Potent Alkaline Phosphatase Inhibitors, Pyrazolo-Oxothiazolidines: Synthesis, Biological Evaluation, Molecular Docking, and Kinetic Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluations
2.2.1. Alkaline Phosphatase Activity and Structural Activity Relationship (SAR)
2.2.2. Kinetic Mechanism for CIAP
2.2.3. Free Radical Scavenging Activity
2.2.4. Cell Viability
2.3. In Silico
2.3.1. Biochemical Properties and Lipinski’s Rule of Five (RO5) Validation
2.3.2. Structural Analysis and Physiochemical Properties of ALP
2.3.3. Binding Energy Evaluation of Compounds
2.3.4. Binding Interaction of 7g against ALP
3. Methods and Materials
3.1. Chemicals and Instruments
3.2. General Procedure for the Synthesis of the Compounds
3.2.1. Procedure for Synthesis of Chalcones (3a–3n)
3.2.2. Procedure for Synthesis of 1-Thiocarbamoyl Pyrazole Derivatives (5a–5n)
3.2.3. Procedure for Synthesis of 1-Thiazolyl-2-Pyrazoline Derivatives (7a–7n)
Ethyl-2-(2-(5-(4-bromophenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7a)
Ethyl-2-(4-oxo-2-(3-phenyl-5-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-5(4H)-ylidene)acetate (7b)
Ethyl-2-(2-(5-(4-methoxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7c)
Ethyl-2-(2-(5-(4-(benzyloxy)-3-methoxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7d)
Ethyl-2-(2-(3-(4-methoxyphenyl)-5-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7e)
Ethyl-2-(2-(5-(2,4-dichlorophenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7f)
Ethyl-2-(2-(5-(4-(benzyloxy)-3-methoxyphenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7g)
Ethyl-2-(2-(5-(4-bromophenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7h)
Ethyl-2-(2-(5-(4-fluorophenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7i)
Ethyl-2-(2-(3-(4-methoxyphenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7j)
Ethyl-2-(2-(3,5-bis(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7k)
Ethyl-2-(2-(5-(4-chlorophenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7l)
Ethyl-2-(2-(5-(4-chlorophenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7m)
Ethyl-2-(2-(3,5-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-oxothiazol-5(4H)-ylidene)acetate (7n)
3.3. Biology
3.3.1. Alkaline Phosphatase Inhibition Assay
3.3.2. Kinetic Mechanism Analysis
3.3.3. Free Radical Scavenging Assay
3.3.4. Cell Culture and Treatment of Compounds
3.3.5. Cell Viability
3.4. Computational Methodology
3.4.1. Chemoinformatic Analysis of Designed Ligands
3.4.2. Retrieval of Alkaline Phosphate Structure from PDB
3.4.3. Designing of Ligands and Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, T.-C.; Wang, J.-K.; Hung, M.-W.; Chiao, C.-H.; Tsai, L.-C.; Chang, G.G. Regulation of the Expression of Alkaline Phosphatase in a Human Breast-Cancer Cell Line. Biochem. J. 1994, 303, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whyte, M.P.; Landt, M.; Ryan, L.M.; Mulivor, R.A.; Henthorn, P.S.; Fedde, K.N.; Mahuren, J.D.; Coburn, S.P. Alkaline Phosphatase: Placental and Tissue-Nonspecific Isoenzymes Hydrolyze Phosphoethanolamine, Inorganic Pyrophosphate, and Pyridoxal 5’-Phosphate. Substrate Accumulation in Carriers of Hypophosphatasia Corrects during Pregnancy. J. Clin. Invest. 1995, 95, 1440–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McComb, R.B.; Bowers, G.N.; Posen, S. Alkaline Phosphatase; Springer: New York, NY, USA, 1979. [Google Scholar]
