Natural Products for Esophageal Cancer Therapy: From Traditional Medicine to Modern Drug Discovery
Abstract
:1. Introduction
2. Anti-Esophageal Cancer Effect of Natural Products
2.1. Apoptosis and Natural Products
Classification 1 | Classification 2 | Compound/Extract | Source | Experimental Model | Dose; Duration | Efficacy | Mechanism | Reference | |
---|---|---|---|---|---|---|---|---|---|
Single Compound | Alkaloid | Matrine | Sophora flaavescens | KYSE150 | 1, 2, 3 mg/mL; 24 h | Induction of apoptosis | ↑ ROS, Bax, c-caspase-3, c-caspase-8, c-caspase-9 ↓ Bcl-2 | [22] | |
Single Compound | Alkaloid | Matrine | Sophora flaavescens | EC109 | 0.25, 0.5, 0.75, 1, 1.5, 2 mg/mL; 24 h | Induction of apoptosis inhibition of tumor formation | ↑ c-caspase-3, c-caspase-9, c-PARP ↓ Bcl-2/BID | [23] | |
BALB/c mice | 1.25, 2.5, 5, 10 mg/kg; 26 d | ||||||||
Single Compound | Alkaloid | Neferine | Nelumbo nucifera (lotus) | KYSE30, KYSE150, KYSE510 | 10, 15, 20 μM; 24 h | Induction of apoptosis | ↑ ROS, cyclin B1, c-caspase-3, c-caspase-9, PARP ↓ Nrf2, p21, Bcl-2 | [24] | |
BALB/c mice | 10 mg/kg; 24 d | ||||||||
Single Compound | Coumarin | Osthole | Cnidium monnieri (L.) Cusson | KYSE30, KYSE150, KYSE180, KYSE410, KYSE450 | 80, 120, 160 μM; 48 h | Induction of cell cycle arrest and apoptosis | ↑ PTEN ↓ PI3K/AKT | [25] | |
Single Compound | Dairy | TR35 | Xinjiang Bactrian camel milk | EC109 | 1, 2, 4 mg/mL; 48 h | Induction of apoptosis | ↑ c-caspase-3, Bax ↓ HSP60, HSPA8, HSP27, DJ-1, PRDX1, NOB1, CAP1, GAPDH, Actin, PHGDH, MAPRE1, PDXK | [26] | |
BALB/c mice | 4 mg/mL; 55 d | ||||||||
Single Compound | Diarylheptanoid | Curcumin | Curcumin longa | TE1, TE8, KY5, KY10, YES1, YES2 | 20, 40, 60, 80 μM; 30 h | Elimination of cancer stem cells | ↑ ALDH1A1, CD44 | [27] | |
Single Compound | Dendrophenol | Moscatilin | Dendrobium, Dendrobium loddigesii | Nude mice | 50 mg/mL; 2 m | Inhibition of cancer growth | ↑ p-Plk1 | [58] | |
Single Compound | Diterpene | Acetyl-macrocalin B | Isodon silvaticus (C.Y.Wu & H.W.Li) H.W.Li | KYSE30, KYSE450 | 10, 15, 20 μM; 24 h | Suppression of cancer growth | ↑ ROS, AZD7762 | [28] | |
BALB/c mice | 12 mg/kg; 29 d | ||||||||
Single Compound | Diterpene | JDA-202 | Isodon rubescens (Labiatae) | EC109, EC9706, KYSE450, HET1A | 10, 20 μM; 24 h | Induction of apoptosis | ↑ ROS ↓ Prx I | [29] | |
BALB/c mice | 20 mg/kg; 21 d | ||||||||
Single Compound | Diterpene | Oridonin | Rabdosia rubescens | KYSE70, KYSE410, KYSE450 | 5, 10, 20 mmol/L; 72 h | Inhibition of cancer growth | ↓ cyclin B1, Bcl-2, AKT | [30] | |
SCID mice | 40, 160 mg/kg; 52 d | ||||||||
Single Compound | Diterpenoid | Jaridonin | Isodon rubescens | EC9706, EC109, EC1 | 10, 20, 40 μM; 24 h | Induction of apoptosis and cell cycle arrest | ↑ p53, p21, Bax, cyt- c, c-caspase-9, c-caspase-3, ROS, L-NAC | [31] | |
Single Compound | Flavonoid | Baohuoside-I | EC109 | 12.5–50 μg/mL; 48 h | Inhibition of cell growth | ↓ β-catenin, survivin, cyclin D1 | [32] | ||
BALB/c mice | 25 mg/kg; 3 w | ||||||||
Single Compound | Flavonoid | Icariin | Herba Epimedii | KYSE70 | 20, 40, 80 μ M; 48 h | Inhibition of cell proliferation and induction of apoptosis | ↑ ROS ↓ ZO1, N-cadherin, ZEB1, Slug1, p-p85, p-AKT, p-STAT3, Ki-67 | [33] | |
Nude mice | 40 μg/g; 4 w | ||||||||
Single Compound | Flavonoid | Isoliquiritigenin | Licorice root | KYSE140, KYSE520, TE1 | 5, 10, 20 µM; 24, 48, 72, 96 h | Inhibition of esophageal squamous cell carcinoma | ↓ EGFR, ERK1/2, AKT, AP-1, cyclin- D1 | [34] | |
Single Compound | Flavonoid | Proanthocyanidin | Vitis vinifera L. | EC109 | 25, 50, 80 μg/mL; 24 h | Induction of apoptosis and inhibition of cell proliferation | ↑ Bax, c-caspase-3 ↓ IL-6, CRP, COX-2, Bcl-2, PGE2 | [35] | |
Single Compound | Flavonoid | Quercetin | EC109, EC9706 | 40 μmol; 48 h | Induction of apoptosis | ↑ c-caspase-3 ↓ NF-KB, HDAC1, cyclin D1, RELA | [36] | ||
Single Compound | Isoflavonoid | Genistein | Fabaceae | HET1A, EC109, EC9706, CaES17 | 5, 15, 12, 125 μM; 48 h | Inhibition of cell proliferation and promotion of apoptosis | ↑ Bax ↓ CDK4, CDK6, cyclin D1, Bcl-2, EGFR | [37] | |
Nude mice | 5 mg/kg, 10 mg/kg; 42 d | ||||||||
