The Expression Levels of SARS-CoV-2 Infection-Mediating Molecules Promoted by Interferon-γ and Tumor Necrosis Factor-α Are Downregulated by Hydrogen Sulfide
Abstract
:1. Introduction
2. Results
2.1. ACE2, NRP1 and TMPRSS2 Were Expressed in Human Thyroid Tissues
2.2. The Expression of ACE2 and NRP1 Was Higher, and TMPRSS2 Expression Was Lower in Thyroid Tissues from AITD Patients
2.3. IFN-γ and TNF-α Increased ACE2 and NRP1 mRNA Levels and Decreased TMPRSS2 mRNA Levels
2.4. H2S Downregulated ACE2 and NRP1 Expression That Was Increased by IFN-γ and TNF-α, and H2S Had No Effect on TMPRSS2 Expression
3. Discussion
4. Materials and Methods
4.1. Human Sample Collection
4.2. Normal Human Primary Thyrocytes and Normal Thyroid Cell Line Culture
4.3. Biochemical Measurements of Thyroid Function and Thyroid Autoantibodies
4.4. Immunohistochemical Staining (IHC) for ACE2, NRP1, and TMPRSS2
4.5. Normal Human Primary Thyrocyte Treatments
4.6. Real-Time PCR to Measure the mRNA Levels of ACE2, NRP1, and TMPRSS2
4.7. Western Blot Analysis of ACE2, NRP1, and TMPRSS2 Protein Levels
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, J.L.; Simonetti, B.; Klein, K.; Chen, K.E.; Williamson, M.K.; Anton-Plagaro, C.; Shoemark, D.K.; Simon-Gracia, L.; Bauer, M.; Hollandi, R.; et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 2020, 370, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020, 370, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.J.; Okuda, K.; Edwards, C.E.; Martinez, D.R.; Asakura, T.; Dinnon, K.H., 3rd; Kato, T.; Lee, R.E.; Yount, B.L.; Mascenik, T.M.; et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020, 182, 429–446.e14. [Google Scholar] [CrossRef]
- Chen, Q.; Quan, B.; Li, X.; Gao, G.; Zheng, W.; Zhang, J.; Zhang, Z.; Liu, C.; Li, L.; Wang, C.; et al. A report of clinical diagnosis and treatment of nine cases of coronavirus disease 2019. J. Med. Virol. 2020, 92, 683–687. [Google Scholar] [CrossRef]
- Ge, H.; Wang, X.; Yuan, X.; Xiao, G.; Wang, C.; Deng, T.; Yuan, Q.; Xiao, X. The epidemiology and clinical information about COVID-19. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1011–1019. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, L.; Li, J.; Cheng, X.; Yang, J.; Tian, C.; Zhang, Y.; Huang, S.; Liu, Z.; Cheng, J. Clinical Features of COVID-19-Related Liver Functional Abnormality. Clin. Gastroenterol. Hepatol. 2020, 18, 1561–1566. [Google Scholar] [CrossRef]
- Durvasula, R.; Wellington, T.; McNamara, E.; Watnick, S. COVID-19 and Kidney Failure in the Acute Care Setting: Our Experience from Seattle. Am. J. Kidney Dis. 2020, 76, 4–6. [Google Scholar] [CrossRef]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802–810. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef]
- Cheung, K.S.; Hung, I.F.N.; Chan, P.P.Y.; Lung, K.C.; Tso, E.; Liu, R.; Ng, Y.Y.; Chu, M.Y.; Chung, T.W.H.; Tam, A.R.; et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples from a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology 2020, 159, 81–95. [Google Scholar] [CrossRef]
- Chilamakuri, R.; Agarwal, S. COVID-19: Characteristics and Therapeutics. Cells 2021, 10, 206. [Google Scholar] [CrossRef] [PubMed]
- Yang, G. H2S as a potential defense against COVID-19? Am. J. Physiol. Cell Physiol. 2020, 319, C244–C249. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, P.; Ferrari, S.M.; Elia, G.; Paparo, S.R.; Patrizio, A.; Balestri, E.; Mazzi, V.; Gragnani, L.; Ferri, C.; Botrini, C.; et al. Thyroid autoimmunity and SARS-CoV-2 infection: Report of a large Italian series. Autoimmun. Rev. 2022, 21, 103183. [Google Scholar] [CrossRef]
