Size Effect in Hybrid TiO2:Au Nanostars for Photocatalytic Water Remediation Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nanoparticle Synthesis and Characterisation
2.2. Photocatalytic Degradation under UV and Visible Radiation
2.3. Photocatalytic Degradation under Different Wavelengths
2.4. Membrane Processing and Characterisation
3. Materials and Methods
3.1. Materials
3.2. TiO2:Au-NSs Hybrid Nanoparticles Synthesis
3.3. TiO2:Au-NSs/PVDF-HFP Membranes Preparation
3.4. Characterisation Techniques
3.5. Photocatalytic Degradation of Ciprofloxacin under UV and Visible Radiation
3.6. Photocatalytic Degradation under the Different Wavelengths
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kutuzova, A.; Dontsova, T.; Kwapinski, W. Application of TiO2-Based Photocatalysts to Antibiotics Degradation: Cases of Sulfamethoxazole, Trimethoprim and Ciprofloxacin. Catalysts 2021, 11, 728. [Google Scholar] [CrossRef]
- Byrne, C.; Subramanian, G.; Pillai, S.C. Recent Advances in Photocatalysis for Environmental Applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.; Jun, S.; Kim, H. Visible Light Activated MoS2/ZnO Composites for Photocatalytic Degradation of Ciprofloxacin Antibiotic and Hydrogen Production. J. Photochem. Photobiol. A Chem. 2023, 434, 114250. [Google Scholar] [CrossRef]
- Dey, S.; Bano, F.; Malik, A. Pharmaceuticals and Personal Care Product (PPCP) Contamination—A Global Discharge Inventory. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 1–26. ISBN 9780128161890. [Google Scholar]
- Vasilachi, I.C.; Asiminicesei, D.M.; Fertu, D.I.; Gavrilescu, M. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Tang, Y.; Peng, X.; Yang, W.; Zhang, Y.; Yin, M.; Liang, Y. Emerging Pollutants—Part I: Occurrence, Fate and Transport. Water Environ. Res. 2017, 89, 1810–1828. [Google Scholar] [CrossRef]
- Cuerda-correa, E.M.; Alexandre-franco, M.F.; Fern, C. Antibiotics from Water. An Overview. Water 2020, 12, 102. [Google Scholar] [CrossRef] [Green Version]
- Martins, P.; Kappert, S.; Le, H.N.; Sebastian, V.; Kühn, K.; Alves, M.; Pereira, L.; Cuniberti, G.; Melle-Franco, M.; Lanceros-Méndez, S. Enhanced Photocatalytic Activity of Au/TiO2 Nanoparticles against Ciprofloxacin. Catalysts 2020, 10, 234. [Google Scholar] [CrossRef] [Green Version]
- Hunge, Y.M.; Yadav, A.A.; Khan, S.; Takagi, K.; Suzuki, N.; Teshima, K.; Terashima, C.; Fujishima, A. Photocatalytic Degradation of Bisphenol A Using Titanium Dioxide@nanodiamond Composites under UV Light Illumination. J. Colloid Interface Sci. 2021, 582, 1058–1066. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.L.; Liu, R.-S.; Tsai, D.P. Plasmonic Photocatalysis. Rep. Prog. Phys. 2013, 76, 046401. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Ye, M.; Iocozzia, J.; Lin, C.; Lin, Z. Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites. Adv. Sci. 2016, 3, 1600024. [Google Scholar] [CrossRef]
