Quantitative Analysis of Acetone in Transformer Oil Based on ZnO NPs@Ag NWs SERS Substrates Combined with a Stoichiometric Model
Abstract
:1. Introduction
2. Results
2.1. Characterization of ZnO NPs@Ag NWs
2.2. Optimization of ZnO NPs Loadings
2.3. SERS Spectral Data Analysis of Acetone
2.4. Quantitative Modeling Analysis of Acetone
2.4.1. ULR Model
2.4.2. MLR Model
2.4.3. PLS Model
2.4.4. Comparison of Quantitative Models
3. Materials and Methods
3.1. Materials
3.2. Apparatus
3.3. Synthesis of ZnO NPs@Ag NWs Composite Materials
3.4. SERS Detection
3.5. Stoichiometric Models
3.5.1. MRL Models
3.5.2. PLS Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Djamali, M.; Tenbohlen, S. A Validated Online Algorithm for Detection of Fan Failures in Oil-Immersed Power Transformers. Int. J. Therm. Sci. 2017, 116, 224–233. [Google Scholar] [CrossRef]
- Okabe, S.; Kaneko, S.; Kohtoh, M.; Amimoto, T. Analysis Results for Insulating Oil Components in Field Transformers. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 302–311. [Google Scholar] [CrossRef]
- Aj, C.; Salam, M.A.; Rahman, Q.M.; Wen, F.; Ang, S.P.; Voon, W. Causes of Transformer Failures and Diagnostic Methods—A Review. Renew. Sustain. Energy Rev. 2018, 82, 1442–1456. [Google Scholar] [CrossRef]
- Murugan, R.; Ramasamy, R. Failure Analysis of Power Transformer for Effective Maintenance Planning in Electric Utilities. Eng. Fail. Anal. 2015, 55, 182–192. [Google Scholar] [CrossRef]
- Metwally, I.A. Failures, Monitoring and New Trends of Power Transformers. IEEE Potentials 2011, 30, 36–43. [Google Scholar] [CrossRef]
- Tyagi, S.K.; Pandey, D.; Kumar, V. Fuzzy Fault Tree Analysis for Fault Diagnosis of Cannula Fault in Power Transformer. Appl. Math. 2011, 2, 1346–1355. [Google Scholar] [CrossRef] [Green Version]
- Leibfried, T. Online Monitors Keep Transformers in Service. IEEE Comput. Appl. Power 1998, 11, 36–42. [Google Scholar] [CrossRef]
- Abdelfatah, M.; El-Shimy, M.; Ismail, H.M. Outage Data Analysis of Utility Power Transformers Based on Outage Reports during 2002–2009. Int. J. Electr. Power Energy Syst. 2013, 47, 41–51. [Google Scholar] [CrossRef]
- Fofana, I. 50 Years in the Development of Insulating Liquids. IEEE Electr. Insul. Mag. 2013, 29, 13–25. [Google Scholar] [CrossRef]
- Hill, D.J.T.; Le, T.T.; Darveniza, M.; Saha, T. A Study of the Degradation of Cellulosic Insulation Materials in a Power Transformer. Part III: Degradation Products of Cellulose Insulation Paper. Polym. Degrad. Stab. 1996, 51, 211–218. [Google Scholar] [CrossRef]
- Schaut, A.; Autru, S.; Eeckhoudt, S. Applicability of Methanol as New Marker for Paper Degradation in Power Transformers. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 533–540. [Google Scholar] [CrossRef]
- Emsley, A.M.; Xiao, X.; Heywood, R.J.; Ali, M. Degradation of Cellulosic Insulation in Power Transformers. Part 2: Formation of Furan Products in Insulating Oil. IEE Proc. Sci. Meas. Technol. 2000, 147, 110–114. [Google Scholar] [CrossRef]
- Cheim, L.; Platts, D.; Prevost, T.; Xu, S. Furan Analysis for Liquid Power Transformers. IEEE Electr. Insul. Mag. 2012, 28, 8–21. [Google Scholar] [CrossRef]
- Zhang, E.; Zheng, H.; Zhang, Y.; Liu, J.; Shi, Z.; Shi, K.; Zhang, C.; Shao, G.; Zhang, C.; Schwarz, H. Lifespan Model of the Relationships between Ethanol Indicator and Degree of Polymerization of Transformer Paper Insulation. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1859–1866. [Google Scholar] [CrossRef]
