109] |
VIM + CDH1, SALL3, THBS1, TMEFF2, GDF15 | hypermethylation | detection | 89% SN/74% SP | [110] |
VIM miR-663a | hypermethylation | BC discrimination | 87% SN/86% SP 80% SN/75% SP | [111] |
cg21472506 and cg11437784 | methylation level | BC discrimination surveillance | 90% SN/83.1% SP | [112] |
Micro RNA | Role | Expression | Target Gene | Phenotype |
---|---|---|---|---|
miR-143 | Tumor suppressor | downregulated | Ras | All grades |
miR-129 | Proto-oncogene | downregulated | SOX4 | High grade |
miR-222 | Proto-oncogene | upregulated | PUMA | - |
miR-21 | Proto-oncogene | upregulated | VEGF-C | All grades |
miR-200 | Tumor suppressor | downregulated | EMT | invasive |
miR-205-5p | - | downregulated | PTEN, VEGF-A | All grades |
miR-203 | Tumor suppressor | downregulated | Bcl-w | All grades |
circRNA | miRNA | Function | Target Gene | Expression |
---|---|---|---|---|
ITCH | miR-17, miR-224 | apoptosis | P21, PTEN | downregulated |
CIRC0068307 | MIR147 | stemness | C-Myc | upregulated |
NR3C1 | miR-27a-3p | Inhibit proliferation | cyclinD1 | downregulated |
BCRC-3 | miR-182-5p | Inhibit invasive | P27 | downregulated |
Circ0058063 | miR-145-5p | proliferation | CDK6 | upregulated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harsanyi, S.; Novakova, Z.V.; Bevizova, K.; Danisovic, L.; Ziaran, S. Biomarkers of Bladder Cancer: Cell-Free DNA, Epigenetic Modifications and Non-Coding RNAs. Int. J. Mol. Sci. 2022, 23, 13206. https://doi.org/10.3390/ijms232113206
Harsanyi S, Novakova ZV, Bevizova K, Danisovic L, Ziaran S. Biomarkers of Bladder Cancer: Cell-Free DNA, Epigenetic Modifications and Non-Coding RNAs. International Journal of Molecular Sciences. 2022; 23(21):13206. https://doi.org/10.3390/ijms232113206
Chicago/Turabian StyleHarsanyi, Stefan, Zuzana Varchulova Novakova, Katarina Bevizova, Lubos Danisovic, and Stanislav Ziaran. 2022. "Biomarkers of Bladder Cancer: Cell-Free DNA, Epigenetic Modifications and Non-Coding RNAs" International Journal of Molecular Sciences 23, no. 21: 13206. https://doi.org/10.3390/ijms232113206
APA StyleHarsanyi, S., Novakova, Z. V., Bevizova, K., Danisovic, L., & Ziaran, S. (2022). Biomarkers of Bladder Cancer: Cell-Free DNA, Epigenetic Modifications and Non-Coding RNAs. International Journal of Molecular Sciences, 23(21), 13206. https://doi.org/10.3390/ijms232113206