- Wang, C.; Astruc, D. Nanogold Plasmonic Photocatalysis for Organic Synthesis and Clean Energy Conversion. Chem. Soc. Rev. 2014, 43, 7188–7216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Ouyang, S.; Ye, J. Gold-Nanorod-Photosensitized Titanium Dioxide with Wide-Range Visible-Light Harvesting Based on Localized Surface Plasmon Resonance. Angew. Chemie Int. Ed. 2013, 52, 6689–6693. [Google Scholar] [CrossRef] [PubMed]
- Ying, L.; Shuo, C.; Xie, Q.; Hongtao, Y. Fabrication of a TiO2/Au Nanorod Array for Enhanced Photocatalysis. Chin. J. Catal. 2011, 32, 1838–1843. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, Y.; Xue, S.; Zhao, J. Light Switching of Amine Oxidation Products from Oximes to Imines: Superior Activity of Plasmonic Gold Nanorods-Loaded TiO2(B) Nanofibers under Visible-near IR Light. Appl. Catal. B Environ. 2020, 265, 118596. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, S.; Krishnan, V. Clustered Au on TiO2 Snowman-Like Nanoassemblies for Photocatalytic Applications. ChemistrySelect 2016, 1, 2963–2970. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, S.; Krishnan, V. Shape Selective Au-TiO2 Nanocomposites for Photocatalytic Applications. Mater. Today Proc. 2016, 3, 1939–1948. [Google Scholar] [CrossRef]
- Sun, H.; Zeng, S.; He, Q.; She, P.; Xu, K.; Liu, Z. Spiky TiO2/Au Nanorod Plasmonic Photocatalysts with Enhanced Visible-Light Photocatalytic Activity. Dalt. Trans. 2017, 46, 3887–3894. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Schmuki, P.; Kment, S.; Zboril, R. Nanostar Morphology of Plasmonic Particles Strongly Enhances Photoelectrochemical Water Splitting of TiO2 Nanorods with Superior Incident Photon-to-Current Conversion Efficiency in Visible/near-Infrared Region. Electrochim. Acta 2018, 260, 212–220. [Google Scholar] [CrossRef]
- Si, Y.; Cao, S.; Wu, Z.; Ji, Y.; Mi, Y.; Wu, X.; Liu, X.; Piao, L. What Is the Predominant Electron Transfer Process for Au NRs/TiO2 Nanodumbbell Heterostructure under Sunlight Irradiation? Appl. Catal. B Environ. 2018, 220, 471–476. [Google Scholar] [CrossRef]
- Atta, S.; Pennington, A.M.; Celik, F.E.; Fabris, L. TiO2 on Gold Nanostars Enhances Photocatalytic Water Reduction in the Near- Infrared Regime TiO2 on Gold Nanostars Enhances Photocatalytic Water Reduction in the Near-Infrared Regime. CHEM 2018, 4, 2140–2153. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, Z.; Cao, S.; Li, J.; Piao, L. Controllable Synthesis of Au-TiO2 Nanodumbbell Photocatalysts with Spatial Redox Region. Chin. J. Catal. 2020, 41, 219–226. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Chooi, K.S.; Jaenicke, S.; Chuah, G. TiO2 Encapsulated Au Nanostars as Catalysts for Aerobic Photo-Oxidation of Benzyl Alcohol under Visible Light. Catal. Today 2020, 375, 558–564. [Google Scholar] [CrossRef]
- Khoury, C.G.; Vo-dinh, T. Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization. J. Phys. Chem. C 2008, 112, 18849–18859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero-Martínez, A.; Barbosa, S.; Pastoriza-Santos, I.; Liz-Marzán, L.M. Current Opinion in Colloid & Interface Science Nanostars Shine Bright for You Colloidal Synthesis, Properties and Applications of Branched Metallic Nanoparticles. Curr. Opin. Colloid Interface Sci. 2011, 16, 118–127. [Google Scholar] [CrossRef]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalt. Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, J.D.; Zhou, L.; Almlie, C.K.; Lange, J.D.; Burrows, S.M. Achieving Plasmon Reproducibility from Surfactant Free Gold Nanostar Synthesis. New J. Chem. 2015, 39, 9098–9108. [Google Scholar] [CrossRef]