- Antonelli, A.; Ferrari, S.M.; Corrado, A.; Di Domenicantonio, A.; Fallahi, P. Autoimmune thyroid disorders. Autoimmun. Rev. 2015, 14, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Pyzik, A.; Grywalska, E.; Matyjaszek-Matuszek, B.; Rolinski, J. Immune disorders in Hashimoto’s thyroiditis: What do we know so far? J. Immunol. Res. 2015, 2015, 979167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stassi, G.; De Maria, R. Autoimmune thyroid disease: New models of cell death in autoimmunity. Nat. Rev. Immunol. 2002, 2, 195–204. [Google Scholar] [CrossRef]
- Hamilton, F.; Black, M.; Farquharson, M.A.; Stewart, C.; Foulis, A.K. Spatial correlation between thyroid epithelial cells expressing class II MHC molecules and interferon-gamma-containing lymphocytes in human thyroid autoimmune disease. Clin. Exp. Immunol. 1991, 83, 64–68. [Google Scholar] [CrossRef]
- Drugarin, D.; Negru, S.; Koreck, A.; Zosin, I.; Cristea, C. The pattern of a T(H)1 cytokine in autoimmune thyroiditis. Immunol. Lett. 2000, 71, 73–77. [Google Scholar] [CrossRef]
- Roura-Mir, C.; Catalfamo, M.; Sospedra, M.; Alcalde, L.; Pujol-Borrell, R.; Jaraquemada, D. Single-cell analysis of intrathyroidal lymphocytes shows differential cytokine expression in Hashimoto’s and Graves’ disease. Eur. J. Immunol. 1997, 27, 3290–3302. [Google Scholar] [CrossRef]
- Salvi, M.; Pedrazzoni, M.; Girasole, G.; Giuliani, N.; Minelli, R.; Wall, J.R.; Roti, E. Serum concentrations of proinflammatory cytokines in Graves’ disease: Effect of treatment, thyroid function, ophthalmopathy and cigarette smoking. Eur. J. Endocrinol. 2000, 143, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Coperchini, F.; Ricci, G.; Croce, L.; Denegri, M.; Ruggiero, R.; Villani, L.; Magri, F.; Chiovato, L.; Rotondi, M. Modulation of ACE-2 mRNA by inflammatory cytokines in human thyroid cells: A pilot study. Endocrine 2021, 74, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Coperchini, F.; Greco, A.; Denegri, M.; Ripepi, F.A.; Grillini, B.; Bertini, J.; Cali, B.; Villani, L.; Magri, F.; Croce, L.; et al. Vitamin D and interferon-gamma co-operate to increase the ACE-2 receptor expression in primary cultures of human thyroid cells. J. Endocrinol. Investig. 2022. [Google Scholar] [CrossRef]
- Guan, R.; Cai, Z.; Wang, J.; Ding, M.; Li, Z.; Xu, J.; Li, Y.; Li, J.; Yao, H.; Liu, W.; et al. Hydrogen sulfide attenuates mitochondrial dysfunction-induced cellular senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1. Aging 2019, 11, 11844–11864. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Lin, X.; Xu, W.; Zheng, F.; Cai, J.; Yang, J.; Cui, Q.; Tang, C.; Cai, J.; Xu, G.; et al. Sulfhydrated Sirtuin-1 Increasing Its Deacetylation Activity Is an Essential Epigenetics Mechanism of Anti-Atherogenesis by Hydrogen Sulfide. Antioxid. Redox Signal. 2019, 30, 184–197. [Google Scholar] [CrossRef]
- Jorge-Aaron, R.M.; Rosa-Ester, M.P. N-acetylcysteine as a potential treatment for COVID-19. Future Microbiol. 2020, 15, 959–962. [Google Scholar] [CrossRef]
- Dai, J.; Teng, X.; Jin, S.; Wu, Y. The Antiviral Roles of Hydrogen Sulfide by Blocking the Interaction between SARS-CoV-2 and Its Potential Cell Surface Receptors. Oxid. Med. Cell Longev. 2021, 2021, 7866992. [Google Scholar] [CrossRef]
- Citi, V.; Martelli, A.; Brancaleone, V.; Brogi, S.; Gojon, G.; Montanaro, R.; Morales, G.; Testai, L.; Calderone, V. Anti-inflammatory and antiviral roles of hydrogen sulfide: Rationale for considering H2 S donors in COVID-19 therapy. Br. J. Pharmacol. 2020, 177, 4931–4941. [Google Scholar] [CrossRef]
- Pozzi, G.; Masselli, E.; Gobbi, G.; Mirandola, P.; Taborda-Barata, L.; Ampollini, L.; Carbognani, P.; Micheloni, C.; Corazza, F.; Galli, D.; et al. Hydrogen Sulfide Inhibits TMPRSS2 in Human Airway Epithelial Cells: Implications for SARS-CoV-2 Infection. Biomedicines 2021, 9, 1273. [Google Scholar] [CrossRef]