- Tsai, L.; Hung, M.; Chen, Y.; Su, W.; Chang, G.; Chang, T. Expression and Regulation of Alkaline Phosphatases in Human Breast Cancer MCF-7 Cells. Eur. J. Biochem. 2000, 267, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.J.; Henthorn, P.S.; Lafferty, M.A.; Slaughter, C.; Raducha, M.; Harris, H. Isolation and Characterization of a CDNA Encoding a Human Liver/Bone/Kidney-Type Alkaline Phosphatase. Proc. Natl. Acad. Sci. USA 1986, 83, 7182–7186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, U.; Singh, S.K.; Pal, D.; Khajuria, R.; Mandal, A.K.; Prasad, R. Implication of BBM Lipid Composition and Fluidity in Mitigated Alkaline Phosphatase Activity in Renal Cell Carcinoma. Mol. Cell. Biochem. 2012, 369, 287–293. [Google Scholar] [CrossRef]
- Benham, F.; Cottell, D.C.; Franks, L.M.; Wilson, P.D. Alkaline Phosphatase Activity in Human Bladder Tumor Cell Lines. J. Histochem. Cytochem. 1977, 25, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Mornet, E.; Stura, E.; Lia-Baldini, A.-S.; Stigbrand, T.; Ménez, A.; Le Du, M.-H. Structural Evidence for a Functional Role of Human Tissue Nonspecific Alkaline Phosphatase in Bone Mineralization. J. Biol. Chem. 2001, 276, 31171–31178. [Google Scholar] [CrossRef] [Green Version]
- Millán, J.L. Alkaline Phosphatases. Purinergic Signal. 2006, 2, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.E.; Wyckoff, H.W. Reaction Mechanism of Alkaline Phosphatase Based on Crystal Structures: Two-Metal Ion Catalysis. J. Mol. Biol. 1991, 218, 449–464. [Google Scholar] [CrossRef]
- Coleman, J.E. Structure and Mechanism of Alkaline Phosphatase. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 441–483. [Google Scholar] [CrossRef]
- Hoylaerts, M.F.; Manes, T.; Millán, J.L. Mammalian Alkaline Phosphatases Are Allosteric Enzymes. J. Biol. Chem. 1997, 272, 22781–22787. [Google Scholar] [PubMed] [Green Version]
- Sligbrand, T. Present Status and Future Trends of Human Alkaline Phosphatases. Prog Clin Biol Res 1984, 166, 3–14. [Google Scholar]
- Harris, H. The Human Alkaline Phosphatases: What We Know and What We Don’t Know. Clin. Chim. Acta 1990, 186, 133–150. [Google Scholar] [PubMed]
- Vincent, J.B.; Crowder, M.W.; Averill, B.A. Hydrolysis of Phosphate Monoesters: A Biological Problem with Multiple Chemical Solutions. Trends Biochem. Sci. 1992, 17, 105–110. [Google Scholar]
