Nanobodies for the Early Detection of Ovarian Cancer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Periplasmic Expression of the Nanobodies in E. coli WK6
2.2. Antigen-Binding Affinity of the Nanobodies
2.3. Limits of Detection of Antigens
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Generation of Nanobodies
3.2.2. Expression and Periplasmic Extraction of Nbs in E. coli WK6
3.2.3. Nb Protein Purification
3.2.4. Enzyme-Linked Immunosorbent Assay
3.2.5. Surface Plasmon Resonance and Epitope Binning
3.2.6. Determination of the Limit of Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prantner, A.M.; Turini, M.; Kerfelec, B.; Joshi, S.; Baty, D.; Chames, P.; Scholler, N. Anti-mesothelin nanobodies for both conventional and nanoparticle-based biomedical applications. J. Biomed. Nanotechnol. 2015, 11, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dowdy, S.; Tipton, T.; Podratz, K.; Lu, W.G.; Xie, X.; Jiang, S.W. HE4 as a biomarker for ovarian and endometrial cancer management. Expert Rev. Mol. Diagn. 2009, 9, 555–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, M.R.; Goff, B.A.; Lowe, K.A.; Scholler, N.; Bergan, L.; Drescher, C.W.; Paley, P.; Urban, N. Use of a Symptom Index, CA125, and HE4 to predict ovarian cancer. Gynecol. Oncol. 2010, 116, 378–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, R.; Escudero, J.M.; Augé, J.M.; Filella, X.; Foj, L.; Torné, A.; Lejarcegui, J.; Pahisa, J. HE4 a novel tumour marker for ovarian cancer: Comparison with CA 125 and ROMA algorithm in patients with gynaecological diseases. Tumor Biol. 2011, 32, 1087–1095. [Google Scholar] [CrossRef] [Green Version]
- American Cancer Society Cancer Facts & Figures 2019. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf (accessed on 4 October 2022).
- Han, J.J.; Yu, M.; Houston, N.; Steinberg, S.M.; Kohn, E.C. Progranulin is a potential prognostic biomarker in advanced epithelial ovarian cancers. Gynecol. Oncol. 2011, 120, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Sarojini, S.; Tamir, A.; Lim, H.; Li, S.; Zhang, S.; Goy, A.; Pecora, A.; Suh, K.S. Early detection biomarkers for ovarian cancer. J. Oncol. 2012, 2012, 15. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, M.; Gupta, S.; Sachan, M. Biomarkers towards Ovarian Cancer Diagnostics: Present and Future Prospects. Braz. Arch. Biol. Technol. 2016, 59, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, P.J.; Le, N.; Correa, R. CA 125 normalization with chemotherapy is independently predictive of survival in advanced endometrial cancer. Gynecol. Oncol. 2011, 120, 52–55. [Google Scholar] [CrossRef]
- Swisher, E.M. Granulin: Biomarker or interesting window into host/tumor biology? Gynecol. Oncol. 2011, 120, 1–2. [Google Scholar] [CrossRef]
- Whited, A.M.; Singh, K.V.; Evans, D.; Solanki, R. An Electronic Sensor for Detection of Early-Stage Biomarker/s for Ovarian Cancer. Bionanoscience 2012, 2, 161–170. [Google Scholar] [CrossRef]
- Hulka, B.S.; Wilcosky, T. Biological Markers in Epidemiologic Research. Arch. Environ. Health Int. J. 1988, 43, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Mayeux, R. Biomarkers: Potential Uses and Limitations. NeuroRx 2004, 1, 182–188. [Google Scholar] [CrossRef]
