Crystal Structure and Biochemical Analysis of a Cytochrome P450 CYP101D5 from Sphingomonas echinoides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Expression and Purification of CYP101D5
2.2. Determination of P450 Activity and the Substrate Spectrum
2.3. Structure of CYP101D5
2.4. Active Site and Substrate Access Channel of CYP101D5
2.5. Sequence Comparison of CYP101D5 with CYPs from the CYP101 Family
2.6. Structural Characteristics for Substrate Specificity
3. Materials and Methods
3.1. Chemicals and Enzymes
3.2. Sequence Accession Number
3.3. Cloning, Overexpression, and Purification of CYP101D5
3.4. Enzyme Activity Assay
3.5. Kinetics Analysis
3.6. Whole-Cell Bioconversion
3.7. Analytical Methods
3.8. Crystallization, Data Collection, and Structure Determination
3.9. Modeling of CYP101B1
3.10. Substrate Channel Prediction of CYP101D5
3.11. Amino Acid Conservation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solanki, M.; Pointon, A.; Jones, B.; Herbert, K. Cytochrome P450 2J2: Potential Role in Drug Metabolism and Cardiotoxicity. Drug Metab. Dispos. 2018, 46, 1053–1065. [Google Scholar] [CrossRef] [Green Version]
- Badawi, A.F.; Cavalieri, E.L.; Rogan, E.G. Role of Human Cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16α-Hydroxylation of 17β-Estradiol. Metabolism. 2001, 50, 1001–1003. [Google Scholar] [CrossRef] [PubMed]
- Rendic, S.; Di Carlo, F.J. Human Cytochrome P450 Enzymes: A Status Report Summarizing Their Reactions, Substrates, Inducers, and Inhibitors. Drug Metab. Rev. 1997, 29, 413–580. [Google Scholar] [CrossRef] [PubMed]
- Niwa, T.; Murayama, N.; Imagawa, Y.; Yamazaki, H. Regioselective Hydroxylation of Steroid Hormones by Human Cytochromes P450. Drug Metab. Rev. 2015, 47, 89–110. [Google Scholar] [CrossRef]
- Martignoni, M.; Groothuis, G.M.M.; de Kanter, R. Species Differences between Mouse, Rat, Dog, Monkey and Human CYP-Mediated Drug Metabolism, Inhibition and Induction. Expert Opin. Drug Metab. Toxicol. 2006, 2, 875–894. [Google Scholar] [CrossRef]
- Shah, S.; Xue, Q.; Tang, L.; Carney, J.R.; Betlach, M.; Mcdaniel, R. Cloning, Characterization and Heterologous Expression of a Polyketide Synthase and P-450 Oxidase Involved in the Biosynthesis of the Antibiotic Oleandomycin. J. Antibiot. 2000, 53, 502–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greule, A.; Stok, J.E.; De Voss, J.J.; Cryle, M.J. Unrivalled Diversity: The Many Roles and Reactions of Bacterial Cytochromes P450 in Secondary Metabolism. Nat. Prod. Rep. 2018, 35, 757–791. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.L.; Kelly, D.E. Microbial Cytochromes P450: Biodiversity and Biotechnology. Where Do Cytochromes P450 Come from, What Do They Do and What Can They Do for US? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120476. [Google Scholar] [CrossRef] [Green Version]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Nelson, D.R. The Cytochrome P450 Homepage. Hum. Genomics 2009, 4, 59–65. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, Y.; Zhao, J.; Li, Q.; Yu, X.; Acevedo-Rocha, C.G.; Li, A. Bacterial Cytochrome P450-Catalyzed Regio- and Stereoselective Steroid Hydroxylation Enabled by Directed Evolution and Rational Design. Bioresour. Bioprocess. 2020, 7, 2. [Google Scholar] [CrossRef]