- Patel, P.; Mendall, M.A.; Carrington, D.; Strachan, D.P.; Leatham, E.; Molineaux, N.; Levy, J.; Blakeston, C.; Seymour, C.A.; Camm, A.J. Association of Helicobacter Pylori and Chlamydia Pneumoniae Infections with Coronary Heart Disease and Cardiovascular Risk Factors. BMJ 1995, 311, 711–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schepeler, T.; Reinert, J.T.; Ostenfeld, M.S.; Christensen, L.L.; Silahtaroglu, A.N.; Dyrskjøt, L.; Wiuf, C.; Sørensen, F.J.; Kruhøffer, M.; Laurberg, S. Diagnostic and Prognostic MicroRNAs in Stage II Colon Cancer. Cancer Res. 2008, 68, 6416–6424. [Google Scholar] [PubMed] [Green Version]
- Lallès, J.-P. Intestinal Alkaline Phosphatase: Novel Functions and Protective Effects. Nutr. Rev. 2014, 72, 82–94. [Google Scholar]
- Hoylaerts, M.F.; Manes, T.; Millán, J.L. Molecular Mechanism of Uncompetitive Inhibition of Human Placental and Germ-Cell Alkaline Phosphatase. Biochem. J. 1992, 286, 23–30. [Google Scholar]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver Enzyme Alteration: A Guide for Clinicians. Cmaj 2005, 172, 367–379. [Google Scholar]
- Ashraf, J.; Mughal, E.U.; Alsantali, R.I.; Sadiq, A.; Jassas, R.S.; Naeem, N.; Ashraf, Z.; Nazir, Y.; Zafar, M.N.; Mumtaz, A. 2-Benzylidenebenzofuran-3 (2 H)-Ones as a New Class of Alkaline Phosphatase Inhibitors: Synthesis, SAR Analysis, Enzyme Inhibitory Kinetics and Computational Studies. RSC Adv. 2021, 11, 35077–35092. [Google Scholar] [CrossRef]
- Fishman, W.H.; Green, S.; Inglis, N.I. L-Phenylalanine: An Organ Specific, Stereo-Specific Inhibitor of Human Intestinal Alkaline Phosphatase. Nature 1963, 198, 685–686. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Ibrar, A.; Ejaz, S.A.; Khan, S.U.; Shah, S.J.A.; Hameed, S.; Simpson, J.; Lecka, J.; Sévigny, J.; Iqbal, J. Influence of the Diversified Structural Variations at the Imine Functionality of 4-Bromophenylacetic Acid Derived Hydrazones on Alkaline Phosphatase Inhibition: Synthesis and Molecular Modelling Studies. RSC Adv. 2015, 5, 90806–90818. [Google Scholar] [CrossRef]
- Miliutina, M.; Ejaz, S.A.; Iaroshenko, V.O.; Villinger, A.; Iqbal, J.; Langer, P. Synthesis of 3, 3′-Carbonyl-Bis (Chromones) and Their Activity as Mammalian Alkaline Phosphatase Inhibitors. Org. Biomol. Chem. 2016, 14, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Shah, S.J.A.; Ejaz, S.A.; Ibrar, A.; Hameed, S.; Lecka, J.; Millán, J.L.; Sévigny, J.; Iqbal, J. Investigation of Quinoline-4-Carboxylic Acid as a Highly Potent Scaffold for the Development of Alkaline Phosphatase Inhibitors: Synthesis, SAR Analysis and Molecular Modelling Studies. RSC Adv. 2015, 5, 64404–64413. [Google Scholar] [CrossRef]
- Al-Rashida, M.; Iqbal, J. Inhibition of Alkaline Phosphatase: An Emerging New Drug Target. Mini Rev. Med. Chem. 2015, 15, 41–51. [Google Scholar] [CrossRef]
- Channar, P.A.; Irum, H.; Mahmood, A.; Shabir, G.; Zaib, S.; Saeed, A.; Ashraf, Z.; Larik, F.A.; Lecka, J.; Sevigny, J. Design, Synthesis and Biological Evaluation of Trinary Benzocoumarin-Thiazoles-Azomethines Derivatives as Effective and Selective Inhibitors of Alkaline Phosphatase. Bioorg. Chem. 2019, 91, 103137. [Google Scholar] [CrossRef]