- Reyes, N.J.D.G.; Geronimo, F.K.F.; Yano, K.A.V.; Guerra, H.B.; Kim, L.-H. Pharmaceutical and Personal Care Products in Different Matrices: Occurrence, Pathways, and Treatment Processes. Water 2021, 13, 1159. [Google Scholar] [CrossRef]
- Shurbaji, S.; Huong, P.T.; Altahtamouni, T.M. Review on the Visible Light Photocatalysis for the Decomposition of Ciprofloxacin, Norfloxacin, Tetracyclines, and Sulfonamides Antibiotics in Wastewater. Catalysts 2021, 11, 437. [Google Scholar] [CrossRef]
- Singh, S.; Mahalingam, H.; Singh, P.K. Polymer-Supported Titanium Dioxide Photocatalysts for Environmental Remediation: A Review. Appl. Catal. A Gen. 2013, 462–463, 178–195. [Google Scholar] [CrossRef]
- Akerdi, A.G.; Bahrami, S.H. Application of Heterogeneous Nano-Semiconductors for Photocatalytic Advanced Oxidation of Organic Compounds: A Review. J. Environ. Chem. Eng. 2019, 7, 103283. [Google Scholar] [CrossRef]
- Martins, P.M.; Ribeiro, J.M.; Teixeira, S.; Petrovykh, D.Y.; Cuniberti, G.; Pereira, L.; Lanceros-Méndez, S. Photocatalytic Microporous Membrane against the Increasing Problem of Water Emerging Pollutants. Materials 2019, 12, 1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar, H.; Martins, P.M.; Santos, B.; Fernandes, M.M.; Reizabal, A.; Sebastian, V.; Botelho, G.; Tavares, C.J.; Vilas-Viela, J.L.; Lanceros-Mendez, S. Photocatalytic and Antimicrobial Multifunctional Nanocomposite Membranes for Emerging Pollutants Water Treatment Applications. Chemosphere 2020, 250, 126299. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.R.M.; Li, K. Progress in the Production and Modification of PVDF Membranes. J. Memb. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Reguera, J.; Jiménez De Aberasturi, D.; Henriksen-Lacey, M.; Langer, J.; Espinosa, A.; Szczupak, B.; Wilhelm, C.; Liz-Marzán, L.M. Janus Plasmonic-Magnetic Gold-Iron Oxide Nanoparticles as Contrast Agents for Multimodal Imaging. Nanoscale 2017, 9, 9467–9480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reguera, J.; de Aberasturi, D.J.; Winckelmans, N.; Langer, J.; Bals, S.; Liz-Marzán, L.M. Synthesis of Janus Plasmonic-Magnetic, Star-Sphere Nanoparticles, and Their Application in SERS Detection. Faraday Discuss. 2016, 191, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, A.; Reguera, J.; Curcio, A.; Muñoz-Noval, A.; Kuttner, C.; Van De Walle, A.; Liz-Marzán, L.M.; Wilhelm, C. Janus Magnetic-Plasmonic Nanoparticles for Magnetically Guided and Thermally Activated Cancer Therapy. Small 2020, 16, 1904960. [Google Scholar] [CrossRef]
- Fonseca-Cervantes, O.R.; Alejandro, P.; Romero, H.; Sulbaran-Rangel, B. Effects in Band Gap for Photocatalysis in TiO2 Support by Adding Gold and Ruthenium. Processes 2020, 8, 1032. [Google Scholar] [CrossRef]