Single Compound | Quinone | Pristimerin | Celastraceous, Hippocratic | EC9706, EC109 | 0.5, 1.0, 1.5, 2.0 μmol/L; 48 h | Induction of apoptosis, cell cycle arrest, and autophagy | ↑ c-caspase-3, c-caspase-9, Bax, CDKN1B ↓ Bcl-2, cyclin E, CDK2, CDK4 | [38] | |
Nude mice | 1.5 μmol/L; 48 h | ||||||||
Single Compound | Polyketide | Terrein | Aspergillus terreus | MCF7, HeLa, EC109 | 2.5, 5, 10, 20, 40 µM; 3 d | Inhibition of cell proliferation | ↓ cyclin B1, CDC2 | [39] | |
Single Compound | Sesquiterpenoid | Isoalantolactone | Inula helenium L. | EC109, EC9706, TE1, TE13, LO2 | 20, 30, 40 μM; 24 h | Induction of apoptosis | ↑ c-caspase-7, c-PARP, DR5, ROS ↓ procaspase-10 | [40] | |
BALB/c mice | 40, 80 mg/kg; 24 d | ||||||||
Single Compound | Terpene | Germacrone | Saussurea costus | EC109, EC9706, HET1A | 10, 20, 30 μg/mL; 24 h | Inhibition of cell proliferation and induction apoptosis | ↑ Bax, c-caspase-3, c-caspase-9, c-caspase-12, c-caspase-7 ↓ Bcl-2 | [41] | |
Single Compound | Terpene | Natural Borneol | camphor | HET1A, TE1, TE13 | 20, 40, 80 μg/mL; 24, 48, 72 h | Enhancement of paclitaxel-induced apoptosis | ↑ c-caspase-3 + PTX ↓ AKT, survivin | [42] | |
Single Compound | Triterpene | Gypenoside L. | Gynostemma pentaphyllum (Thunb.) Makino | HepG2, EC109 | 20, 40, 80 μM; 24 h | Inhibition of proliferation | ↑ MAPK, NF-KB ↓ p21, p27, p18 | [43] | |
Single Compound | Triterpene | Rhizoma Paridis Saponins (RPS) | Rhizoma Paridis | EC9706, KYSE150 | 5, 10, 20 μg/mL; 24 h | Suppression of cancer growth | ↓ cyclin D1, COX-2 | [44] | |
F344 rats | 350, 100 mg/kg; 24 w | ||||||||
Mixture | Fruit extract | Avocado | KJSE30 | 20 μg/mL; 48 h | Inhibition of cancer cell growth | ↑ ROS | [45] | ||
Mixture | Fruit extract | Black raspberry | F344 rats | 5%; 35 w | Inhibition of inflammation, apoptosis, and angiogenesis | ↓ MMP10, COX-2, PGF2 | [46] | ||
Mixture | Fruit extract | Cranberry | JHAD1, OE19, OE33 | 50, 100 µg/mL; 24, 48 h | Inhibition of pleiotropic cell death induction | ↑ Bax and cyt c, p21, cyclin B1, PARP ↓ cyclin A, PCNA, RTK, BCL-xL | [47] | ||
NU/NU athymic mice | 250 μg; 6 d | ||||||||
Mixture | Plant extract | Fructus forsythia | TE1, TE13, EC109, YES2 | 0.25, 0.50, 1.0 mg/mL; 24 h | Induction of apoptosis | ↑ cyt-c, c-caspase-3, c-caspase-9, Bad, Bax, Noxa ↓ Bcl-2, Mcl-1, Bcl-xL, JAK/STAT3, pERK | [48] | ||
BALB/c mice | 50 mg/kg; 14 d | ||||||||
Mixture | Plant extract | Green husk | Juglans sigillata | EC9706, KYSE150 | 20, 40, 80 μg/mL; 24 h | Inhibition of proliferation, migration and survival | ↑ p53, Bax, c-caspase-3 ↓ cyclin D1, MMP2, MMP9, Bcl-2 | [49] | |
Mixture | Plant extract | Marsdenia tenacissima | Marsdenia tenacissima (Roxb.) Moon (Asclepiadaceae) | KYSE150, EC109 | 10, 20, 40, 80 mg/mL; 48 h | Inhibition of human esophageal cancer cell proliferation | ↓ MAPK, ERK, JNK, p38, p-JNK, cyclin D1 | [50] | |
Mixture | Plant extract | Paris polyphylla Smith (Liliaceae) | EC109 | 25 µg/mL, 50 µg/mL, 100 µg/mL, 200 µg/mL; 24 h | Inhibition of cell proliferation and growth | ↑ connexin 26, Bad ↓ Bcl-2 | [51] | ||
Mixture | Fruit extract | Polyphenolic anthocyanin | Black raspberry | F344 rats | 6.1%; 5 w | Inhibition of inflammation and tumorigenesis | ↓ NF-KB, PTX3, sEH, COX-2 | [52] | |
Mixture | Plant extract | Rhizome extract | Curcuma zedoaria | TE8, HET1A | 125, 250, 500 μg/mL; 12 h (TE-8), 24 h (HET-1A) | Inhibition of angiogenesis, metastasis, and apoptosis | ↑ c-caspase-9, c-caspase-3, PARP, PTEN ↓ MMP2, Akt, FGFR1, Bcl-2, STAT3 | [53] | |
BALB/c mice | 5 mg; 30 d | ||||||||
Mixture | Plant extract | Sutherlandia frutescens, Sutherlandia tomentosa | Sutherlandia | SNO | 2.5, 5 mg/mL; 24 h | Induction of apoptosis | ↑ c-caspase 3, c-caspase-7 | [54] | |
Mixture | Decoction | Daikenchuto | Ginseng Radix, Zanthoxylum pipericum, Zingiber officinale, Koi | KYSE520, KYSE790 | 20 µg/ mL; 24, 48, 72 h | Inhibition of esophageal tumor growth and induction of apoptosis | ↑ PAK1/cyclin D1, AKT/AR | [55] | |
Nude mice | 20 µg/ mL; 4 w | ||||||||
Mixture | Decoction | Rosa roxburghii Tratt (CL), Fagopyrum cymosum (FR) | CaEs17 | 100 μg/mL; 48 h | Inhibition of tumor growth | ↑ Bax ↓ Bcl-2, Ki-67 | [56] | ||
120 μg/mL; 48 h | |||||||||