- Denisov, I.G.; Makris, T.M.; Sligar, S.G.; Schlichting, I. Structure and Chemistry of Cytochrome P450. Chem. Rev. 2005, 105, 2253–2277. [Google Scholar] [CrossRef] [PubMed]
- Dangi, B.; Lee, C.W.; Kim, K.H.; Park, S.H.; Yu, E.J.; Jeong, C.S.; Park, H.; Lee, J.H.; Oh, T.J. Characterization of Two Steroid Hydroxylases from Different Streptomyces Spp. and Their Ligand-Bound and -Unbound Crystal Structures. FEBS J. 2019, 286, 1683–1699. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Lee, C.W.; Dangi, B.; Park, S.H.; Park, H.; Oh, T.J.; Lee, J.H. Crystal Structure and Functional Characterization of a Cytochrome P450 (BaCYP106A2) from Bacillus Sp. PAMC 23377. J. Microbiol. Biotechnol. 2017, 27, 1472–1482. [Google Scholar] [CrossRef]
- Kwon, S.; Lee, C.W.; Koh, H.Y.; Park, H.; Lee, J.H.; Park, H.H. Crystal Structure of the Reactive Intermediate/Imine Deaminase A Homolog from the Antarctic Bacterium Psychrobacter Sp. PAMC 21119. Biochem. Biophys. Res. Commun. 2020, 522, 585–591. [Google Scholar] [CrossRef]
- Lee, C.W.; Yu, S.C.; Lee, J.H.; Park, S.H.; Park, H.; Oh, T.J.; Lee, J.H. Crystal Structure of a Putative Cytochrome P450 Alkane Hydroxylase (CYP153D17) from Sphingomonas sp. PAMC 26605 and Its Conformational Substrate Binding. Int. J. Mol. Sci. 2016, 17, 2067. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.G.; Wong, L.L. P450 Enzymes from the Bacterium Novosphingobium Aromaticivorans. Biochem. Biophys. Res. Commun. 2007, 360, 666–672. [Google Scholar] [CrossRef]
- Yang, W.; Bell, S.G.; Wang, H.; Zhou, W.; Hoskins, N.; Dale, A.; Bartlam, M.; Wong, L.L.; Rao, Z. Molecular Characterization of a Class I P450 Electron Transfer System from Novosphingobium Aromaticivorans DSM12444. J. Biol. Chem. 2010, 285, 27372–27384. [Google Scholar] [CrossRef] [Green Version]
- Mak, P.J.; Denisov, I.G. Spectroscopic Studies of the Cytochrome P450 Reaction Mechanisms. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 178–204. [Google Scholar] [CrossRef]
- Ma, M.; Bell, S.G.; Yang, W.; Hao, Y.; Rees, N.H.; Bartlam, M.; Zhou, W.; Wong, L.L.; Rao, Z. Structural Analysis of CYP101C1 from Novosphingobium Aromaticivorans DSM12444. ChemBioChem 2011, 12, 88–99. [Google Scholar] [CrossRef]
- Hall, E.A.; Bell, S.G. The Efficient and Selective Biocatalytic Oxidation of Norisoprenoid and Aromatic Substrates by CYP101B1 from Novosphingobium Aromaticivorans DSM12444. RSC Adv. 2015, 5, 5762–5773. [Google Scholar] [CrossRef] [Green Version]
- Zehentgruber, D.; Urlacher, V.B.; Lütz, S. Studies on the Enantioselective Oxidation of β-Ionone with a Whole E. Coli System Expressing Cytochrome P450 Monooxygenase BM3. J. Mol. Catal. B Enzym. 2012, 84, 62–64. [Google Scholar] [CrossRef]
- Çelik, A.; Flitsch, S.L.; Turner, N.J. Efficient Terpene Hydroxylation Catalysts Based upon P450 Enzymes Derived from Actinomycetes. Org. Biomol. Chem. 2005, 3, 2930–2934. [Google Scholar] [CrossRef] [PubMed]
- Girhard, M.; Klaus, T.; Khatri, Y.; Bernhardt, R.; Urlacher, V.B. Characterization of the Versatile Monooxygenase CYP109B1 from Bacillus Subtilis. Appl. Microbiol. Biotechnol. 2010, 87, 595–607. [Google Scholar] [CrossRef]
- Khatri, Y.; Girhard, M.; Romankiewicz, A.; Ringle, M.; Hannemann, F.; Urlacher, V.B.; Hutter, M.C.; Bernhardt, R. Regioselective Hydroxylation of Norisoprenoids by CYP109D1 from Sorangium Cellulosum so Ce56. Appl. Microbiol. Biotechnol. 2010, 88, 485–495. [Google Scholar] [CrossRef]