- Weetman, A.P.; McGregor, A.M. Autoimmune thyroid disease: Further developments in our understanding. Endocr. Rev. 1994, 15, 788–830. [Google Scholar] [CrossRef]
- Suzuki, N.; Noh, J.Y.; Yoshimura, R.; Mikura, K.; Kinoshita, A.; Suzuki, A.; Mitsumatsu, T.; Hoshiyama, A.; Fukushita, M.; Matsumoto, M.; et al. Does Age or Sex Relate to Severity or Treatment Prognosis in Graves’ Disease? Thyroid 2021, 31, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.K.; Firmal, P.; Alam, A.; Ganguly, D.; Chattopadhyay, S. Overview of Immune Response during SARS-CoV-2 Infection: Lessons from the Past. Front. Immunol. 2020, 11, 1949. [Google Scholar] [CrossRef] [PubMed]
- Drozdzal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Szostak, B.; Przybycinski, J.; Lorzadeh, S.; Kotfis, K.; Ghavami, S.; Los, M.J. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist. Updat. 2021, 59, 100794. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Francisco, D.; Conway, M.; Martinez, F.D.; Vercelli, D.; Polverino, F.; Billheimer, D.; Kraft, M. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J. Allergy Clin. Immunol. 2020, 146, 80–88.e88. [Google Scholar] [CrossRef]
- Cheng, C.W.; Fang, W.F.; Tang, K.T.; Lin, J.D. Serum interferon levels associated with the disease activity in women with overt Graves’ disease. Cytokine 2021, 138, 155353. [Google Scholar] [CrossRef]
- Aust, G.; Heuer, M.; Laue, S.; Lehmann, I.; Hofmann, A.; Heldin, N.E.; Scherbaum, W.A. Expression of tumour necrosis factor-alpha (TNF-alpha) mRNA and protein in pathological thyroid tissue and carcinoma cell lines. Clin. Exp. Immunol. 1996, 105, 148–154. [Google Scholar] [CrossRef]
- Zheng, R.Q.; Abney, E.R.; Chu, C.Q.; Field, M.; Maini, R.N.; Lamb, J.R.; Feldmann, M. Detection of in vivo production of tumour necrosis factor-alpha by human thyroid epithelial cells. Immunology 1992, 75, 456–462. [Google Scholar]
- Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Pere, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020, 369, 718–724. [Google Scholar] [CrossRef]
- Ronit, A.; Berg, R.M.G.; Bay, J.T.; Haugaard, A.K.; Ahlstrom, M.G.; Burgdorf, K.S.; Ullum, H.; Rorvig, S.B.; Tjelle, K.; Foss, N.B.; et al. Compartmental immunophenotyping in COVID-19 ARDS: A case series. J. Allergy Clin. Immunol. 2021, 147, 81–91. [Google Scholar] [CrossRef]
- Sen, N.; Paul, B.D.; Gadalla, M.M.; Mustafa, A.K.; Sen, T.; Xu, R.; Kim, S.; Snyder, S.H. Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol. Cell 2012, 45, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Untereiner, A.A.; Fu, M.; Modis, K.; Wang, R.; Ju, Y.; Wu, L. Stimulatory effect of CSE-generated H2S on hepatic mitochondrial biogenesis and the underlying mechanisms. Nitric Oxide 2016, 58, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, Y.; Escaffre, O.; Ivanciuc, T.; Komaravelli, N.; Kelley, J.P.; Coletta, C.; Szabo, C.; Rockx, B.; Garofalo, R.P.; et al. Role of hydrogen sulfide in paramyxovirus infections. J. Virol. 2015, 89, 5557–5568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renieris, G.; Katrini, K.; Damoulari, C.; Akinosoglou, K.; Psarrakis, C.; Kyriakopoulou, M.; Dimopoulos, G.; Lada, M.; Koufargyris, P.; Giamarellos-Bourboulis, E.J. Serum Hydrogen Sulfide and Outcome Association in Pneumonia by the SARS-CoV-2 Coronavirus. Shock 2020, 54, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Graves, S. Death by Chocolate Frosted Doughnut; Kensington: New York, NY, USA, 2019. [Google Scholar]