Mixture | Decoction | Tonglian | Herba Hedyotis diffusae Radix Rehmanniae praeparata Radix Angelicae sinensis Rhizoma Curcumae Radix Ophiopogonis Rhizoma Cimicifugae Semen Areca Herba Scutellariae Barbatae | EC109 | 386 mg/L; 48 h | Inhibition of carcinogenesis | ↓ IKKβ, NF-KB, TNF-α, IL-1β | [57] |
2.2. Anti-Angiogenesis and Natural Products
Classification | Compound/Extract | Source | Experimental Model | Dose; Duration | Efficacy | Mechanism | Reference |
---|---|---|---|---|---|---|---|
Plant extract | Rhizome extract | Curcuma zedoaria | TE8, HET1A | 125, 250, 500 μg/mL; 12 h (TE-8), 24 h (HET-1A) | Inhibition of angiogenesis, metastasis, and apoptosis | ↑ c-caspase-9, c-caspase-3, PARP, PTEN ↓ MMP-2, Akt, FGFR1, Bcl-2, STAT3 | [53] |
BALB/c mice | 5 mg; 30 d | ||||||
Fruit extract | Blackberry | NMBA, F344 rats | 5%; 5 w | Inhibition of tumorigenesis through epigenetic regulation | ↓ Sfrp4, DNMT3B, DNMT1, b-catenin, iNOS, COX-2, NF-KB, pS6 | [59] | |
Fruit extract | Black raspberry | HEMEC | 100 μg/mL; 2 h | Inhibition of inflammation and angiogenesis | ↓ COX-2, PGE2, VEGF, ICAM-1, VCAM-1, NF-KB | [60] | |
Fruit extract | Black raspberry | F344 rats | 5%; 35 w | Inhibition of inflammation, apoptosis, and angiogenesis | ↓ MMP10, COX-2, PGF2 | [46] | |
Decoction | Aidi | Astragalus membranaceus Acanthopanax Mylabris | EC9706, KYSE70 | 1.5, 3, 6, 12, 24, 48, 96 mg/mL; 24, 48 h | Inhibition of epithelial-mesenchymal transition and angiogenesis | ↑ cadherin-1 ↓ VEGF-A, vimentin, cadherin-2 | [61] |
BALB/c mice | 1, 2, 4 g/kg; 15 d |
2.3. Anti-Metastasis and Natural Products
Classification | Compound/Extract | Source | Experimental Model | Dose; Duration | Efficacy | Mechanism | Reference |
---|---|---|---|---|---|---|---|
Alkaloid | Synephrine | Citrus | KYSE30, KYSE270 | 5, 10 µM; 24 h | Inhibition of growth and metastasis | ↑ E-cadherin ↓ vimentin, Galectin-3, AKT/ERK | [62] |
BALB/c mice | 10, 20 mg/kg; 30 d | ||||||
Benzophenone | Garcinol | Garcinia yunnanensis Hu | KYSE150, KYSE450 | 5, 10, 15 μM; 24 h | Suppression of metastasis | ↑ E-cadherin ↓ TGF-β1, p-300, p-Smad2/3 | [63] |
BALC/c mice | 20 mg/kg; 5 w | ||||||
Flavonoid | Icariin | Epimedium spp. | KYSE70 | 20, 40, 80 μM; 48 h | Inhibition of growth and metastasis | ↓ AKT, STAT3 ↓ PI3K/AKT, ROS | [64] |
immunodeficient mice | 40 μg/g; 4 w | ||||||
Protein, fatty acid | lactoferrin, linolenic acid | Transferrin, omega-3 fatty acid | KYSE450 | 0.01, 0.05, 0.1, 0.5, 1, 5 g/L; 48 h | Inhibition of metastasis | ↓ JAK2, STAT3, ERK, AKT, LCT | [65] |
BALB/c mice | 55 (LF-50; LA-5) mg/kg; 24 d | ||||||
Triterpenoid | Gypenoside | Gynostemma pentaphyllum Makino | EC109 | 50, 100, 150, 200 µg/mg; 24, 48, 72 h | Inhibition of proliferation and migration | ↑ ROS | [66] |
Xanthone | Griffipavixanthone | Garcinia yunnanensis Hu | TE1, KYSE150 | 5, 10, 15, 20 μM; 48 h | Inhibition of tumor metastasis and proliferation | ↓ RAF-MAPK, cyclin B1, EMT | [67] |
nude mice | 20 mg/kg; 2 d | ||||||
Plant extract | Walnut oil | Juglans regia L. | OE19 | 10, 20, 30, 40 mg/mL; 24 h | Inhibition of migration | ↓ NF-KB, cyclin B1 | [68] |
Plant extract | Rhizome extract | Curcuma zedoaria | TE8, HET1A | 125, 250, 500 μg/mL; 12 h (TE-8), 24 h (HET-1A) | Inhibition of angiogenesis, metastasis, and apoptosis | ↑ caspase-9, caspase-3, PARP, PTEN ↓ MMP-2, Akt, FGFR1, Bcl-2, STAT3 | [53] |
BALB/c mice | 5 mg; 30 d | ||||||
Plant extract | Antrodia cinnamomea | Cinnamomum kanehirai | BE3 | 1.0 mg/mL; 24 h, 48 h, 72 h | Inhibition of epithelial to mesenchymal transition | ↑ Zeb1 ↓ HIF-1α, E-cadherin, Twist | [69] |
Plant extract | Andrographis paniculata | Acanthaceae | EC109 | 800, 1600, 3200 μg/mL; 24 h | Inhibition of metastasis | ↓ TM4SF3, HER2, CXCR4, MMP2, p-NF-KB, MMP9 | [70] |
BALB/c mice | 1600 mg/kg; 3 w | ||||||
Plant extract | Green husk | Juglans sigillata | EC9706, KYSE150 | 20, 40, 80 μg/mL; 24 h | Inhibition of proliferation, migration and survival | ↑ p53, p-p53, Bax, c-caspase-3 ↓ cyclin D1, MMP2, MMP9, Bcl-2 | [49] |
Plant extract | Purpurogallin | Nutgalls, oak bark | KYSE30, KYSE70, KYSE410, KYSE450, KYSE510 | 5, 10, 20, 40, 60 µM; 48 h | Inhibition of metastasis | ↓ ERK1, ERK2, MEK1, MEK2 | [71] |
Nude mice | 100 mg/kg; 2 weeks | ||||||