- Wong, S.H.; Bell, S.G.; De Voss, J.J. P450 Catalysed Dehydrogenation. Pure Appl. Chem. 2017, 89, 841–852. [Google Scholar] [CrossRef]
- Ly, T.T.B.; Khatri, Y.; Zapp, J.; Hutter, M.C.; Bernhardt, R. CYP264B1 from Sorangium Cellulosum so Ce56: A Fascinating Norisoprenoid and Sesquiterpene Hydroxylase. Appl. Microbiol. Biotechnol. 2012, 95, 123–133. [Google Scholar] [CrossRef]
- Putkaradze, N.; Litzenburger, M.; Abdulmughni, A.; Milhim, M.; Brill, E.; Hannemann, F.; Bernhardt, R. CYP109E1 Is a Novel Versatile Statin and Terpene Oxidase from Bacillus Megaterium. Appl. Microbiol. Biotechnol. 2017, 101, 8379–8393. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Hayashi, Y.; Arita, M.; Hieda, T.; Mikamit, Y. Microbial Conversion of AcIonone, OL-Methylionone, and a-Isomethylionone. Appl. Environ. Microbiol. 1988, 54, 2354–2360. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.L.; Pandey, R.P.; Jung, N.; Jung, H.J.; Kim, E.H.; Sohng, J.K. Hydroxylation of Diverse Flavonoids by CYP450 BM3 Variants: Biosynthesis of Eriodictyol from Naringenin in Whole Cells and Its Biological Activities. Microb. Cell Fact. 2016, 15, 135. [Google Scholar] [CrossRef]
- Encarnación, D.R.; Nogueiras, C.L.; Salinas, V.H.A.; Anthoni, U.; Nielsen, P.H.; Christophersen, C. Isolation of Eriodictyol Identical with Huazhongilexone from Solanum Hindsianum. Acta Chem. Scand. 1999, 53, 375–377. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, J.H.; Song, H.; Seok, J.K.; Hong, S.S.; Boo, Y.C. Luteolin 7-Sulfate Attenuates Melanin Synthesis through Inhibition of CREB- and MITF-Mediated Tyrosinase Expression. Antioxidants 2019, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Khajamohiddin Syed, J.S.Y. P450 Monooxygenases (P450ome) of the Model White Rot Fungus Phanerochaete chrysosporiu. Crit. Rev. Microbiol. 2012, 23, 339–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaltenbach, M.; Schröder, G.; Schmelzer, E.; Lutz, V.; Schröder, J. Flavonoid Hydroxylase from Catharanthus Roseus: CDNA, Heterologous Expression, Enzyme Properties and Cell-Type Specific Expression in Plants. Plant J. 1999, 19, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yao, Q.; Ma, Z.; Ikeda, H.; Fushinobu, S.; Xu, L.H. Hydroxylation of Flavanones by Cytochrome P450 105D7 from Streptomyces Avermitilis. J. Mol. Catal. B Enzym. 2016, 132, 91–97. [Google Scholar] [CrossRef]
- Lee, H.; Kim, B.G.; Ahn, J.H. Production of Bioactive Hydroxyflavones by Using Monooxygenase from Saccharothrix Espanaensis. J. Biotechnol. 2014, 176, 11–17. [Google Scholar] [CrossRef]
- Jones, J.A.; Collins, S.M.; Vernacchio, V.R.; Lachance, D.M.; Koffas, M.A.G. Optimization of Naringenin and P-Coumaric Acid Hydroxylation Using the Native E. Coli Hydroxylase Complex, HpaBC. Biotechnol. Prog. 2016, 32, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Vagin, A.; Teplyakov, A. Molecular Replacement with MOLREP. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and Development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Murshudov, G.N.; Skubák, P.; Lebedev, A.A.; Pannu, N.S.; Steiner, R.A.; Nicholls, R.A.; Winn, M.D.; Long, F.; Vagin, A.A. REFMAC5 for the Refinement of Macromolecular Crystal Structures. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 355–367. [Google Scholar] [CrossRef]