- Dua, R.; Shrivastava, S.; Sonwane, S.K.; Srivastava, S.K. Pharmacological Significance of Synthetic Heterocycles Scaffold: A Review. Adv. Biol. Res. 2011, 5, 120–144. [Google Scholar]
- Ziarani, G.M.; Nasab, N.H.; Rahimifard, M.; Soorki, A.A. One-Pot Synthesis of Pyrido [2, 3-d] Pyrimidine Derivatives Using Sulfonic Acid Functionalized SBA-15 and the Study on Their Antimicrobial Activities. J. Saudi Chem. Soc. 2015, 19, 676–681. [Google Scholar] [CrossRef] [Green Version]
- Nasab, N.H.; Safari, J. Synthesis of a Wide Range of Biologically Important Spiropyrans and Spiroacenaphthylenes, Using NiFe2O4@ SiO2@ Melamine Magnetic Nanoparticles as an Efficient, Green and Reusable Nanocatalyst. J. Mol. Struct. 2019, 1193, 118–124. [Google Scholar] [CrossRef]
- Nasab, N.H.; Safari, J. An Efficient Protocol for the Synthesis of Spiroindenoquinoxaline Derivatives Using Novel NiFe2O4/Ag3PO4 as a Nano Magnetically Heterogeneous Catalyst. Polyhedron 2019, 164, 74–79. [Google Scholar] [CrossRef]
- Hosseini Nasab, N.; Han, Y.; Hassan Shah, F.; Vanjare, B.D.; Kim, S.J. Synthesis, Biological Evaluation, Migratory Inhibition and Docking Study of Indenopyrazolones as Potential Anticancer Agents. Chem. Biodivers. 2022, 19, e202200399. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.-C.; Sun, J.; Luo, Y.; Yang, Y.; Zhu, H.-L. Design, Synthesis, and Structure–Activity Relationships of Pyrazole Derivatives as Potential FabH Inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 4657–4660. [Google Scholar] [PubMed]
- Ragavan, R.V.; Vijayakumar, V.; Kumari, N.S. Synthesis and Antimicrobial Activities of Novel 1, 5-Diaryl Pyrazoles. Eur. J. Med. Chem. 2010, 45, 1173–1180. [Google Scholar] [PubMed]
- Keter, F.K.; Darkwa, J. Perspective: The Potential of Pyrazole-Based Compounds in Medicine. Biometals 2012, 25, 9–21. [Google Scholar] [CrossRef]
- Sánchez-Moreno, M.; Gómez-Contreras, F.; Navarro, P.; Marín, C.; Ramírez-Macías, I.; Olmo, F.; Sanz, A.M.; Campayo, L.; Cano, C.; Yunta, M.J.R. In Vitro Leishmanicidal Activity of Imidazole-or Pyrazole-Based Benzo [g] Phthalazine Derivatives against Leishmania Infantum and Leishmania Braziliensis Species. J. Antimicrob. Chemother. 2012, 67, 387–397. [Google Scholar]
- Jorda, R.; Sacerdoti-Sierra, N.; Voller, J.; Havlíček, L.; Kráčalíková, K.; Nowicki, M.W.; Nasereddin, A.; Kryštof, V.; Strnad, M.; Walkinshaw, M.D. Anti-Leishmanial Activity of Disubstituted Purines and Related Pyrazolo [4, 3-d] Pyrimidines. Bioorg. Med. Chem. Lett. 2011, 21, 4233–4237. [Google Scholar]
- Estevez, Y.; Quiliano, M.; Burguete, A.; Cabanillas, B.; Zimic, M.; Málaga, E.; Verástegui, M.; Pérez-Silanes, S.; Aldana, I.; Monge, A. Trypanocidal Properties, Structure–Activity Relationship and Computational Studies of Quinoxaline 1, 4-Di-N-Oxide Derivatives. Exp. Parasitol. 2011, 127, 745–751. [Google Scholar]