Decoction | Qigesan | Radix Curcumae Radix Glehniae Radix Salviae Miltiorrhizae Bulbus Fritillaria Thunbergii Glabrous Greenbrier Rhizome Villous Amomrum Fruit Lotus Leaf Pinellia Tuber Blighted Wheat Radix Asparagi Rhizoma Dioscoreae | TE1, TE13, EC109 | 1, 3, 10, 30, 50, 100 μg/mL; 24 h | Inhibition of migration and invasion | ↑ Cx26, Cx43 | [72] |
Decoction | Qigesan | Curcuma wenyujin Adenophora tetraphylla Radix Salviae Miltiorrhizae Fritillaria Thunbergii Bulbus Poria Amomum villosum Lour Lotus Leaf Pinellia ternate Blighted wheat Radix asparagi Dioscorea opposita Thunb | EC109, TE1 | 100, 200 μg/mL; 24 h | Reduction in invasion and metastasis | ↓ Gas6, Axl, PI3K, AKT, NF-KB | [73] |
2.4. Anti-Resistance and Natural Products
Classification | Compound/Extract | Source | Experimental Model | Dose; Duration | Efficacy | Mechanism | Reference |
---|---|---|---|---|---|---|---|
Alkaloid | Tetrandrine | Radix Stephania tetrandra S. Moore | YES2/DDP | 0.1, 0.3, 1, 3, 10, 30 µM; 72 h | Reduction in drug resistance | ↓ MRP1 | [74] |
Terpene | Natural Borneol | camphor | HET1A, TE1, TE13 | 20, 40, 80 μg/mL; 24, 48, 72 h | Enhancement of paclitaxel-induced apoptosis | ↑ caspase-3, PTX ↓ AKT, survivin | [42] |
2.5. Clinical Trials and Natural Products
Compound/Extract | Source | Phase | Patients | Status | Efficacy | Reference |
---|---|---|---|---|---|---|
Catechin extract | green tea | I | 55 | Completed | Efficacy of green tea catechin extract for prevention of esophageal cancer | [77] |
Fructus bruceae | Brucea javanica (L.) Merr. | II, III | 80 | Completed | Efficacy combined with radiotherapy for the treatment of esophageal cancer | [78] |
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AA | arachidonic acid |
AKT | protein kinase B |
Bax | Bcl-2-associated X protein |
Bcl-2 | B-cell lymphoma-2 |
Bid | Bcl-2 homology 3 interacting domain death agonist |
c-PARP | cleaved poly (DAP-ribose) polymerase |
RAF | Rapidly Accelerated Fibrosarcoma |
CD44 | cell surface adhesion receptor |
CDC2 | cell division cycle 2 |
CDK2 | cyclin-dependent kinase 2 |
CDK4 | cyclin-dependent kinase 4 |
CDK6 | cyclin-dependent kinase 6 |
COX-2 | cyclooxygenase-2 |
CX26 | connexin 26 |
Cyt-c | cytochrome-c |
EGFR | epidermal growth factor receptor |
EMT | epithelial-mesenchymal transition |
ERK | extracellular signal-regulated kinase |
FGFR | fibroblast growth factor receptor |
gp130 | Glycoprotein 130 |
HDACI | histone deacetylase 1 |
IKB | inhibitor of kappa B |
IKK | inhibitor of kappa B kinase |
IL-6 | interleukin-6 |
JAK | janus kinase |
JNK | c-jun N-terminal kinase |
MAPK | mitogen-activated protein kinase |
MEK 1 | mitogen-activated protein kinase kinase 1 |
MEK 2 | mitogen-activated protein kinase kinase 2 |
MMP 2 | Matrix metallopeptidase 2 |
MMP 9 | Matrix metallopeptidase 9 |
MRPI | multidrug resistance-associated protein 1 |
mTOR | mammalian target of rapamycin |
NFKB | nuclear factor kappa B |
pAKT | Phospho protein kinase B |
PGE2 | prostaglandin E2 |
PGF2 | prostaglandin f2 |
PI3K | phosphoinositide 3-kinase |
PIKI | polo-like kinase 1 |
PTX | pertussis toxin |
RAS | Renin angiotensin system |
ROS | reactive oxygen species |
STAT3 | signal transducer and activator of transcription 3 |
TGFβ | transforming growth factor-β |
TNFα | tumor necrosis factor alpha |
VEGF | vascular endothelial growth factor |
References
- National Cancer Institute. Esophageal Cancer Treatment. 2021. Available online: https://www.cancer.gov/types/esophageal/patient/esophageal-treatment-pdq#_107 (accessed on 22 May 2022).
- National Cancer Institute. Esophageal Cancer. Available online: https://www.cancer.gov/types/esophageal (accessed on 22 May 2022).
- International Agency for Research on Cancer. Oesophagus. 2020. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/6-Oesophagus-fact-sheet.pdf (accessed on 22 May 2022).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cancer.Net. Esophageal Cancer: Types of Treatment. 2021. Available online: https://www.cancer.net/cancer-types/esophageal-cancer/types-treatment (accessed on 22 May 2022).
- American Cancer Society. Targeted Drug Therapy for Esophageal Cancer. 2021. Available online: https://www.cancer.org/cancer/esophagus-cancer/treating/targeted-therapy.html (accessed on 22 May 2022).