- Cenik, B.; Sephton, C.F.; Cenik, B.K.; Herz, J.; Yu, G. Progranulin: A proteolytically processed protein at the crossroads of inflammation and neurodegeneration. J. Biol. Chem. 2012, 287, 32298–32306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Lee, J.H.; Hong, D.J.; Lee, E.Y.; Kim, H.S. Diagnostic performances of HE4 and CA125 for the detection of ovarian cancer from patients with various gynecologic and non-gynecologic diseases. Clin. Biochem. 2011, 44, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Drapkin, R.; Von Horsten, H.H.; Lin, Y.; Mok, S.C.; Crum, C.P.; Welch, W.R.; Hecht, J.L. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas. Cancer Res. 2005, 65, 2162–2169. [Google Scholar] [CrossRef] [Green Version]
- Arechavaleta-Velasco, F.; Carlos Eduardo, P.J.; George, L.G.; Diaz-Cueto, L. Progranulin and its biological effects in cancer. Med. Oncol. 2017, 34, 194. [Google Scholar] [CrossRef]
- Moore, R.G.; McMeekin, D.S.; Brown, A.K.; DiSilvestro, P.; Miller, M.C.; Allard, W.J.; Gajewski, W.; Kurman, R.; Bast, R.C.; Skates, S.J. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol. Oncol. 2009, 112, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Karlsen, M.A.; Sandhu, N.; Høgdall, C.; Christensen, I.J.; Nedergaard, L.; Lundvall, L.; Engelholm, S.A.; Pedersen, A.T.; Hartwell, D.; Lydolph, M.; et al. Evaluation of HE4, CA125, risk of ovarian malignancy algorithm (ROMA) and risk of malignancy index (RMI) as diagnostic tools of epithelial ovarian cancer in patients with a pelvic mass. Gynecol. Oncol. 2012, 127, 379–383. [Google Scholar] [CrossRef]
- Simpkins, F.A.; Devoogdt, N.M.; Rasool, N.; Tchabo, N.E.; Alejandro, E.U.; Kamrava, M.M.R.N.; Kohn, E.C. The alarm anti-protease, secretory leukocyte protease inhibitor, is a proliferation and survival factor for ovarian cancer cells. Carcinogenesis 2008, 29, 466–472. [Google Scholar] [CrossRef]
- Devoogdt, N.; Rasool, N.; Hoskins, E.; Simpkins, F.; Tchabo, N.; Kohn, E.C. Overexpression of protease inhibitor-dead secretory leukocyte protease inhibitor causes more aggressive ovarian cancer in vitro and in vivo. Cancer Sci. 2009, 100, 434–440. [Google Scholar] [CrossRef]
- Tsukishiro, S.; Suzumori, N.; Nishikawa, H.; Arakawa, A.; Suzumori, K. Use of serum secretory leukocyte protease inhibitor levels in patients to improve specificity of ovarian cancer diagnosis. Gynecol. Oncol. 2005, 96, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Muyldermans, S.; Baral, T.N.; Retamozzo, V.C.; De Baetselier, P.; De Genst, E.; Kinne, J.; Leonhardt, H.; Magez, S.; Nguyen, V.K.; Revets, H.; et al. Camelid immunoglobulins and nanobody technology. Vet. Immunol. Immunopathol. 2009, 128, 178–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Liu, C.; Muyldermans, S. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy. Front. Immunol. 2017, 8, 1442. [Google Scholar] [CrossRef] [PubMed]
- De Meyer, T.; Muyldermans, S.; Depicker, A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 2014, 32, 263–270. [Google Scholar] [CrossRef]