- Tain, Y.L.; Hsu, C.N.; Lu, P.C. Early short-term treatment with exogenous hydrogen sulfide postpones the transition from prehypertension to hypertension in spontaneously hypertensive rat. Clin. Exp. Hypertens 2018, 40, 58–64. [Google Scholar] [CrossRef]
- Talaei, F.; Bouma, H.R.; Hylkema, M.N.; Strijkstra, A.M.; Boerema, A.S.; Schmidt, M.; Henning, R.H. The role of endogenous H2S formation in reversible remodeling of lung tissue during hibernation in the Syrian hamster. J. Exp. Biol. 2012, 215, 2912–2919. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, C.S. The angiotensin-converting enzyme 2 (ACE2) receptor in the prevention and treatment of COVID-19 are distinctly different paradigms. Clin. Hypertens 2020, 26, 14. [Google Scholar] [CrossRef]
- Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020, 8, e21. [Google Scholar] [CrossRef]
- Hosoki, R.; Matsuki, N.; Kimura, H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 1997, 237, 527–531. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, R. H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H474–H480. [Google Scholar] [CrossRef]
- Suzuki, K.; Olah, G.; Modis, K.; Coletta, C.; Kulp, G.; Gero, D.; Szoleczky, P.; Chang, T.; Zhou, Z.; Wu, L.; et al. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc. Natl. Acad. Sci. USA 2011, 108, 13829–13834. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chen, D.D.; Sun, X.; Xie, H.H.; Yuan, H.; Jia, W.; Chen, A.F. Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetes. Diabetes 2014, 63, 1763–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.; Wang, L.; Wang, Y.; Dong, S.; Leng, X.; Jia, J.; Zhao, Y.; Li, H.; Zhang, X.; Xu, C.; et al. Exogenous hydrogen sulfide attenuates diabetic myocardial injury through cardiac mitochondrial protection. Mol. Cell Biochem. 2012, 371, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Altaany, Z.; Yang, G.; Wang, R. Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. J. Cell Mol. Med. 2013, 17, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, X.; Jin, H.; Wei, H.; Li, W.; Bu, D.; Tang, X.; Ren, Y.; Tang, C.; Du, J. Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Donertas Ayaz, B.; Oliveira, A.C.; Malphurs, W.L.; Redler, T.; de Araujo, A.M.; Sharma, R.K.; Sirmagul, B.; Zubcevic, J. Central Administration of Hydrogen Sulfide Donor NaHS Reduces Iba1-Positive Cells in the PVN and Attenuates Rodent Angiotensin II Hypertension. Front. Neurosci. 2021, 15, 690919. [Google Scholar] [CrossRef]
- Mustafa, A.K.; Gadalla, M.M.; Sen, N.; Kim, S.; Mu, W.; Gazi, S.K.; Barrow, R.K.; Yang, G.; Wang, R.; Snyder, S.H. H2S signals through protein S-sulfhydration. Sci. Signal 2009, 2, ra72. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Gao, Y.; Yu, N.; Li, T.; Zhang, Y.; Zhang, H.; Lu, G.; Gao, Y.; Guo, X. Unidirectional transport of IgG by neonatal Fc receptor in human thyrocytes varies across different IgG subclasses. Mol. Cell Endocrinol. 2018, 477, 103–111. [Google Scholar] [CrossRef]
- Zhao, X.; Cao, Y.; Jin, H.; Wang, X.; Zhang, L.; Zhang, Y.; Yu, Y.; Huang, Y.; Gao, Y.; Zhang, J. Hydrogen Sulfide Promotes Thyroid Hormone Synthesis and Secretion by Upregulating Sirtuin-1. Front. Pharmacol. 2022, 13, 838248. [Google Scholar] [CrossRef]
- Zhao, C.; Yu, Y.; Liu, J.; Lu, G.; Li, T.; Gao, Y.; Zhang, J.; Guo, X. Diversity of complement activation in different thyroid diseases. Int. Immunopharmacol. 2022, 106, 108636. [Google Scholar] [CrossRef]