- Emsley, A.M. The Kinetics and Mechanisms of Degradation of Cellulosic Insulation in Power Transformers. Polym. Degrad. Stab. 1994, 44, 343–349. [Google Scholar] [CrossRef]
- Zhang, E.; Liu, J.; Fan, X.; Zhang, Y.; Zhang, C. Reduction Mechanism of Alcohols Contents Caused by Acids During Oil-Paper Insulation Aging. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1867–1874. [Google Scholar] [CrossRef]
- Shaik, S.; Sri Rama Krishna, K.; Vaddi, R. Nano-Scale Transistors with Circuit Interaction for Designing Energy-Efficient and Reliable Adder Cells at Low V DD. IETE Tech. Rev. 2018, 35, 456–466. [Google Scholar] [CrossRef]
- Okabe, S.; Ueta, G.; Tsuboi, T. Investigation of Aging Degradation Status of Insulating Elements in Oil-Immersed Transformer and Its Diagnostic Method Based on Field Measurement Data. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 346–355. [Google Scholar] [CrossRef]
- Zou, J.; Chen, W.; Wan, F.; Fan, Z.; Du, L. Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers. Energies 2016, 9, 946. [Google Scholar] [CrossRef] [Green Version]
- N’cho, J.S.; Fofana, I.; Hadjadj, Y.; Beroual, A. Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers. Energies 2016, 9, 367. [Google Scholar] [CrossRef]
- Singh, G.; Marimuthu, P.; Catalan, C.; deLampasona, M. Chemical, Antioxidant and Antifungal Activities of Volatile Oil of Black Pepper and Its Acetone Extract. J. Sci. Food Agric. 2004, 84, 1878–1884. [Google Scholar] [CrossRef]
- Kuk, M.S.; Tetlow, R.; Dowd, M.K. Cottonseed Extraction with Mixtures of Acetone and Hexane. J. Am. Oil Chem. Soc. 2005, 82, 609–612. [Google Scholar] [CrossRef]
- Boucher, R.E.; Skau, E.L. Phase Relations in the Solvent Winterization of Cottonseed Oil in 85-15 Acetone-Hexane Mixture at Reduced Holding-Times. J. Am. Oil Chem. Soc. 1952, 29, 455–456. [Google Scholar] [CrossRef]
- Kanginejad, A.; Mani-Varnosfaderani, A. Chemometrics Advances on the Challenges of the Gas Chromatography–Mass Spectrometry Metabolomics Data: A Review. J. Iran. Chem. Soc. 2018, 15, 2733–2745. [Google Scholar] [CrossRef]
- Xie, W.-Q.; Chai, X.-S. Determination of Isocyanate Groups in the Organic Intermediates by Reaction-Based Headspace Gas Chromatography. J. Chromatogr. A 2016, 1468, 241–244. [Google Scholar] [CrossRef]
- Zoccali, M.; Tranchida, P.Q.; Mondello, L. Fast Gas Chromatography-Mass Spectrometry: A Review of the Last Decade. TrAC Trends Anal. Chem. 2019, 118, 444–452. [Google Scholar] [CrossRef]
- Hwang, R.-J.; Beltran, J.; Rogers, C.; Barlow, J.; Razatos, G. Measurement of Uncertainty for Blood Alcohol Concentration by Headspace Gas Chromatography. Can. Soc. Forensic Sci. J. 2017, 50, 114–124. [Google Scholar] [CrossRef]
- Maštovská, K.; Lehotay, S.J. Practical Approaches to Fast Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2003, 1000, 153–180. [Google Scholar] [CrossRef]
- Kolb, B.K.; Riesterer, L.; Bier, L.; Widenhorn, A.-M. Proof of Bacteria and the Activity of Chemical and Natural Antibiotics by Headspace Gas Chromatography. J. Anal. Sci. Technol. 2019, 10, 9. [Google Scholar] [CrossRef]
- Paschoal, V.H.; Faria, L.F.O.; Ribeiro, M.C.C. Vibrational Spectroscopy of Ionic Liquids. Chem. Rev. 2017, 117, 7053–7112. [Google Scholar] [CrossRef]