- Kijanka, M.; Dorresteijn, B.; Oliveira, S.; van Bergen en Henegouwen, P.M. Nanobody-based cancer therapy of solid tumors. Nanomedicine 2015, 10, 161–174. [Google Scholar] [CrossRef]
- Harmsen, M.M.; De Haard, H.J. Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 2007, 77, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Muyldermans, S. Single domain camel antibodies: Current status. Rev. Mol. Biotechnol. 2001, 74, 277–302. [Google Scholar] [CrossRef]
- Vincke, C.; Gutiérrez, C.; Wernery, U.; Devoogdt, N.; Hassanzadeh-Ghassabeh, G.; Muyldermans, S. Generation of Single Domain Antibody Fragments Derived from Camelids and Generation of Manifold Constructs. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 907, pp. 145–176. ISBN 978-1-61779–974–7. [Google Scholar]
- Muyldermans, S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef] [Green Version]
- Steen Redeker, E.; Ta, D.T.; Cortens, D.; Billen, B.; Guedens, W.; Adriaensens, P. Protein engineering for directed immobilization. Bioconjug. Chem. 2013, 24, 1761–1777. [Google Scholar] [CrossRef]
- Ta, D.T.; Steen Redeker, E.; Billen, B.; Reekmans, G.; Sikulu, J.; Noben, J.P.P.; Guedens, W.; Adriaensens, P. An efficient protocol towards site-specifically clickable nanobodies in high yield: Cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation. Protein Eng. Des. Sel. 2015, 28, 351–363. [Google Scholar] [CrossRef]
- Billen, B.; Vincke, C.; Hansen, R.; Devoogdt, N.; Muyldermans, S.; Adriaensens, P.; Guedens, W. Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized nanobodies using expressed protein ligation. Protein Expr. Purif. 2017, 133, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Graulus, G.J.; Ta, D.T.; Tran, H.; Hansen, R.; Billen, B.; Erik, R.; Jean-Paul, N.; Devoogdt, N.; Muyldermans, S.; Guedens, W.; et al. Site-Selective Functionalization of Nanobodies Using Intein-Mediated Protein Ligation for Innovative Bioconjugation. In Bioconjugation Methods and Protocols; Massa, S., Devoogdt, N., Eds.; Humana Press: Totowa, NJ, USA, 2019. [Google Scholar]
- Guimaraes, C.P.; Witte, M.D.; Theile, C.S.; Bozkurt, G.; Kundrat, L.; Blom, A.E.M.; Ploegh, H.L. Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat. Protoc. 2013, 8, 1787–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Genst, E.; Silence, K.; Ghahroudi, M.A.; Decanniere, K.; Loris, R.; Kinne, J.; Wyns, L.; Muyldermans, S. Strong in vivo maturation compensates for structurally restricted H3 loops in antibody repertoires. J. Biol. Chem. 2005, 280, 14114–14121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeter, L.H.H.; Patzke, H.; Loewen, G.; Dopper, E.G.P.; Pijnenburg, Y.A.L.; Van Minkelen, R.; Van Swieten, J.C. Progranulin Levels in Plasma and Cerebrospinal Fluid in Granulin Mutation Carriers. Dement. Geriatr. Cogn. Dis. Extra 2016, 6, 330–340. [Google Scholar] [CrossRef]
- Huhtinen, K.; Suvitie, P.; Hiissa, J.; Junnila, J.; Huvila, J.; Kujari, H.; Setälä, M.; Härkki, P.; Jalkanen, J.; Fraser, J.; et al. Serum HE4 concentration differentiates malignant ovarian tumours from ovarian endometriotic cysts. Br. J. Cancer 2009, 100, 1315–1319. [Google Scholar] [CrossRef]