- Gordon, M.A.; Gundacker, H.M.; Benedetti, J.; Macdonald, J.S.; Baranda, J.C.; Levin, W.J.; Blanke, C.D.; Elatre, W.; Weng, P.; Zhou, J.Y.; et al. Assessment of HER2 gene amplification in adenocarcinomas of the stomach or gastroesophageal junction in the INT-0116/SWOG9008 clinical trial. Ann. Oncol. 2013, 24, 1754–1761. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Hiroki, K.; Yamashita, Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BioMed Res. Int. 2013, 2013, 546318. [Google Scholar] [CrossRef] [Green Version]
- Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 2004, 56, 549–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueki, T.; Fujimoto, J.; Suzuki, T.; Yamamoto, H.; Okamoto, E. Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma. Hepatology 1997, 25, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Weill Cornell Medcine Newsroom. Immunotherapy Extends Survival in Esophageal Cancer. 2020. Available online: https://news.weill.cornell.edu/news/2020/12/immunotherapy-extends-survival-in-esophageal-cancer (accessed on 22 May 2022).
- Niu, J.; Gelbspan, D.; Weitz, D.; Markman, M.; Quan, W., Jr. HER2-positive, trastuzumab-resistant metastatic esophageal cancer presenting with brain metastasis after durable response to dual HER2 blockade: A case report. J. Gastrointest. Oncol. 2014, 5, E103–E108. [Google Scholar] [CrossRef]
- National Cancer Institute. Metastasis. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/metastasis (accessed on 22 May 2022).
- National Cancer Institute. Why Do Cancer Treatments Stop Working? Overcoming Treatment Resistance. 2016. Available online: https://www.cancer.gov/about-cancer/treatment/research/drug-combo-resistance (accessed on 22 May 2022).
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Cleveland Clinic. Metastatic Cancer. 2021. Available online: https://my.clevelandclinic.org/health/diseases/17224-metastatic-cancer (accessed on 22 May 2022).
- Islam, M.T. A literature-based phytochemical evidence and biological activities of Trichosanthes dioica Roxb. Orient. Pharm. Exp. Med. 2018, 18, 77–85. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, W.; Li, J.; Tse, L.A.; Xing, X.; Lin, S.; Zhao, J.; Ren, Z.; Zhang, C.X.; Liu, X. Dietary flavonoid intake and risk of esophageal squamous cell carcinoma: A population-based case-control study. Nutrition 2021, 89, 111235. [Google Scholar] [CrossRef]
- Wang, L.X.; Shi, Y.L.; Zhang, L.J.; Wang, K.R.; Xiang, L.P.; Cai, Z.Y.; Lu, J.L.; Ye, J.H.; Liang, Y.R.; Zheng, X.Q. Inhibitory Effects of (-)-Epigallocatechin-3-gallate on Esophageal Cancer. Molecules 2019, 24, 954. [Google Scholar] [CrossRef]
- Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial effects of green tea: A literature review. Chin. Med. 2010, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.H.; Pi, J.; Jin, H.; Yang, F.; Cai, J.Y. Chinese herb medicine matrine induce apoptosis in human esophageal squamous cancer KYSE-150 cells through increasing reactive oxygen species and inhibiting mitochondrial function. Pathol. Res. Pract. 2018, 214, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Du, H.; Geng, G.; Zhou, H.; Xu, M.; Cao, H.; Zhang, B.; Song, G.; Hu, T. Matrine inhibits proliferation and induces apoptosis via BID-mediated mitochondrial pathway in esophageal cancer cells. Mol. Biol. Rep. 2014, 41, 3009–3020. [Google Scholar] [CrossRef]
- An, K.; Zhang, Y.; Liu, Y.; Yan, S.; Hou, Z.; Cao, M.; Liu, G.; Dong, C.; Gao, J.; Liu, G. Neferine induces apoptosis by modulating the ROS-mediated JNK pathway in esophageal squamous cell carcinoma. Oncol. Rep. 2020, 44, 1116–1126. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Z.; Li, T.; Long, F.; Lv, Y.; Liu, L.; Liu, X.; Zhan, Q. Osthole inhibits the PI3K/AKT signaling pathway via activation of PTEN and induces cell cycle arrest and apoptosis in esophageal squamous cell carcinoma. Biomed. Pharmacother. 2018, 102, 502–509. [Google Scholar] [CrossRef]
- Yang, J.; Dou, Z.; Peng, X.; Wang, H.; Shen, T.; Liu, J.; Li, G.; Gao, Y. Transcriptomics and proteomics analyses of anti-cancer mechanisms of TR35-An active fraction from Xinjiang Bactrian camel milk in esophageal carcinoma cell. Clin. Nutr. 2019, 38, 2349–2359. [Google Scholar] [CrossRef]
- Almanaa, T.N.; Geusz, M.E.; Jamasbi, R.J. Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines. BMC Complement. Altern. Med. 2012, 12, 195. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.N.; Che, Y.; Yuan, Z.Y.; Lu, Z.L.; Li, Y.; Zhang, Z.R.; Li, N.; Li, R.D.; Wan, J.; Sun, H.D.; et al. Acetyl-macrocalin B suppresses tumor growth in esophageal squamous cell carcinoma and exhibits synergistic anti-cancer effects with the Chk1/2 inhibitor AZD7762. Toxicol. Appl. Pharmacol. 2019, 365, 71–83. [Google Scholar] [CrossRef]
- Shi, X.J.; Ding, L.; Zhou, W.; Ji, Y.; Wang, J.; Wang, H.; Ma, Y.; Jiang, G.; Tang, K.; Ke, Y.; et al. Pro-Apoptotic Effects of JDA-202, a Novel Natural Diterpenoid, on Esophageal Cancer Through Targeting Peroxiredoxin I. Antioxid. Redox Signal. 2017, 27, 73–92. [Google Scholar] [CrossRef]