- Mulvaney, S.P.; Keating, C.D. Raman Spectroscopy. Anal. Chem. 2000, 72, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Vandenabeele, P. Raman Spectroscopy. Anal. Bioanal. Chem. 2010, 397, 2629–2630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Z.; Chen, W.; Du, L.; Shi, H.; Wan, F. Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil. J. Appl. Spectrosc. 2018, 85, 225–231. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, P.; Liu, X.; Sun, X.; Li, H.; Lin, M. Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures. Food Bioprocess Technol. 2013, 6, 710–718. [Google Scholar] [CrossRef]
- Chen, J.; Huang, M.; Kong, L. Flexible Ag/Nanocellulose Fibers SERS Substrate and Its Applications for in-Situ Hazardous Residues Detection on Food. Appl. Surf. Sci. 2020, 533, 147454. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q. Polymer Multilayers Enabled Stable and Flexible Au@Ag Nanoparticle Array for Nondestructive SERS Detection of Pesticide Residues. Talanta 2021, 223, 121782. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q. Shell Thickness-Dependent Au@Ag Nanoparticles Aggregates for High-Performance SERS Applications. Talanta 2019, 195, 506–515. [Google Scholar] [CrossRef]
- Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Langmuir−Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Lett. 2003, 3, 1229–1233. [Google Scholar] [CrossRef]
- Wang, A.; Kong, X. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Materials 2015, 8, 3024–3052. [Google Scholar] [CrossRef]
- Mosier-Boss, P. Review of SERS Substrates for Chemical Sensing. Nanomaterials 2017, 7, 142. [Google Scholar] [CrossRef]
- Cobley, C.M.; Skrabalak, S.E.; Campbell, D.J.; Xia, Y. Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications. Plasmonics 2009, 4, 171–179. [Google Scholar] [CrossRef]
- Francis, M.K.; Sahu, B.K.; Bhargav, P.B.; Balaji, C.; Ahmed, N.; Das, A.; Dhara, S. Ag Nanowires Based SERS Substrates with Very High Enhancement Factor. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 137, 115080. [Google Scholar] [CrossRef]
- Shan, D.; Liu, L.; Chen, Z.; Zhang, J.; Cui, R.; Hong, E.; Wang, B. Controlled Hydrothermal Synthesis of Ag Nanowires and Their Antimicrobial Properties. Arab. J. Chem. 2021, 14, 102978. [Google Scholar] [CrossRef]
- Yu, L.; Lu, L.; Zeng, L.; Yan, X.; Ren, X.; Wu, J.Z. Double Ag Nanowires on a Bilayer MoS 2 Flake for Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2021, 125, 1940–1946. [Google Scholar] [CrossRef]
- Wang, S.; Sun, B.; Jiang, H.; Jin, Y.; Feng, J.; An, F.; Wang, H.; Xu, W. Facile and Robust Fabrication of Hierarchical Au Nanorods/Ag Nanowire SERS Substrates for the Sensitive Detection of Dyes and Pesticides. Anal. Methods 2022, 14, 1041–1050. [Google Scholar] [CrossRef]
- Riswana Barveen, N.; Wang, T.-J.; Chang, Y.-H. Photochemical Synthesis of Ag/Au/AgCl Heterostructure from Ag Nanowires as a Reusable SERS Substrate for Ultrasensitive Detection of Analgesics and Antibiotics. Chem. Eng. J. 2021, 423, 130191. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, W.; Peng, C.; Liang, Y.; Wang, W. Sensitive Surface-Enhanced Raman Scattering of TiO2/Ag Nanowires Induced by Photogenerated Charge Transfer. J. Colloid Interface Sci. 2017, 507, 370–377. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Ma, Y.; Li, S.; Wei, Y.; Huang, Z.; Long, N.V. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application. Nanomaterials 2017, 7, 398. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Jin, S.; Guo, S.; Park, Y.; Chen, L.; Zhao, B.; Jung, Y.M. Recent Development of SERS Technology: Semiconductor-Based Study. ACS Omega 2019, 4, 20101–20108. [Google Scholar] [CrossRef]