- Rios, E.C.; Szczesny, B.; Soriano, F.G.; Olah, G.; Szabo, C. Hydrogen sulfide attenuates cytokine production through the modulation of chromatin remodeling. Int. J. Mol. Med. 2015, 35, 1741–1746. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Luo, N.; Wang, L.; Zhao, Z.; Bu, H.; Xu, G.; Yan, Y.; Che, X.; Jiao, Z.; Zhao, T.; et al. Hydrogen sulfide ameliorates chronic renal failure in rats by inhibiting apoptosis and inflammation through ROS/MAPK and NF-kappaB signaling pathways. Sci. Rep. 2017, 7, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuhlmeier, K.M.; Broll, J.; Iliev, B. NF-kappaB independent activation of a series of proinflammatory genes by hydrogen sulfide. Exp. Biol. Med. (Maywood) 2009, 234, 1327–1338. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.F.; Zhang, M.M.; Zhang, X.; Liu, W.; Zhang, S.H.; Yang, B.; Dong, Q.; Han, J.G.; Yu, H.L.; Li, T.; et al. HA-ADT suppresses esophageal squamous cell carcinoma progression via apoptosis promotion and autophagy inhibition. Exp. Cell Res. 2022, 420, 113341. [Google Scholar] [CrossRef]
- Rao, S.P.; Xie, W.; Christopher Kwon, Y.I.; Juckel, N.; Xie, J.; Dronamraju, V.R.; Vince, R.; Lee, M.K.; More, S.S. Sulfanegen stimulates 3-mercaptopyruvate sulfurtransferase activity and ameliorates Alzheimer’s disease pathology and oxidative stress in vivo. Redox Biol. 2022, 57, 102484. [Google Scholar] [CrossRef]
- Alshahwan, H.; Qabazard, B.; Mousa, A.; Chandrasekhar, B.; Santhosh, K.; Yousif, M.H.M. Hydrogen sulfide donor GYY4137 attenuates vascular complications in mesenteric bed of streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2022, 933, 175265. [Google Scholar] [CrossRef]
Normal Thyroid Group (n = 18) | HT Group (n = 18) | GD Group (n = 18) | |
---|---|---|---|
Sex (M/F) | 5/13 | 3/15 | 1/17 |
Age (years) | 43.6 ± 11.3 c | 44.8 ± 8.1c | 35.2 ± 15.8 a,b |
TT3 (nmol/L) | 1.6 ± 0.4 c | 1.7 ± 0.4 | 2.1 ± 0.7a |
TT4 (nmol/L) | 98.4 ± 21.1 | 99.6 ± 23.8 | 103.2 ± 55.1 |
TSH (μIU/mL) | 1.7 (1.1, 2.0) | 2.2 ± 1.7 c | 0.02 b (0.01, 1.9) |
TgAb (IU/mL) | 10.0 b,c (10.0, 15.2) | 243.1 a (10.9, 502.2) | 483.7 a (26.8, 1068.0) |
TPOAb (IU/mL) | 13.1 b,c (7.8, 20.5) | 63.5 a (17.1, 235.6) | 259.0 a (15.3, 600.0) |
TRAb (IU/L) | 0.7 ± 0.3 c | 0.8 ± 0.6 c | 5.04 a (2.0, 34.7) |
Genes | Primer Sequence (5′–3′) | Product bp | |
---|---|---|---|
ACE2 | Forward Reverse | GGGATCAGAGATCGGAAGAAGAAA AGGAGGTCTGAACATCATCAGTG | 24 23 |
NRP1 | Forward Reverse | GGCGCTTTTCGCAACGATAAA TCGCATTTTTCACTTGGGTGAT | 21 22 |
TMPRSS2 | Forward Reverse | GTCCCCACTGTCTACGAGGT CAGACGACGGGGTTGGAAG | 20 19 |
GAPDH | Forward Reverse | GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG | 21 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Cao, Y.; Zhao, E.; Li, T.; Cong, T.; Gao, Y.; Zhang, J. The Expression Levels of SARS-CoV-2 Infection-Mediating Molecules Promoted by Interferon-γ and Tumor Necrosis Factor-α Are Downregulated by Hydrogen Sulfide. Int. J. Mol. Sci. 2022, 23, 13624. https://doi.org/10.3390/ijms232113624
Zhao X, Cao Y, Zhao E, Li T, Cong T, Gao Y, Zhang J. The Expression Levels of SARS-CoV-2 Infection-Mediating Molecules Promoted by Interferon-γ and Tumor Necrosis Factor-α Are Downregulated by Hydrogen Sulfide. International Journal of Molecular Sciences. 2022; 23(21):13624. https://doi.org/10.3390/ijms232113624
Chicago/Turabian StyleZhao, Xue, Yedi Cao, Enmin Zhao, Tiancheng Li, Tiechuan Cong, Ying Gao, and Junqing Zhang. 2022. "The Expression Levels of SARS-CoV-2 Infection-Mediating Molecules Promoted by Interferon-γ and Tumor Necrosis Factor-α Are Downregulated by Hydrogen Sulfide" International Journal of Molecular Sciences 23, no. 21: 13624. https://doi.org/10.3390/ijms232113624
APA StyleZhao, X., Cao, Y., Zhao, E., Li, T., Cong, T., Gao, Y., & Zhang, J. (2022). The Expression Levels of SARS-CoV-2 Infection-Mediating Molecules Promoted by Interferon-γ and Tumor Necrosis Factor-α Are Downregulated by Hydrogen Sulfide. International Journal of Molecular Sciences, 23(21), 13624. https://doi.org/10.3390/ijms232113624