- Pillay, T.S.; Muyldermans, S. Application of single-domain antibodies (“nanobodies”) to laboratory diagnosis. Ann. Lab. Med. 2021, 41, 549–558. [Google Scholar] [CrossRef]
- Hosseindokht, M.; Bakherad, H.; Zare, H. Nanobodies: A tool to open new horizons in diagnosis and treatment of prostate cancer. Cancer Cell Int. 2021, 21, 580. [Google Scholar] [CrossRef]
- Liu, M.; Li, L.; Jin, D.; Liu, Y. Nanobody—A versatile tool for cancer diagnosis and therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1697. [Google Scholar] [CrossRef]
- Vi, C.; Mandarano, G.; Shigdar, S. Diagnostics and therapeutics in targeting her2 breast cancer: A novel approach. Int. J. Mol. Sci. 2021, 22, 6163. [Google Scholar] [CrossRef]
- Salvador, J.P.; Vilaplana, L.; Marco, M.P. Nanobody: Outstanding features for diagnostic and therapeutic applications. Anal. Bioanal. Chem. 2019, 411, 1703–1713. [Google Scholar] [CrossRef]
- Brilhante-da-Silva, N.; de Oliveira Sousa, R.M.; Arruda, A.; dos Santos, E.L.; Marinho, A.C.M.; Stabeli, R.G.; Fernandes, C.F.C.; dos Santos Pereira, S. Camelid Single-Domain Antibodies for the Development of Potent Diagnosis Platforms. Mol Diagn. Ther. 2021, 25, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Jailkhani, N.; Ingram, J.R.; Rashidian, M.; Rickelt, S.; Tian, C.; Mak, H.; Jiang, Z.; Ploegh, H.L.; Hynes, R.O. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc. Natl. Acad. Sci. USA 2019, 116, 14181–14190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Gomes, F.; Bode, J.; Sukhanova, A.; Bozrova, S.V.; Saccomano, M.; Mitkovski, M.; Krueger, J.E.; Wege, A.K.; Stuehmer, W.; Samokhvalov, P.S.; et al. Single- and two-photon imaging of human micrometastases and disseminated tumour cells with conjugates of nanobodies and quantum dots. Sci. Rep. 2018, 8, 4595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Liu, T.; Wu, M.; Chen, X.; Han, L.; Shi, Z.; Li, Y.; Li, X.; Xu, H.; Gong, L.; et al. Development of a nanobody-based immunoassay for the sensitive detection of fibrinogen-like protein 1. Acta Pharm. Sin. 2021, 42, 1921–1929. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Ding, C.; Zheng, D.; Ma, X.; Yi, L.; Tong, X.; Wu, C.; Xue, C.; Yu, Y.; Zhou, Q. Nanobody Conjugates for Targeted Cancer Therapy and Imaging. Technol. Cancer Res. Treat. 2021, 20, 1–12. [Google Scholar] [CrossRef]
- Yang, E.Y.; Shah, K. Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. Front. Oncol. 2020, 10, 1182. [Google Scholar] [CrossRef]
- Berland, L.; Kim, L.; Abousaway, O.; Mines, A.; Mishra, S.; Clark, L.; Hofman, P.; Rashidian, M. Nanobodies for medical imaging: About ready for prime time? Biomolecules 2021, 11, 637. [Google Scholar] [CrossRef]
- Harmand, T.J.; Islam, A.; Pishesha, N.; Ploegh, H.L. Nanobodies as: In vivo, non-invasive, imaging agents. RSC Chem. Biol. R. Soc. Chem. 2021, 2, 685–701. [Google Scholar] [CrossRef]