- Sentein, C.; Guizard, B.; Giraud, S.; Yé, C.; Ténégal, F. Dispersion and Stability of TiO2 Nanoparticles Synthesized by Laser Pyrolysis in Aqueous Suspensions. J. Phys. 2009, 170, 012013. [Google Scholar] [CrossRef] [Green Version]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780123751829. [Google Scholar]
- Chen, W.; Zhang, J.; Cai, W. Sonochemical Preparation of Au, Ag, Pd/SiO2 Mesoporous Nanocomposites. Scr. Mater. 2003, 48, 1061–1066. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Khore, S.K.; Kadam, S.R.; Naik, S.D.; Kale, B.B.; Sonawane, R.S. Solar Light Active Plasmonic Au@TiO2 Nanocomposite with Superior Photocatalytic Performance for H2 Production and Pollutant Degradation. New J. Chem. 2018, 42, 10958–10968. [Google Scholar] [CrossRef]
- Durán-Álvarez, J.C.; Avella, E.; Ramírez-Zamora, R.M.; Zanella, R. Photocatalytic Degradation of Ciprofloxacin Using Mono- (Au, Ag and Cu) and Bi- (Au–Ag and Au–Cu) Metallic Nanoparticles Supported on TiO2 under UV-C and Simulated Sunlight. Catal. Today 2016, 266, 175–187. [Google Scholar] [CrossRef]
- Gan, Y.; Zhang, M.; Xiong, J.; Zhu, J.; Li, W.; Zhang, C.; Cheng, G. Impact of Cu Particles on Adsorption and Photocatalytic Capability of Mesoporous Cu@ TiO2 Hybrid towards Ciprofloxacin Antibiotic Removal. J. Taiwan Inst. Chem. Eng. 2019, 96, 229–242. [Google Scholar] [CrossRef]
- Photocatalysts, A.T.; Mach, A.; Font, K.; Garc, D.; Sampayo, P.; Col, C.; Claudio-serrano, G.J.; Sotov, L.; Resto, E.; Petrescu, F.I.; et al. Hydrogen Production and Degradation of Ciprofloxacin by Ag@TiO2-MoS2 Photocatalysts. Catalysts 2022, 12, 267. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J.R.; Wei, W.D. Surface-Plasmon-Driven Hot Electron Photochemistry. Chem. Rev. 2018, 118, 2927–2954. [Google Scholar] [CrossRef]
- Jiang, W.; Bai, S.; Wang, L.; Wang, X.; Yang, L.; Li, Y.; Liu, D.; Wang, X.; Li, Z.; Jiang, J.; et al. Integration of Multiple Plasmonic and Co-Catalyst Nanostructures on TiO2 Nanosheets for Visible-Near-Infrared Photocatalytic Hydrogen Evolution. Small 2016, 12, 1640–1648. [Google Scholar] [CrossRef]
- Nishijima, Y.; Ueno, K.; Yokota, Y.; Murakoshi, K.; Misawa, H. Plasmon-Assisted Photocurrent Generation from Visible to near-Infrared Wavelength Using a Au-Nanorods/TiO2 Electrode. J. Phys. Chem. Lett. 2010, 1, 2031–2036. [Google Scholar] [CrossRef]
- Ribeiro, C.; Costa, C.M.; Correia, D.M.; Nunes-Pereira, J.; Oliveira, J.; Martins, P.; Gonçalves, R.; Cardoso, V.F.; Lanceros-méndez, S. Electroactive Poly(Vinylidene Fluoride)-Based Structures for Advanced Applications. Nat. Protoc. 2018, 13, 681–704. [Google Scholar] [CrossRef]
- Serrano-montes, A.B.; Langer, J.; Henriksen-Lacey, M.; de Aberasturi, D.J.; Solís, D.M.; Taboada, J.M.; Obelleiro, F.; Bals, S.; Bekdemir, A.; Stellacci, F.; et al. Gold Nanostar-Coated Polystyrene Beads as Multifunctional Nanoprobes for SERS Bioimaging. J. Phys. Chem. C 2016, 120, 20860–20868. [Google Scholar] [CrossRef] [Green Version]
- Abdullahi, S.S.; Güner, S.; Koseoglu, Y.; Musa, I.M.; Adamu, B.I.; Abdulhamid, M.I. Simple Method for the Determination of Band Gap of a Nanopowdered Sample Using Kubelka Munk Theory. J. Niger. Assoc. Math. Phys. 2016, 35, 241–246. [Google Scholar]