- Fustero, S.; Román, R.; Sanz-Cervera, J.F.; Simón-Fuentes, A.; Bueno, J.; Villanova, S. Synthesis of New Fluorinated Tebufenpyrad Analogs with Acaricidal Activity through Regioselective Pyrazole Formation. J. Org. Chem 2008, 73, 8545–8552. [Google Scholar]
- Sharon, A.; Pratap, R.; Tiwari, P.; Srivastava, A.; Maulik, P.R.; Ram, V.J. Synthesis and in Vivo Antihyperglycemic Activity of 5-(1H-Pyrazol-3-Yl) Methyl-1H-Tetrazoles. Bioorg. Med. Chem. Lett. 2005, 15, 2115–2117. [Google Scholar] [CrossRef]
- Rosa, F.A.; Machado, P.; Vargas, P.S.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Straightforward and Regiospecific Synthesis of Pyrazole-5-Carboxylates from Unsymmetrical Enaminodiketones. Synlett 2008, 2008, 1673–1678. [Google Scholar]
- Brown, F.C. 4-Thiazolidinones. Chem. Rev. 1961, 61, 463–521. [Google Scholar] [CrossRef]
- Song, Y.-X.; Du, D.-M. Recent Advances in the Catalytic Asymmetric Reactions of Thiazolone Derivatives. Org. Biomol. Chem. 2020, 18, 6018–6041. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, C.; Gupta, T.K.; Parmar, S.S. Substituted Thiazolidones as Anticonvulsants. J. Med. Chem. 1972, 15, 553–554. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, M.; Parmar, S.S.; Chaudhary, S.K.; Chaturvedi, A.K.; Sastry, B.V.R. CNS Depressant Activity of Pyrimidylthiazolidones and Their Selective Inhibition of NAD-dependent Pyruvate Oxidation. J. Pharm. Sci. 1976, 65, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Babaoglu, K.; Page, M.A.; Jones, V.C.; McNeil, M.R.; Dong, C.; Naismith, J.H.; Lee, R.E. Novel Inhibitors of an Emerging Target in Mycobacterium Tuberculosis; Substituted Thiazolidinones as Inhibitors of DTDP-Rhamnose Synthesis. Bioorg. Med. Chem. Lett. 2003, 13, 3227–3230. [Google Scholar] [CrossRef]
- Kavitha, C.V.; Swamy, S.N.; Mantelingu, K.; Doreswamy, S.; Sridhar, M.A.; Prasad, J.S.; Rangappa, K.S. Synthesis of New Bioactive Venlafaxine Analogs: Novel Thiazolidin-4-Ones as Antimicrobials. Bioorg. Med. Chem. 2006, 14, 2290–2299. [Google Scholar] [CrossRef]
- Gududuru, V.; Hurh, E.; Dalton, J.T.; Miller, D.D. Synthesis and Antiproliferative Activity of 2-Aryl-4-Oxo-Thiazolidin-3-Yl-Amides for Prostate Cancer. Bioorg. Med. Chem. Lett. 2004, 14, 5289–5293. [Google Scholar] [CrossRef]
- Fu, J.-Y.; Masferrer, J.L.; Seibert, K.; Raz, A.; Needleman, P. The Induction and Suppression of Prostaglandin H2 Synthase (Cyclooxygenase) in Human Monocytes. J. Biol. Chem. 1990, 265, 16737–16740. [Google Scholar] [CrossRef]
- Havrylyuk, D.; Roman, O.; Lesyk, R. Synthetic Approaches, Structure Activity Relationship and Biological Applications for Pharmacologically Attractive Pyrazole/Pyrazoline–Thiazolidine-Based Hybrids. Eur. J. Med. Chem. 2016, 113, 145–166. [Google Scholar] [CrossRef]
- Yuan, J.; Yuan, C.; Degterev, A. Unsaturated Heterocyclic Inhibitors of Necroptosis. WO2010075290A1, 2010. [Google Scholar]
- Mustelin, T.; Tautz, L. VHR Protein Tyrosine Phosphatase Inhibitors, Compositions and Methods of Use. US20090105254, 2012. [Google Scholar]