- Meharenna, Y.T.; Li, H.; Hawkes, D.B.; Pearson, A.G.; De Voss, J.; Poulos, T.L. Crystal Structure of P450cin in a Complex with Its Substrate, 1,8-Cineole, a Close Structural Homologue to D-Camphor, the Substrate for P450cam. Biochemistry 2004, 43, 9487–9494. [Google Scholar] [CrossRef] [PubMed]
- Brezovsky, J.; Kozlikova, B.; Damborsky, J. Computational Analysis of Protein Tunnels and Channels. Methods Mol. Biol. 2018, 1685, 25–42. [Google Scholar] [CrossRef]
- Wade, R.C.; Winn, P.J.; Schlichting, I. Sudarko A Survey of Active Site Access Channels in Cytochromes P450. J. Inorg. Biochem. 2004, 98, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liu, Q.; Qu, G.; Feng, Y.; Reetz, M.T. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem. Rev. 2019, 119, 1626–1665. [Google Scholar] [CrossRef] [PubMed]
- Moody, S.C.; Loveridge, E.J. CYP105-Diverse Structures, Functions and Roles in an Intriguing Family of Enzymes in Streptomyces. J. Appl. Microbiol. 2014, 117, 1549–1563. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.W.; Lee, J.H.; Rimal, H.; Park, H.; Lee, J.H.; Oh, T.J. Crystal Structure of Cytochrome P450 (CYP105P2) from Streptomyces Peucetius and Its Conformational Changes in Response to Substrate Binding. Int. J. Mol. Sci. 2016, 17, 813. [Google Scholar] [CrossRef] [Green Version]
- Poulos, T.L.; Finzel, B.C.; Howard, A.J. High-Resolution Crystal Structure of Cytochrome P450cam. J. Mol. Biol. 1987, 195, 687–700. [Google Scholar] [CrossRef]
- Yang, W.; Bell, S.G.; Wang, H.; Zhou, W.; Bartlam, M.; Wong, L.L.; Rao, Z. The Structure of CYP101D2 Unveils a Potential Path for Substrate Entry into the Active Site. Biochem. J. 2011, 433, 85–93. [Google Scholar] [CrossRef]
- Holm, L.; Rosenström, P. Dali Server: Conservation Mapping in 3D. Nucleic Acids Res. 2010, 38, 545–549. [Google Scholar] [CrossRef]
- Unterweger, B.; Drinkwater, N.; Johanesen, P.; Lyras, D.; Dumsday, G.J.; McGowan, S. X-Ray Crystal Structure of Cytochrome P450 Monooxygenase CYP101J2 from Sphingobium Yanoikuyae Strain B2. Proteins Struct. Funct. Bioinforma. 2017, 85, 945–950. [Google Scholar] [CrossRef]
- Bell, S.G.; Yang, W.; Tan, A.B.H.; Zhou, R.; Johnson, E.O.D.; Zhang, A.; Zhou, W.; Rao, Z.; Wong, L.L. The Crystal Structures of 4-Methoxybenzoate Bound CYP199A2 and CYP199A4: Structural Changes on Substrate Binding and the Identification of an Anion Binding Site. Dalt. Trans. 2012, 41, 8703–8714. [Google Scholar] [CrossRef] [PubMed]
- Cupp-Vickery, J.; Anderson, R.; Hatziris, Z. Crystal Structures of Ligand Complexes of P450eryF Exhibiting Homotropic Cooperativity. Proc. Natl. Acad. Sci. USA 2000, 97, 3050–3055. [Google Scholar] [CrossRef] [PubMed]
- Child, S.A.; Naumann, E.F.; Bruning, J.B.; Bell, S.G. Structural and Functional Characterisation of the Cytochrome P450 Enzyme CYP268A2 from Mycobacterium Marinum. Biochem. J. 2018, 475, 705–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demars, M.D.; Sheng, F.; Park, S.R.; Lowell, A.N.; Podust, L.M.; Sherman, D.H. Biochemical and Structural Characterization of MycCI, a Versatile P450 Biocatalyst from the Mycinamicin Biosynthetic Pathway. ACS Chem. Biol. 2016, 11, 2642–2654. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.R.; Lee, J.H.Z.; Bell, S.G. The Oxidation of Hydrophobic Aromatic Substrates by Using a Variant of the P450 Monooxygenase CYP101B1. ChemBioChem 2017, 18, 2119–2128. [Google Scholar] [CrossRef]