- Debie, P.; Devoogdt, N.; Hernot, S. Targeted nanobody-based molecular tracers for nuclear imaging and image-guided surgery. Antibodies 2019, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- D’Huyvetter, M.; De Vos, J.; Xavier, C.; Pruszynski, M.; Sterckx, Y.G.J.; Massa, S.; Raes, G.; Caveliers, V.; Zalutsky, M.R.; Toy Lahoutte, T.; et al. 131I-labeled Anti-HER2 Camelid sdAb as a Theranostic Tool in Cancer Treatment. Clin. Cancer Res. 2017, 23, 6616–6628. Available online: http://clincancerres.aacrjournals.org/lookup/doi/10.1158/1078–0432.CCR-17–0310 (accessed on 4 October 2022). [CrossRef]
- Bakherad, H.; Ghasemi, F.; Hosseindokht, M.; Zare, H. Nanobodies; new molecular instruments with special specifications for targeting, diagnosis and treatment of triple-negative breast cancer. Cancer Cell Int. 2022, 22, 245. [Google Scholar] [CrossRef] [PubMed]
Targeted Antigen | Nb Clone | Expression Level (mg/L) | EC50 a (nM) | kon b (M−1.s−1) | koff b (s−1) | KD b (nM) |
---|---|---|---|---|---|---|
HE4 | HE4-1 | 4.4 | 4.6 | 5.3 × 106 | 1.9 × 10−3 | 0.4 |
HE4-2 | 0.6 | 509.7 | - | - | - | |
HE4-3 | 1.7 | 353.9 | - | - | - | |
HE4-4 | 0.2 | 6.8 | - | - | - | |
HE4-5 | 2.2 | 198.1 | - | - | - | |
HE4-6 | 7.7 | 4.6 | 3.2 × 106 | 9.0 × 10−3 | 2.8 | |
HE4-7 | 5.9 | 48.2 | 1.1 × 106 | 36.3 × 10−3 | 32.0 | |
HE4-8 | 4.8 | 28.7 | 1.8 × 106 | 28.9 × 10−3 | 16.0 | |
HE4-9 | 1.9 | * | - | - | - | |
HE4-10 | 2.1 | 23.3 | 2.0 × 106 | 34.2 × 10−3 | 18.0 | |
HE4-11 | 7.4 | 16.0 | 0.4 × 106 | 2.6 × 10−3 | 6.1 | |
HE4-12 | 3.3 | * | - | - | - | |
HE4-13 | 9.1 | 746.8 | - | - | - | |
SLPI | SLPI-1 | 20.9 | 4.1 | 1.3 × 106 | 56.4 × 10−3 | 43.0 |
SLPI-2 | 0.2 | 4.3 | - | - | - | |
SLPI-3 | 2.5 | 32.4 | - | - | - | |
SLPI-4 | 0.8 | 78.9 | - | - | - | |
SLPI-6 | 25.2 | 3.4 | - | - | - | |
SLPI-7 | 0.3 | 2.0 | 1.9 × 106 | 3.6 × 10−3 | 1.9 | |
SLPI-8 | 1.3 | 91.5 | - | - | - | |
SLPI-9 | 0.1 | 4.0 | - | - | - | |
PGRN | PGRN-1 | 10.6 | 768.0 | - | - | - |
PGRN-2 | 10.0 | 198.0 | - | - | - | |
PGRN-3 | 1.3 | 175.0 | - | - | - | |
PGRN-4 | 15.0 | 15.0 | - | - | - | |
PGRN-5 | 10.5 | 2.7 | 0.1 × 106 | 3.4 × 10−3 | 33.0 | |
PGRN-6 | 9.6 | * | - | - | - | |
PGRN-7 | 0.5 | 1.1 | 0.9 × 106 | 0.9 × 10−3 | 1.0 | |
PGRN-8 | 3.3 | 2.1 | 0.5 × 106 | 9.1 × 10−3 | 17.0 | |
PGRN-9 | 1.5 | 3.5 | 1.9 × 106 | 57.2 × 10−3 | 30.0 | |
PGRN-10 | 14.0 | 122.0 | - | - | - | |
PGRN-11 | 11.3 | 1.8 | 0.3 × 106 | 2.0 × 10−3 | 7.5 | |
PGRN-12 | 0.9 | * | - | - | - |
HE4-1/HE4-6 | HE4-4 | HE4-7 | HE4-8 | HE4-11 | |
---|---|---|---|---|---|
HE4-1/HE4-6 | C | P.C | N.C | N.C | P.C |
HE4-4 | C | C | C | C | |
HE4-7 | C | C | C | ||
HE4-8 | C | C | |||
HE4-11 | C |
SLPI-1 | SLPI-2 | SLPI-3 | SLPI-7 | SLPI-9 | |
---|---|---|---|---|---|
SLPI-1 | C | P.C | P.C | N.C | P.C |
SLPI-2 | C | N.C | P.C | C | |
SLPI-3 | C | N.C | N.C | ||
SLPI-7 | C | P.C | |||
SLPI-9 | C |
PGRN-5 | PGRN-7 | PGRN-8 | PGRN-9 | PGRN-11 | |
---|---|---|---|---|---|
PGRN-5 | C | N.C | N.C | N.C | C |
PGRN-7 | C | N.C | C | N.C | |
PGRN-8 | C | N.C | N.C | ||
PGRN-9 | C | N.C | |||
PGRN-11 | C |
HE4 | SLPI a | PGRN | |
---|---|---|---|
Serum level in healthy women (pM) | 27.0–80.7 | 1923.1–3307.7 | 304.4–746.7 |
Reference | [38] | [22] | [6] |
LOD in PBS (pM), this study | 187 | 174 | 76 |