- Bao, L.; Kimzey, A. Pin1-Modulating Compounds and Methods of Use for the Treatment of Pin1-Associated Diseases, Including Cancer. WO 2004093803, 2004. [Google Scholar]
- Ryder, S. Compounds for Modulating Rna Binding Proteins and Uses Therefor. WO 2010151799, 2011. [Google Scholar]
- Carter, P.H.; Scherle, P.A.; Muckelbauer, J.A.; Voss, M.E.; Liu, R.-Q.; Thompson, L.A.; Tebben, A.J.; Solomon, K.A.; Lo, Y.C.; Li, Z. Photochemically Enhanced Binding of Small Molecules to the Tumor Necrosis Factor Receptor-1 Inhibits the Binding of TNF-α. Proc. Natl. Acad. Sci. USA 2001, 98, 11879–11884. [Google Scholar] [CrossRef] [Green Version]
- Furdas, S.D.; Shekfeh, S.; Kannan, S.; Sippl, W.; Jung, M. Rhodanine Carboxylic Acids as Novel Inhibitors of Histone Acetyltransferases. Medchemcomm 2012, 3, 305–311. [Google Scholar] [CrossRef]
- Qiu, K.-M.; Yan, R.; Xing, M.; Wang, H.-H.; Cui, H.-E.; Gong, H.-B.; Zhu, H.-L. Synthesis, Biological Evaluation and Molecular Modeling of Dihydro-Pyrazolyl-Thiazolinone Derivatives as Potential COX-2 Inhibitors. Bioorg. Med. Chem. 2012, 20, 6648–6654. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.M.; Bursavich, M.G.; Lombardi, S.; Georgiadis, K.E.; Reifenberg, E.; Flannery, C.R.; Morris, E.A. 5-((1H-Pyrazol-4-Yl) Methylene)-2-Thioxothiazolidin-4-One Inhibitors of ADAMTS-5. Bioorg. Med. Chem. Lett. 2007, 17, 1189–1192. [Google Scholar] [CrossRef]
- Kadam, R.U.; Roy, N. Recent Trends in Drug-Likeness Prediction: A Comprehensive Review of in Silico Methods. Indian J. Pharm. Sci. 2007, 69, 609–615. [Google Scholar]
- Hassan, M.; Abbasi, M.A.; Siddiqui, S.Z.; Hussain, G.; Shah, S.A.A.; Shahid, M.; Seo, S.-Y. Exploration of Synthetic Multifunctional Amides as New Therapeutic Agents for Alzheimer’s Disease through Enzyme Inhibition, Chemoinformatic Properties, Molecular Docking and Dynamic Simulation Insights. J. Theor. Biol. 2018, 458, 169–183. [Google Scholar] [CrossRef]
- Bakht, M.A.; Yar, M.S.; Abdel-Hamid, S.G.; Al Qasoumi, S.I.; Samad, A. Molecular Properties Prediction, Synthesis and Antimicrobial Activity of Some Newer Oxadiazole Derivatives. Eur. J. Med. Chem. 2010, 45, 5862–5869. [Google Scholar] [CrossRef]
- Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The Application of in Silico Drug-Likeness Predictions in Pharmaceutical Research. Adv. Drug Deliv. Rev. 2015, 86, 2–10. [Google Scholar] [CrossRef]
- Charifson, P.S.; Corkery, J.J.; Murcko, M.A.; Walters, W.P. Consensus Scoring: A Method for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional Structures into Proteins. J. Med. Chem. 1999, 42, 5100–5109. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Z.; Iqbal, A.; Ashraf, Z.; Latif, M.; Hassan, M.; Nadeem, H. Synthesis and Docking Studies of N-(5-(Alkylthio)-1, 3, 4-oxadiazol-2-yl) Methyl) Benzamide Analogues as Potential Alkaline Phosphatase Inhibitors. Drug Dev. Res. 2019, 80, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.; Saddique, G.; Channar, P.A.; Larik, F.A.; Abbas, Q.; Hassan, M.; Raza, H.; Fattah, T.A.; Seo, S.-Y. Synthesis of Sulfadiazinyl Acyl/Aryl Thiourea Derivatives as Calf Intestinal Alkaline Phosphatase Inhibitors, Pharmacokinetic Properties, Lead Optimization, Lineweaver-Burk Plot Evaluation and Binding Analysis. Bioorg. Med. Chem. 2018, 26, 3707–3715. [Google Scholar]