- Song, M.; Liu, X.; Liu, K.; Zhao, R.; Huang, H.; Shi, Y.; Zhang, M.; Zhou, S.; Xie, H.; Chen, H.; et al. Targeting AKT with Oridonin Inhibits Growth of Esophageal Squamous Cell Carcinoma In Vitro and Patient-Derived Xenografts In Vivo. Mol. Cancer Ther. 2018, 17, 1540–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.C.; Ke, Y.; Zi, X.; Zhao, W.; Shi, X.J.; Liu, H.M. Jaridonin, a novel ent-kaurene diterpenoid from Isodon rubescens, inducing apoptosis via production of reactive oxygen species in esophageal cancer cells. Curr. Cancer Drug Targets 2013, 13, 611–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Lu, A.; Liu, X.; Sang, M.; Shan, B.; Meng, F.; Cao, Q.; Ji, X. The flavonoid Baohuoside-I inhibits cell growth and downregulates survivin and cyclin D1 expression in esophageal carcinoma via β-catenin-dependent signaling. Oncol. Rep. 2011, 26, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Yang, Y.; Liu, Y.; Jiang, S.; Di, S.; Hu, W.; Ma, Z.; Li, T.; Zhu, Y.; Xin, Z.; et al. Icariin displays anticancer activity against human esophageal cancer cells via regulating endoplasmic reticulum stress-mediated apoptotic signaling. Sci. Rep. 2016, 6, 21145. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Zhang, J.; Zhang, Y.; Gu, B.; Zhu, H.; Mao, X. Isoliquiritigenin Suppressed Esophageal Squamous Carcinoma Growth by Blocking EGFR Activation and Inducing Cell Cycle Arrest. BioMed Res. Int. 2020, 2020, 9259852. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Hu, Y.; Niu, Q.; Li, Y.; Ding, Y.; Ma, R.; Wang, X.; Li, S.; Xie, J. Grape Seed Proanthocyanidin Extract Inhibits Human Esophageal Squamous Cancerous Cell Line ECA109 via the NF-κB Signaling Pathway. Mediat. Inflamm. 2018, 2018, 3403972. [Google Scholar] [CrossRef] [Green Version]
- Zheng, N.G.; Mo, S.J.; Li, J.P.; Wu, J.L. Anti-CSC effects in human esophageal squamous cell carcinomas and Eca109/9706 cells induced by nanoliposomal quercetin alone or combined with CD 133 antiserum. Asian Pac. J. Cancer Prev. 2014, 15, 8679–8684. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Xia, R.; Chen, J.; Gao, J.; Luo, X.; Ke, C.; Ren, C.; Li, J.; Mi, Y. Inhibition of esophageal-carcinoma cell proliferation by genistein via suppression of JAK1/2-STAT3 and AKT/MDM2/p53 signaling pathways. Aging 2020, 12, 6240–6259. [Google Scholar] [CrossRef]
- Huang, P.; Sun, L.Y.; Zhang, Y.Q. A Hopeful Natural Product, Pristimerin, Induces Apoptosis, Cell Cycle Arrest, and Autophagy in Esophageal Cancer Cells. Anal. Cell. Pathol. 2019, 2019, 6127169. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhu, Y.; Li, S.; Zeng, M.; Chu, J.; Hu, P.; Li, J.; Guo, Q.; Lv, X.B.; Huang, G. Terrein performs antitumor functions on esophageal cancer cells by inhibiting cell proliferation and synergistic interaction with cisplatin. Oncol. Lett. 2017, 13, 2805–2810. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, G.; Zhang, Y.; Hua, P.; Fang, M.; Wu, M.; Liu, T. Isoalantolactone induces apoptosis through reactive oxygen species-dependent upregulation of death receptor 5 in human esophageal cancer cells. Toxicol. Appl. Pharmacol. 2018, 352, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Hao, J.; Guo, K.; Liu, W.; Yao, F.; Wu, Q.; Liu, C.; Wang, Q.; Yang, X. Germacrone Inhibits Cell Proliferation and Induces Apoptosis in Human Esophageal Squamous Cell Carcinoma Cells. BioMed Res. Int. 2020, 2020, 7643248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.; Dong, X.; Wang, W.; Yang, L.; Zhang, X.; Li, Y.; Chen, T.; Ma, H.; Qi, D.; Su, J. Natural Borneol Enhances Paclitaxel-Induced Apoptosis of ESCC Cells by Inactivation of the PI3K/AKT. J. Food Sci. 2018, 83, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Hu, X.; Liao, C.; Xiao, H.; Zhu, Q.; Li, Y.; Liu, Z.; Tao, A.; He, Z.; Xu, C.; et al. Gypenoside L Inhibits Proliferation of Liver and Esophageal Cancer Cells by Inducing Senescence. Molecules 2019, 24, 1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, S.; Tian, S.; Kang, Q.; Xia, Y.; Li, C.; Chen, Q.; Zhang, S.; Li, Z. Rhizoma Paridis Saponins Suppresses Tumor Growth in a Rat Model of N-Nitrosomethylbenzylamine-Induced Esophageal Cancer by Inhibiting Cyclooxygenases-2 Pathway. PLoS ONE 2015, 10, e0131560. [Google Scholar] [CrossRef] [Green Version]
- Vahedi Larijani, L.; Ghasemi, M.; AbedianKenari, S.; Naghshvar, F. Evaluating the effect of four extracts of avocado fruit on esophageal squamous carcinoma and colon adenocarcinoma cell lines in comparison with peripheral blood mononuclear cells. Acta Med. Iran. 2014, 52, 201–205. [Google Scholar]
- Wang, L.S.; Dombkowski, A.A.; Seguin, C.; Rocha, C.; Cukovic, D.; Mukundan, A.; Henry, C.; Stoner, G.D. Mechanistic basis for the chemopreventive effects of black raspberries at a late stage of rat esophageal carcinogenesis. Mol. Carcinog. 2011, 50, 291–300. [Google Scholar] [CrossRef]