- England, P.A.; Harford-Cross, C.F.; Stevenson, J.A.; Rouch, D.A.; Wong, L.L. The Oxidation of Naphthalene and Pyrene by Cytochrome P450(Cam). FEBS Lett. 1998, 424, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Fowler, S.M.; England, P.A.; Westlake, A.C.G.; Rouch, D.R.; Nickerson, D.P.; Blunt, C.; Braybrook, D.; West, S.; Wong, L.L.; Flitsch, S.L. Cytochrome P-450cam Monooxygenase Can Be Redesigned to Catalyse the Regioselective Aromatic Hydroxylation of Diphenylmethane. J. Chem. Soc. Chem. Commun. 1994, 24, 2761–2762. [Google Scholar] [CrossRef]
- Urlacher, V.B.; Makhsumkhanov, A.; Schmid, R.D. Biotransformation of β-Ionone by Engineered Cytochrome P450 BM-3. Appl. Microbiol. Biotechnol. 2006, 70, 53–59. [Google Scholar] [CrossRef]
- Parisi, G.; Freda, I.; Exertier, C.; Cecchetti, C.; Gugole, E.; Cerutti, G.; D’auria, L.; Macone, A.; Vallone, B.; Savino, C.; et al. Dissecting the Cytochrome P450 Olep Substrate Specificity: Evidence for a Preferential Substrate. Biomolecules 2020, 10, 1411. [Google Scholar] [CrossRef]
- Deprez, E.; Gerber, N.C.; Primo, C.D.; Douzou, P.; Sligar, S.G.; Hui Bon Hoa, G. Electrostatic Control of the Substrate Access Channel in Cytochrome P-450cam. Biochemistry 1994, 33, 14464–14468. [Google Scholar] [CrossRef]
- Bhattarai, S.; Liou, K.; Oh, T.J. Hydroxylation of Long Chain Fatty Acids by CYP147F1, a New Cytochrome P450 Subfamily Protein from Streptomyces Peucetius. Arch. Biochem. Biophys. 2013, 539, 63–69. [Google Scholar] [CrossRef]
- SATO, T.O.A.R. The Carbon Monoxide-Binding Pigment of Liver Microsome. J. Biol. Chem. 1964, 239, 2370–2378. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Martin, M.V.; Sohl, C.D.; Cheng, Q. Measurement of Cytochrome P450 and NADPH-Cytochrome P450 Reductase. Nat. Protoc. 2009, 4, 1245–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roome, P.W.; Philley, J.C.; Peterson, J.A. Purification and Properties of Putidaredoxin Reductase. J. Biol. Chem. 1983, 258, 2593–2598. [Google Scholar] [CrossRef]
- Subedi, P.; Kim, K.H.; Hong, Y.S.; Lee, J.H.; Oh, T.J. Enzymatic Characterization and Comparison of Two Steroid Hydroxylases Cyp154c3-1 and Cyp154c3-2 from Streptomyces Species. J. Microbiol. Biotechnol. 2021, 31, 464–474. [Google Scholar] [CrossRef]
- Otwinowski, Z.M.W.; Otwinowski, Z.; Minor, W. Processing of X-Ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar] [CrossRef]
- Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.W.; McCoy, A.; et al. Overview of the CCP4 Suite and Current Developments. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkoczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular Structure Determination Using X-Rays, Neutrons and Electrons: Recent Developments in Phenix. Acta Crystallogr. Sect. D Struct. Biol. 2019, 75, 861–877. [Google Scholar] [CrossRef] [Green Version]
- DeLano, W.L. Pymol: An Open-Source Molecular Graphics Tool. CCP4 Newsl. Protein Crystallogr. 2002, 40, 82–92. [Google Scholar]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein Structure and Function Prediction. Nat. Methods 2014, 12, 7–8. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An Improved Methodology to Estimate and Visualize Evolutionary Conservation in Macromolecules. Nucleic Acids Res. 2016, 44, W344–W350. [Google Scholar] [CrossRef] [PubMed]