- Columbus, S.; Hammouche, J.; Ramachandran, K.; Daoudi, K.; Gaidi, M. Assessing the Efficiency of Photocatalytic Removal of Alizarin Red Using Copper Doped Zinc Oxide Nanostructures by Combining SERS Optical Detection. J. Photochem. Photobiol. A Chem. 2022, 432, 114123. [Google Scholar] [CrossRef]
- Ramachandran, K.; Muthukumarasamy, A.; Baskaran, B.; Chidambaram, S. Optical and Electrical Characteristics of N-ZnSmO/p-Si Heterojunction Diodes. Appl. Surf. Sci. 2017, 418, 312–317. [Google Scholar] [CrossRef]
- He, H.; Li, H.; Xia, W.; Shen, X.; Zhou, M.; Han, J.; Zeng, X.; Cai, W. Electrophoretic Fabrication of Silver Nanostructure/Zinc Oxide Nanorod Heterogeneous Arrays with Excellent SERS Performance. J. Mater. Chem. C 2015, 3, 1724–1731. [Google Scholar] [CrossRef]
- Adar, F. Surface-Enhanced Raman Scattering. Spectroscopy 2008, 23, 20–29. [Google Scholar]
- Chen, W.; Gu, Z.; Zou, J.; Wan, F.; Xiang, Y. Analysis of Furfural Dissolved in Transformer Oil Based on Confocal Laser Raman Spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 915–921. [Google Scholar] [CrossRef]
- Fu, Q.; Peng, L.; Li, L.; Lin, M.; Zhao, Y.; Li, S.; Chen, C. Detection of Methanol in Power Transformer Oil Using Spectroscopy. J. Electr. Eng. 2019, 14, 861–867. [Google Scholar] [CrossRef]
- Wan, F.; Lei, Y.; Wang, C.; Zhang, X.; He, H.; Jia, L.; Wang, T.; Chen, W. Highly Sensitive and Reproducible CNTs@Ag Modified Flower-Like Silver Nanoparticles for SERS Situ Detection of Transformer Oil-Dissolved Furfural. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 273, 121067. [Google Scholar] [CrossRef]
- Lavine, B.K.; Workman, J. Chemometrics. Anal. Chem. 2013, 85, 705–714. [Google Scholar] [CrossRef]
- Lavine, B.; Workman, J.J. Chemometrics. Anal. Chem. 2004, 76, 3365–3372. [Google Scholar] [CrossRef]
- Cubero-Leon, E.; De Rudder, O.; Maquet, A. Metabolomics for Organic Food Authentication: Results from a Long-Term Field Study in Carrots. Food Chem. 2018, 239, 760–770. [Google Scholar] [CrossRef]
- Kong, L.; Huang, M.; Chen, J.; Lin, M. Fabrication of Sensitive Silver-Decorated Cotton Swabs for SERS Quantitative Detection of Mixed Pesticide Residues in Bitter Gourds. New J. Chem. 2020, 44, 12779–12784. [Google Scholar] [CrossRef]
- Faber, N.K.M. Multivariate Sensitivity for the Interpretation of the Effect of Spectral Pretreatment Methods on Near-Infrared Calibration Model Predictions. Anal. Chem. 1999, 71, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Q.; Tao, W.; Yu, B.; Du, Y. Quantitative Analysis of Thymine with Surface-Enhanced Raman Spectroscopy and Partial Least Squares (PLS) Regression. Anal. Bioanal. Chem. 2010, 398, 1827–1832. [Google Scholar] [CrossRef]
- Szymańska, E.; Gerretzen, J.; Engel, J.; Geurts, B.; Blanchet, L.; Buydens, L.M.C. Chemometrics and Qualitative Analysis Have a Vibrant Relationship. TrAC Trends Anal. Chem. 2015, 69, 34–51. [Google Scholar] [CrossRef]
- Zhu, A.; Xu, Y.; Ali, S.; Ouyang, Q.; Chen, Q. Au@Ag Nanoflowers Based SERS Coupled Chemometric Algorithms for Determination of Organochlorine Pesticides in Milk. LWT 2021, 150, 111978. [Google Scholar] [CrossRef]
- Jiao, T.; Mehedi Hassan, M.; Zhu, J.; Ali, S.; Ahmad, W.; Wang, J.; Lv, C.; Chen, Q.; Li, H. Quantification of Deltamethrin Residues in Wheat by Ag@ZnO NFs-Based Surface-Enhanced Raman Spectroscopy Coupling Chemometric Models. Food Chem. 2021, 337, 127652. [Google Scholar] [CrossRef]