- Kresty, L.A.; Weh, K.M.; Zeyzus-Johns, B.; Perez, L.N.; Howell, A.B. Cranberry proanthocyanidins inhibit esophageal adenocarcinoma in vitro and in vivo through pleiotropic cell death induction and PI3K/AKT/mTOR inactivation. Oncotarget 2015, 6, 33438–33455. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Yan, X.; Shi, J.; Ren, F.; Liu, L.; Sun, S.; Shan, B. Ethanol extract of Forsythia suspensa root induces apoptosis of esophageal carcinoma cells via the mitochondrial apoptotic pathway. Mol. Med. Rep. 2015, 11, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, Z.; Zhang, S.; Yan, W.; Si, C.; Lee, M.H.; Li, Z. Inhibitory Effects of the Extracts of Juglans sigillata Green Husks on the Proliferation, Migration and Survival of KYSE150 and EC9706 Human Esophageal Cancer Cell Lines. Nutr. Cancer 2019, 71, 149–158. [Google Scholar] [CrossRef]
- Fan, W.; Sun, L.; Zhou, J.Q.; Zhang, C.; Qin, S.; Tang, Y.; Liu, Y.; Lin, S.S.; Yuan, S.T. Marsdenia tenacissima extract induces G0/G1 cell cycle arrest in human esophageal carcinoma cells by inhibiting mitogen-activated protein kinase (MAPK) signaling pathway. Chin. J. Nat. Med. 2015, 13, 428–437. [Google Scholar] [CrossRef]
- Li, F.R.; Jiao, P.; Yao, S.T.; Sang, H.; Qin, S.C.; Zhang, W.; Zhang, Y.B.; Gao, L.L. Paris polyphylla Smith extract induces apoptosis and activates cancer suppressor gene connexin26 expression. Asian Pac. J. Cancer Prev. 2012, 13, 205–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peiffer, D.S.; Zimmerman, N.P.; Wang, L.S.; Ransom, B.W.; Carmella, S.G.; Kuo, C.T.; Siddiqui, J.; Chen, J.H.; Oshima, K.; Huang, Y.W.; et al. Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins, and a major anthocyanin metabolite, protocatechuic acid. Cancer Prev. Res. 2014, 7, 574–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadisaputri, Y.E.; Miyazaki, T.; Suzuki, S.; Kubo, N.; Zuhrotun, A.; Yokobori, T.; Abdulah, R.; Yazawa, S.; Kuwano, H. Molecular characterization of antitumor effects of the rhizome extract from Curcuma zedoaria on human esophageal carcinoma cells. Int. J. Oncol. 2015, 47, 2255–2263. [Google Scholar] [CrossRef] [Green Version]
- Skerman, N.B.; Joubert, A.M.; Cronjé, M.J. The apoptosis inducing effects of Sutherlandia spp. extracts on an oesophageal cancer cell line. J. Ethnopharmacol. 2011, 137, 1250–1260. [Google Scholar] [CrossRef] [Green Version]
- Nagata, T.; Toume, K.; Long, L.X.; Hirano, K.; Watanabe, T.; Sekine, S.; Okumura, T.; Komatsu, K.; Tsukada, K. Anticancer effect of a Kampo preparation Daikenchuto. J. Nat. Med. 2016, 70, 627–633. [Google Scholar] [CrossRef]
- Liu, W.; Li, S.Y.; Huang, X.E.; Cui, J.J.; Zhao, T.; Zhang, H. Inhibition of tumor growth in vitro by a combination of extracts from Rosa roxburghii Tratt and Fagopyrum cymosum. Asian Pac. J. Cancer Prev. 2012, 13, 2409–2414. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.S.; Hu, X.Q.; Li, J.A.; Andras, S.; Hegyi, G.; Han, B.S. Tonglian Decoction () arrests the cell cycle in S-phase by targeting the nuclear factor-kappa B signal pathway in esophageal carcinoma Eca109 cells. Chin. J. Integr. Med. 2016, 22, 384–389. [Google Scholar] [CrossRef]
- Chen, W.K.; Chen, C.A.; Chi, C.W.; Li, L.H.; Lin, C.P.; Shieh, H.R.; Hsu, M.L.; Ko, C.C.; Hwang, J.J.; Chen, Y.J. Moscatilin Inhibits Growth of Human Esophageal Cancer Xenograft and Sensitizes Cancer Cells to Radiotherapy. J. Clin. Med. 2019, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Medda, R.; Lyros, O.; Schmidt, J.L.; Jovanovic, N.; Nie, L.; Link, B.J.; Otterson, M.F.; Stoner, G.D.; Shaker, R.; Rafiee, P. Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells. Microvasc. Res. 2015, 97, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.W.; Gu, F.; Dombkowski, A.; Wang, L.S.; Stoner, G.D. Black raspberries demethylate Sfrp4, a WNT pathway antagonist, in rat esophageal squamous cell papilloma. Mol. Carcinog. 2016, 55, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Diao, Y.; Jin, F.; Ding, Z. Anti-metastatic effects of Aidi on human esophageal squamous cell carcinoma by inhibiting epithelial-mesenchymal transition and angiogenesis. Mol. Med. Rep. 2018, 18, 131–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.W.; Zheng, C.C.; Huang, Y.N.; Chen, W.Y.; Yang, Q.S.; Ren, J.Y.; Wang, Y.M.; He, Q.Y.; Liao, H.X.; Li, B. Synephrine Hydrochloride Suppresses Esophageal Cancer Tumor Growth and Metastatic Potential through Inhibition of Galectin-3-AKT/ERK Signaling. J. Agric. Food Chem. 2018, 66, 9248–9258. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, M.; Zheng, D.; Zhang, H.; Lv, Y.; Zhang, L.; Tan, H.S.; Zhou, H.; Lao, Y.Z.; Xu, H.X. Garcinol inhibits esophageal cancer metastasis by suppressing the p300 and TGF-β1 signaling pathways. Acta Pharmacol. Sin. 2020, 41, 82–92. [Google Scholar] [CrossRef]
- Gu, Z.F.; Zhang, Z.T.; Wang, J.Y.; Xu, B.B. Icariin exerts inhibitory effects on the growth and metastasis of KYSE70 human esophageal carcinoma cells via PI3K/AKT and STAT3 pathways. Environ. Toxicol. Pharmacol. 2017, 54, 7–13. [Google Scholar] [CrossRef]