- Özdemir, A.; Sever, B.; Altıntop, M.D.; Kaya Tilki, E.; Dikmen, M. Design, Synthesis, and Neuroprotective Effects of a Series of Pyrazolines against 6-Hydroxydopamine-Induced Oxidative Stress. Molecules 2018, 23, 2151. [Google Scholar] [CrossRef] [Green Version]
- Altıntop, M.D.; Özdemir, A.; Turan-Zitouni, G.; Ilgın, S.; Atlı, Ö.; Demirel, R.; Kaplancıklı, Z.A. A Novel Series of Thiazolyl–Pyrazoline Derivatives: Synthesis and Evaluation of Antifungal Activity, Cytotoxicity and Genotoxicity. Eur. J. Med. Chem. 2015, 92, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.A.; Nazir, M.; Siddiqui, S.Z.; Raza, H.; Zafar, A.; Shah, S.A.A.; Shahid, M. Synthesis, In Vitro, and In Silico Studies of N-(Substituted-Phenyl)-3-(4-Phenyl-1-Piperazinyl) Propanamides as Potent Alkaline Phosphatase Inhibitors. Russ. J. Bioorganic Chem. 2021, 47, 1086–1096. [Google Scholar] [CrossRef]
- Berkman, S.J.; Roscoe, E.M.; Bourret, J.C. Comparing Self-directed Methods for Training Staff to Create Graphs Using Graphpad Prism. J. Appl. Behav. Anal. 2019, 52, 188–204. [Google Scholar] [PubMed]
- Abbasi, M.A.; Nazir, M.; ur-Rehman, A.; Siddiqui, S.Z.; Hassan, M.; Raza, H.; Shah, S.A.A.; Shahid, M.; Seo, S. Bi-heterocyclic Benzamides as Alkaline Phosphatase Inhibitors: Mechanistic Comprehensions through Kinetics and Computational Approaches. Arch. Pharm. (Weinheim). 2019, 352, 1800278. [Google Scholar] [CrossRef]
- Abbas, Q.; Ashraf, Z.; Hassan, M.; Nadeem, H.; Latif, M.; Afzal, S.; Seo, S.-Y. Development of Highly Potent Melanogenesis Inhibitor by in Vitro, in Vivo and Computational Studies. Drug Des. Devel. Ther. 2017, 11, 2029. [Google Scholar]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Discovery, S. DS Visualizer and ActiveX Control 2008.
- Willard, L.; Ranjan, A.; Zhang, H.; Monzavi, H.; Boyko, R.F.; Sykes, B.D.; Wishart, D.S. VADAR: A Web Server for Quantitative Evaluation of Protein Structure Quality. Nucleic Acids Res. 2003, 31, 3316–3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. In Chemical Biology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 243–250. [Google Scholar]
- Gottlieb, H.E.; Kotlyar, V.; Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 1997, 62, 7512–7515. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | R | R′ | Alkaline Phosphatase IC50 ± SEM (μM) |
---|---|---|---|---|
1 | 7a | H | 4-Br | 0.053 ± 0.001 |
2 | 7b | H | 4-CH3 | 2.298 ± 0.151 |
3 | 7c | H | 4-OCH3 | 0.198 ± 0.018 |
4 | 7d | H | 3-OCH3-4-OCH2C6H5 | 0.293 ± 0.039 |
5 | 7e | OCH3 | 4-CH3 | 0.228 ± 0.012 |
6 | 7f | OCH3 | 2,4-Cl2 | 0.566 ± 0.048 |