- Chen, M.; Phang, I.Y.; Lee, M.R.; Yang, J.K.W.; Ling, X.Y. Layer-By-Layer Assembly of Ag Nanowires into 3D Woodpile-like Structures to Achieve High Density “Hot Spots” for Surface-Enhanced Raman Scattering. Langmuir 2013, 29, 7061–7069. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, L.; Ma, Z.; Wang, M.; Zhao, R.; Zou, Y.; Fan, Y. Ag Nanoparticles Decorated ZnO Nanorods as Multifunctional SERS Substrates for Ultrasensitive Detection and Catalytic Degradation of Rhodamine B. Nanomaterials 2022, 12, 2394. [Google Scholar] [CrossRef]
- Barveen, N.R.; Wang, T.-J.; Chang, Y.-H.; Yuan-Liu, Z. Ultrasensitive and Reusable SERS Probe for the Detection of Synthetic Dyes in Food Industry through Hybrid Flower-Shaped ZnO@Ag Nanostructures. J. Alloys Compd. 2021, 861, 157952. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Wang, C.; Xu, X.; Qiu, G.; Ye, W.; Li, Y.; Harris, R.A.; Jiang, C. Group-Targeting SERS Screening of Total Benzodiazepines Based on Large-Size (111) Faceted Silver Nanosheets Decorated with Zinc Oxide Nanoparticles. Anal. Chem. 2021, 93, 3403–3410. [Google Scholar] [CrossRef]
- Tao, Q.; Li, S.; Ma, C.; Liu, K.; Zhang, Q.-Y. A Highly Sensitive and Recyclable SERS Substrate Based on Ag-Nanoparticle-Decorated ZnO Nanoflowers in Ordered Arrays. Dalton Trans. 2015, 44, 3447–3453. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Feng, Y.-Z.; Jia, G.-F.; Zhao, H.-T. Application of Artificial Fish Swarm Algorithm for Synchronous Selection of Wavelengths and Spectral Pretreatment Methods in Spectrometric Analysis of Beef Adulteration. Food Anal. Methods 2018, 11, 2229–2236. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, D.; Zhao, H.; Sun, B.; Liang, P.; Ye, J.; Yu, Z.; Jin, S. Intelligent Spectral Algorithm for Pigments Visualization, Classification and Identification Based on Raman Spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 250, 119390. [Google Scholar] [CrossRef] [PubMed]
Model | R | RMSE | MAPE | ||
---|---|---|---|---|---|
7.29 mg/g | 0.003 mg/g | ||||
ULR | 0.95548 | 0.69907 | 11.47% | 107.03% | |
MLR | 0.98432 | 0.41038 | 6.12% | 199.61% | |
PLS | calibration | 0.99729 | 0.12596 | 1.33% | 30.13% |
prediction | 0.99768 | 0.11408 | 1.60% | 18.47% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Lei, Y.; Song, R.; Chen, W.; Wang, C.; Wang, Z.; Yin, Z.; Wan, F. Quantitative Analysis of Acetone in Transformer Oil Based on ZnO NPs@Ag NWs SERS Substrates Combined with a Stoichiometric Model. Int. J. Mol. Sci. 2022, 23, 13633. https://doi.org/10.3390/ijms232113633
Zhang X, Lei Y, Song R, Chen W, Wang C, Wang Z, Yin Z, Wan F. Quantitative Analysis of Acetone in Transformer Oil Based on ZnO NPs@Ag NWs SERS Substrates Combined with a Stoichiometric Model. International Journal of Molecular Sciences. 2022; 23(21):13633. https://doi.org/10.3390/ijms232113633
Chicago/Turabian StyleZhang, Xinyuan, Yu Lei, Ruimin Song, Weigen Chen, Changding Wang, Ziyi Wang, Zhixian Yin, and Fu Wan. 2022. "Quantitative Analysis of Acetone in Transformer Oil Based on ZnO NPs@Ag NWs SERS Substrates Combined with a Stoichiometric Model" International Journal of Molecular Sciences 23, no. 21: 13633. https://doi.org/10.3390/ijms232113633
APA StyleZhang, X., Lei, Y., Song, R., Chen, W., Wang, C., Wang, Z., Yin, Z., & Wan, F. (2022). Quantitative Analysis of Acetone in Transformer Oil Based on ZnO NPs@Ag NWs SERS Substrates Combined with a Stoichiometric Model. International Journal of Molecular Sciences, 23(21), 13633. https://doi.org/10.3390/ijms232113633