- Li, H.; Yao, Q.; Min, L.; Huang, S.; Wu, H.; Yang, H.; Fan, L.; Wang, J.; Zheng, N. The Combination of Two Bioactive Constituents, Lactoferrin and Linolenic Acid, Inhibits Mouse Xenograft Esophageal Tumor Growth by Downregulating Lithocholyltaurine and Inhibiting the JAK2/STAT3-Related Pathway. ACS Omega 2020, 5, 20755–20764. [Google Scholar] [CrossRef]
- Yan, H.; Wang, X.; Wang, Y.; Wang, P.; Xiao, Y. Antiproliferation and anti-migration induced by gypenosides in human colon cancer SW620 and esophageal cancer Eca-109 cells. Hum. Exp. Toxicol. 2014, 33, 522–533. [Google Scholar] [CrossRef]
- Ding, Z.; Lao, Y.; Zhang, H.; Fu, W.; Zhu, L.; Tan, H.; Xu, H. Griffipavixanthone, a dimeric xanthone extracted from edible plants, inhibits tumor metastasis and proliferation via downregulation of the RAF pathway in esophageal cancer. Oncotarget 2016, 7, 1826–1837. [Google Scholar] [CrossRef] [Green Version]
- Batirel, S.; Yilmaz, A.M.; Sahin, A.; Perakakis, N.; Kartal Ozer, N.; Mantzoros, C.S. Antitumor and antimetastatic effects of walnut oil in esophageal adenocarcinoma cells. Clin. Nutr. 2018, 37, 2166–2171. [Google Scholar] [CrossRef]
- Liu, Y.M.; Liu, Y.K.; Huang, P.I.; Tsai, T.H.; Chen, Y.J. Antrodia cinnamomea mycelial fermentation broth inhibits the epithelial-mesenchymal transition of human esophageal adenocarcinoma cancer cells. Food Chem. Toxicol. 2018, 119, 380–386. [Google Scholar] [CrossRef]
- Li, L.; Yue, G.G.; Lee, J.K.; Wong, E.C.; Fung, K.P.; Yu, J.; Lau, C.B.; Chiu, P.W. The adjuvant value of Andrographis paniculata in metastatic esophageal cancer treatment—From preclinical perspectives. Sci. Rep. 2017, 7, 854. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zu, X.; Liu, F.; Wang, T.; Wang, X.; Chen, H.; Liu, K.; Wang, P.; Liu, F.; Zheng, Y.; et al. Purpurogallin is a novel mitogen-activated protein kinase kinase 1/2 inhibitor that suppresses esophageal squamous cell carcinoma growth in vitro and in vivo. Mol. Carcinog. 2019, 58, 1248–1259. [Google Scholar] [CrossRef]
- Shi, H.; Shi, D.; Wu, Y.; Shen, Q.; Li, J. Qigesan inhibits migration and invasion of esophageal cancer cells via inducing connexin expression and enhancing gap junction function. Cancer Lett. 2016, 380, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Wu, Z.; Zhao, Y.; Lu, X.; Shi, H.; Liu, S.; Li, J. Qigesan reduces the motility of esophageal cancer cells via inhibiting Gas6/Axl and NF-κB expression. Biosci. Rep. 2019, 39, BSR20190850. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.H.; Wan, J.Y.; Gong, X.; Li, H.Z.; Cheng, Y. Tetrandrine enhances cytotoxicity of cisplatin in human drug-resistant esophageal squamous carcinoma cells by inhibition of multidrug resistance-associated protein 1. Oncol. Rep. 2012, 28, 1681–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lightdale, C. Defined Green Tea Catechin Extract in Preventing Esophageal Cancer in Patients with Barrett’s Esophagus. 2005. Available online: https://ClinicalTrials.gov/show/NCT00233935 (accessed on 22 November 2021).
- Shan, G.Y.; Zhang, S.; Li, G.W.; Chen, Y.S.; Liu, X.A.; Wang, J.K. Clinical evaluation of oral Fructus bruceae oil combined with radiotherapy for the treatment of esophageal cancer. Chin. J. Integr. Med. 2011, 17, 933–936. [Google Scholar] [CrossRef]
- American Cancer Society. If You Have Esophagus Cancer. 2020. Available online: https://www.cancer.org/cancer/esophagus-cancer/if-you-have-esophagus-cancer.html (accessed on 30 August 2022).
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [Green Version]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef]
- Altun, İ.; Sonkaya, A. The Most Common Side Effects Experienced by Patients Were Receiving First Cycle of Chemotherapy. Iran. J. Public Health 2018, 47, 1218–1219. [Google Scholar]
- World Cancer Research Fund International. Oesophageal Cancer Statistics. 2020. Available online: https://www.wcrf.org/cancer-trends/oesophageal-cancer-statistics (accessed on 30 August 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, J.; An, S.; Choi, M.; Jung, J.H.; Kim, B. Natural Products for Esophageal Cancer Therapy: From Traditional Medicine to Modern Drug Discovery. Int. J. Mol. Sci. 2022, 23, 13558. https://doi.org/10.3390/ijms232113558
An J, An S, Choi M, Jung JH, Kim B. Natural Products for Esophageal Cancer Therapy: From Traditional Medicine to Modern Drug Discovery. International Journal of Molecular Sciences. 2022; 23(21):13558. https://doi.org/10.3390/ijms232113558
Chicago/Turabian StyleAn, Jeongeun, Soojin An, Min Choi, Ji Hoon Jung, and Bonglee Kim. 2022. "Natural Products for Esophageal Cancer Therapy: From Traditional Medicine to Modern Drug Discovery" International Journal of Molecular Sciences 23, no. 21: 13558. https://doi.org/10.3390/ijms232113558
APA StyleAn, J., An, S., Choi, M., Jung, J. H., & Kim, B. (2022). Natural Products for Esophageal Cancer Therapy: From Traditional Medicine to Modern Drug Discovery. International Journal of Molecular Sciences, 23(21), 13558. https://doi.org/10.3390/ijms232113558