- Sakthivel, S.; Hidalgo, M.C.; Bahnemann, D.W.; Geissen, S.U.; Murugesan, V.; Vogelpohl, A. A Fine Route to Tune the Photocatalytic Activity of TiO2. Appl. Catal. B Environ. 2006, 63, 31–40. [Google Scholar] [CrossRef]
- Karmakar, S. Particle Size Distribution and Zeta Potential Based on Dynamic Light Scattering: Techniques to Characterize Stability and Surface Charge Distribution of Charged Colloids. In Recent Trends in Materials: Physics and Chemistry; Studium Press: New Delhi, India, 2019; pp. 117–159. [Google Scholar]
Sample | UV | Xenon | ||
---|---|---|---|---|
k (min−1) | DE (%) | k (min−1) | DE (%) | |
TiO2:Au-NSs-A | 0.053 | 83 | 0.014 | 89 |
TiO2:Au-NSs-B | 0.040 | 78 | 0.012 | 88 |
TiO2:Au-NSs-C | 0.023 | 64 | 0.009 | 86 |
TiO2:Au-NSph | 0.031 | 76 | 0.008 | 84 |
CIP Concentration (ppm) | Photocatalyst | Cu, Ag or Au Amount (wt.%) | Photocatalyst Concentration (mg/mL) | Irradiation | Efficiency (%) | Time (min) | Ref. |
---|---|---|---|---|---|---|---|
30 | Cu/TiO2 | 1.0 | 0.5 | 500 W/m2 | 99 | 180 | [44] |
80 | Cu/TiO2 | 1.0 | 0.25 | 500 W/m2 | 85 | 240 | [45] |
3.3 | Ag/TiO2 | 5.0 | 0.5 | 60 W | 87 | 60 | [46] |
30 | Ag/TiO2 | 1.5 | 0.5 | 500 W/m2 | 99 | 240 | [44] |
30 | Au/TiO2 | 1.5 | 0.5 | 500 W/m2 | 99 | 180 | [44] |
5 | Au/TiO2 | 0.5 | 1.0 | 98 W/m2 | 45 | 180 | [8] |
5 | TiO2:Au-NSs-A | 0.68 | 1.0 | 300 W/m2 | 89 | 150 | Present work |
Sample | Blue | Green | Red | NIR | ||||
---|---|---|---|---|---|---|---|---|
k (min−1) | DE (%) | k (min−1) | DE (%) | k (min−1) | DE (%) | k (min−1) | DE (%) | |
TiO2:Au-NSs-A | 0.0031 | 53 | 0.0024 | 34 | 0.0025 | 39 | - | - |
TiO2:Au-NSs-B | 0.0038 | 53 | - | - | - | - | - | - |
TiO2:Au-NSs-C | 0.0027 | 37 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, F.; Martins, P.M.; Queirós, J.M.; Tavares, C.J.; Vilas-Vilela, J.L.; Lanceros-Méndez, S.; Reguera, J. Size Effect in Hybrid TiO2:Au Nanostars for Photocatalytic Water Remediation Applications. Int. J. Mol. Sci. 2022, 23, 13741. https://doi.org/10.3390/ijms232213741
Zheng F, Martins PM, Queirós JM, Tavares CJ, Vilas-Vilela JL, Lanceros-Méndez S, Reguera J. Size Effect in Hybrid TiO2:Au Nanostars for Photocatalytic Water Remediation Applications. International Journal of Molecular Sciences. 2022; 23(22):13741. https://doi.org/10.3390/ijms232213741
Chicago/Turabian StyleZheng, Fangyuan, Pedro M. Martins, Joana M. Queirós, Carlos J. Tavares, José Luis Vilas-Vilela, Senentxu Lanceros-Méndez, and Javier Reguera. 2022. "Size Effect in Hybrid TiO2:Au Nanostars for Photocatalytic Water Remediation Applications" International Journal of Molecular Sciences 23, no. 22: 13741. https://doi.org/10.3390/ijms232213741
APA StyleZheng, F., Martins, P. M., Queirós, J. M., Tavares, C. J., Vilas-Vilela, J. L., Lanceros-Méndez, S., & Reguera, J. (2022). Size Effect in Hybrid TiO2:Au Nanostars for Photocatalytic Water Remediation Applications. International Journal of Molecular Sciences, 23(22), 13741. https://doi.org/10.3390/ijms232213741