Substrate | Km (μM) | kcat (min−1) | Coupling Efficiency (%) |
---|---|---|---|
Naringenin | 26.39 ± 2.23 | 1.17 ± 0.08 | 39.84 ± 4.39 |
Apigenin | 46.28 ± 4.88 | 0.83 ± 0.08 | 36.25 ± 5.08 |
Data Collection | |
---|---|
Crystal | CYP101D5 |
X-ray source | BL-5C beam line |
Space group | P212121 |
Unit-cell parameters (Å, °) | a = 68.52., b = 109.57, c = 113.87, α = β = γ = 90.00 |
Wavelength (Å) | 0.9794 |
Resolution (Å) | 40.67–3.20 (3.31–3.20) |
Total reflections | 402,646 |
Unique reflections | 14,555 (1195) |
Average I/σ (I) | 10.1 (1.2) |
Rmerge a | 0.082 (0.43) |
Redundancy | 4.6 (4.5) |
Completeness (%) | 99.4 (99.2) |
Refinement | |
Resolution range (Å) | 40.67–3.20 (3.31–3.20) |
No. of reflections | 14,506 (1330) |
No. of amino acid residues | 798 |
No. of water molecules | 13 |
Molecules per asymmetric unit | 2 |
Rcryst b | 0.2607 (0.3741) |
Rfree c | 0.3216 (0.4343) |
Rotamer outliers (%) | 0.00 |
R.m.s. bond length (Å) | 0.002 |
R.m.s. bond angle (°) | 0.58 |
Ramachandran plot | |
Favored (%) | 91.92 |
Allowed (%) | 6.57 |
Outliers (%) | 1.52 |
Protein | Substrate | PDB Code | Cα RMSD | References |
---|---|---|---|---|
CYP101D5 | α/β-ionone | 0 | This study | |
CYP101D1 | camphor | 3LXH | 0.826 | [18] |
CYP101D2 | camphor | 3NV5 | 1.345 | [18] |
CYP101A1 | camphor | 2CPP | 1.11 | [47] |
CYP101B1 | β-ionone | No structure available | - | |
CYP101C1 | β-ionone | 3OFU | 1.55 | [20] |
CYP Annotation/Protein | PDB Code | DALI Z-Score | UniProt/ KB Code | Sequence % ID with CYP101D5 (Aligned Residue Number) | Reference |
---|---|---|---|---|---|
CYP101D1 | 3LXH | 59.1 | Q2GB12 | 55 (397/408) | [18] |
CYP101A1 (P450cam) | 4KKY | 54.2 | P00183 | 45 (390/411) | PDB deposit only |
CYP101C1 | 3OFT | 48.7 | Q2G637 | 37 (380/396) | [20] |
CYP101J2 | 5KYO | 45.5 | A0A1C9CIU0 | 37 (380/394) | [50] |
P450cin | 1T2B | 45.3 | Q8VQF6 | 24 (382/397) | [41] |
CYP199A2 | 4DNJ | 41.3 | Q6N8N2 | 22 (381/399) | [51] |
P450eryF | 1EGY | 41.2 | Q00441 | 22 (378/403) | [52] |
CYP268A2 | 6BLD | 41.2 | B2HMF7 | 23 (380/414) | [53] |
MycCI | 5FOI | 41.1 | Q83WF5 | 20 (373/389) | [54] |
SgvP | 4MM0 | 41.1 | R9USI6 | 23 (373/394) | PDB deposit only |
OleP | 6ZI3 | 40.6 | Q59819 | 24 (376/403) | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subedi, P.; Do, H.; Lee, J.H.; Oh, T.-J. Crystal Structure and Biochemical Analysis of a Cytochrome P450 CYP101D5 from Sphingomonas echinoides. Int. J. Mol. Sci. 2022, 23, 13317. https://doi.org/10.3390/ijms232113317
Subedi P, Do H, Lee JH, Oh T-J. Crystal Structure and Biochemical Analysis of a Cytochrome P450 CYP101D5 from Sphingomonas echinoides. International Journal of Molecular Sciences. 2022; 23(21):13317. https://doi.org/10.3390/ijms232113317
Chicago/Turabian StyleSubedi, Pradeep, Hackwon Do, Jun Hyuck Lee, and Tae-Jin Oh. 2022. "Crystal Structure and Biochemical Analysis of a Cytochrome P450 CYP101D5 from Sphingomonas echinoides" International Journal of Molecular Sciences 23, no. 21: 13317. https://doi.org/10.3390/ijms232113317
APA StyleSubedi, P., Do, H., Lee, J. H., & Oh, T. -J. (2022). Crystal Structure and Biochemical Analysis of a Cytochrome P450 CYP101D5 from Sphingomonas echinoides. International Journal of Molecular Sciences, 23(21), 13317. https://doi.org/10.3390/ijms232113317