7 | 7g | OCH3 | 3-OCH3-4-OCH2C6H5 | 0.045 ± 0.004 |
8 | 7h | OCH3 | 4-Br | 0.907 ± 0.041 |
9 | 7i | OCH3 | 4-F | 0.315 ± 0.017 |
10 | 7j | OCH3 | H | 0.434 ± 0.011 |
11 | 7k | OCH3 | 4-OCH3 | 0.075 ± 0.005 |
12 | 7l | H | 4-Cl | 0.051 ± 0.019 |
13 | 7m | OCH3 | 4-Cl | 0.302 ± 0.004 |
14 | 7n | H | H | 2.987 ± 0.734 |
15 | KH2PO4 | 5.242 ± 0.472 |
Concentrations (µM) | Vmax (ΔA/Min) | Km (mM) | Inhibition Type | Ki (µM) |
---|---|---|---|---|
0.000 | 0.0023 | 0.5 | Non-Competitive | 0.093 |
0.023 | 0.0014 | 0.5 | ||
0.045 | 0.0011 | 0.5 | ||
0.091 | 0.0009 | 0.5 |
Ligands | Mol. Weight (g/mol) | No. HBA | No. HBD | Mol. LogP | MolPSA (A2) | Mol. Vol (A3) | Drug Likeness Score |
---|---|---|---|---|---|---|---|
7a | 483 | 6 | 0 | 5.46 | 56 | 430 | 0.09 |
7b | 419 | 6 | 0 | 5.07 | 56 | 429 | −0.01 |
7c | 435 | 7 | 0 | 4.58 | 56 | 429 | 0.07 |
7d | 541 | 8 | 0 | 5.83 | 71 | 545 | 0.02 |
7e | 449 | 7 | 0 | 5.14 | 63 | 461 | 0.00 |
7f | 503 | 7 | 0 | 6.14 | 63 | 475 | 0.58 |
7g | 571 | 9 | 0 | 5.91 | 78 | 577 | 0.04 |
7h | 513 | 7 | 0 | 5.54 | 63 | 462 | 0.14 |
7i | 453 | 7 | 0 | 4.76 | 63 | 446 | 0.32 |
7j | 435 | 7 | 0 | 4.70 | 63 | 440 | 0.07 |
7k | 465 | 8 | 0 | 4.65 | 71 | 472 | 0.07 |
7l | 439 | 6 | 0 | 5.22 | 56 | 426 | 0.44 |
7m | 469 | 7 | 0 | 5.29 | 63 | 457 | 0.52 |
7n | 405 | 6 | 0 | 4.62 | 56 | 408 | −0.26 |
Docking Complexes | Docking Energy (Kcal/mol) |
---|---|
ALP_7a | −7.8 |
ALP_7b | −7.9 |
ALP_7c | −7.7 |
ALP_7d | −8.3 |
ALP_7e | −7.9 |
ALP_7f | −8 |
ALP_7g | −8.1 |
ALP_7h | −7.5 |
ALP_7i | −7.9 |
ALP_7j | −7.9 |
ALP_7k | −7.7 |
ALP_7l | −7.9 |
ALP_7m | −7.9 |
ALP_7n | −7.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini Nasab, N.; Raza, H.; Shim, R.S.; Hassan, M.; Kloczkowski, A.; Kim, S.J. Potent Alkaline Phosphatase Inhibitors, Pyrazolo-Oxothiazolidines: Synthesis, Biological Evaluation, Molecular Docking, and Kinetic Studies. Int. J. Mol. Sci. 2022, 23, 13262. https://doi.org/10.3390/ijms232113262
Hosseini Nasab N, Raza H, Shim RS, Hassan M, Kloczkowski A, Kim SJ. Potent Alkaline Phosphatase Inhibitors, Pyrazolo-Oxothiazolidines: Synthesis, Biological Evaluation, Molecular Docking, and Kinetic Studies. International Journal of Molecular Sciences. 2022; 23(21):13262. https://doi.org/10.3390/ijms232113262
Chicago/Turabian StyleHosseini Nasab, Narges, Hussain Raza, Rok Su Shim, Mubashir Hassan, Andrzej Kloczkowski, and Song Ja Kim. 2022. "Potent Alkaline Phosphatase Inhibitors, Pyrazolo-Oxothiazolidines: Synthesis, Biological Evaluation, Molecular Docking, and Kinetic Studies" International Journal of Molecular Sciences 23, no. 21: 13262. https://doi.org/10.3390/ijms232113262
APA StyleHosseini Nasab, N., Raza, H., Shim, R. S., Hassan, M., Kloczkowski, A., & Kim, S. J. (2022). Potent Alkaline Phosphatase Inhibitors, Pyrazolo-Oxothiazolidines: Synthesis, Biological Evaluation, Molecular Docking, and Kinetic Studies. International Journal of Molecular Sciences, 23(21), 13262. https://doi.org/10.3390/ijms232113262