LOD in human serum (pM), this study | 37 | 163 | 195 |
HE4 Concentration | SLPI Concentration | PGRN Concentration |
---|---|---|
100 ng/mL (4000 pM) | 100 ng/mL (7692.3 pM) | 100 ng/mL (1111.1 pM) |
50 ng/mL (2000 pM) | 50 ng/mL (3846.1 pM) | 50 ng/mL (555.5 pM) |
25 ng/mL (1000 pM) | 25 ng/mL (1923.1 pM) | 25 ng/mL (277.8 pM) |
12.5 ng/mL (500 pM) | 12.5 ng/mL (961.5 pM) | 12.5 ng/mL (138.9 pM) |
6.25 ng/mL (250 pM) | 6.25 ng/mL (480.8 pM) | 6.25 ng/mL (69.4 pM) |
3.12 ng/mL (125 pM) | 3.12 ng/mL (240.4 pM) | 3.12 ng/mL (34.7 pM) |
1.56 ng/mL (62.5 pM) | 1.56 ng/mL (120.2 pM) | 1.56 ng/mL (17.4 pM) |
0 ng/mL (0 pM) | 0 ng/mL (0 pM) | 0 ng/mL (0 pM) |
Nanobody | Target | Application | Reference |
---|---|---|---|
VHH; 99mTc-PSMA6; 99mTc-PSM30; JVZ-007 | PSA, PSMA | Prostate cancer | [39,40,41] |
cABPSA-N7; cAbPSA-C23 | PSA | Prostate cancer | [40] |
Radiolabeled Nb | HER2 | Breast cancer | [42] |
99mTc-labeled Nb | EGFR | Epithelial cell tumors (skin, lung, head, and neck tumors) | [43,44] |
NIR dye-coupled Nb | HER-2 | Cancer imaging | [43] |
NJB2 | ECM | Primary tumor detection | [45] |
sdAb-HER2-QD; sdAB-CEA-QD | HER2, CEA | Detection and imaging of human micrometastases | [46] |
VHH | Alpha-fetoprotein | Cancer biomarker for liver cancer | [39] |
Biotin-NB29 | FGL1 | Cancer immunotherapy | [47] |
99mTc-NM-02 | HER2 | Breast cancer | [48] |
68GaNOTA-Anti-HER2 | HER-2 | Breast cancer | [42,48,49] |
MSB0010853 | HER3 | Non-small-cell lung cancer and head and neck cancer | [41] |
99mTc-labeled Nb | EGFR | Detection of tumor cells and lung and head cancers | [50] |
D10 | EGFR | Human epidermoid carcinoma | [51] |
2Rs15d | HER-2 | Breast cancer | [44,51] |
131I-SGMIB-Anti-HER2 | HER-2 | Breast cancer | [49,52,53] |
Quantum dot Nb | EGF | Detection of cancer | [54] |
99mTc-Anti-PD-L1 | PD-L1 | Non-small-cell lung cancer | [49] |
TAS266 | DR5 | Advanced solid tumors | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, L.-H.; Graulus, G.-J.; Vincke, C.; Smiejkowska, N.; Kindt, A.; Devoogdt, N.; Muyldermans, S.; Adriaensens, P.; Guedens, W. Nanobodies for the Early Detection of Ovarian Cancer. Int. J. Mol. Sci. 2022, 23, 13687. https://doi.org/10.3390/ijms232213687
Tran L-H, Graulus G-J, Vincke C, Smiejkowska N, Kindt A, Devoogdt N, Muyldermans S, Adriaensens P, Guedens W. Nanobodies for the Early Detection of Ovarian Cancer. International Journal of Molecular Sciences. 2022; 23(22):13687. https://doi.org/10.3390/ijms232213687
Chicago/Turabian StyleTran, Lan-Huong, Geert-Jan Graulus, Cécile Vincke, Natalia Smiejkowska, Anne Kindt, Nick Devoogdt, Serge Muyldermans, Peter Adriaensens, and Wanda Guedens. 2022. "Nanobodies for the Early Detection of Ovarian Cancer" International Journal of Molecular Sciences 23, no. 22: 13687. https://doi.org/10.3390/ijms232213687
APA StyleTran, L. -H., Graulus, G. -J., Vincke, C., Smiejkowska, N., Kindt, A., Devoogdt, N., Muyldermans, S., Adriaensens, P., & Guedens, W. (2022). Nanobodies for the Early Detection of Ovarian Cancer. International Journal of Molecular Sciences, 23(22), 13687. https://doi.org/10.3390/ijms232213687