Isotherm, Thermodynamics, and Kinetics of Methyl Orange Adsorption onto Magnetic Resin of Chitosan Microspheres
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical and Swelling Properties of MRCM
2.1.1. Physical Properties of MRCM
2.1.2. Results of Swelling Properties of MRCM in Different pH Solutions
2.1.3. Stability of Magnetic Particles in MRCM
2.2. Results of Batch Adsorption Studies
2.2.1. Effect of pH on MRCM Adsorption of Methyl Orange
2.2.2. Effect of Contact Time on MRCM Adsorption of Methyl Orange
2.2.3. Effect of Temperature on MRCM Adsorption of Methyl Orange
2.2.4. Effect of Initial Concentration on MRCM Adsorption of Methyl Orange
2.3. Adsorption Isotherm Modeling
2.3.1. Langmuir Adsorption Isotherm Model
2.3.2. Freundlich Adsorption Isotherm Model
2.3.3. Dubinin–Radushkevich (D-R) Adsorption Isotherm Model
2.3.4. Change in Adsorption Potential
2.4. Adsorption Thermodynamics of Methyl Orange onto MRCM
2.4.1. Change in Adsorption Enthalpy
2.4.2. Change in Adsorption Free Energy
2.4.3. Change in Adsorption Entropy
2.5. The Adsorption Kinetics Behavior of Methyl Orange onto MRCM
2.5.1. The Pseudo-First-Order Lagergren Model
2.5.2. The Pseudo-Second-Order Kinetics Equation
2.5.3. Liquid Film Diffusion Model
2.5.4. The Intra-Particle Diffusion Model
2.6. Results of Regeneration of Methyl Orange Adsorption onto MRCM
3. Materials and Methods
3.1. Materials
3.2. Preparation of MRCM
3.3. Determination of Physical Properties of MRCM
3.3.1. Determination of Cross-Linking Degree
3.3.2. Determination of Moisture Content
3.3.3. Determination of Packing Density
3.3.4. Determination of Skeleton Density
3.3.5. Determination of Porosity Value
3.3.6. Determination of Suspended Aldehyde Group Content
3.3.7. Determination of Exchange Capacity of Weak Base
3.4. Measurement of Adsorption Capacity
3.5. Batch Adsorption Studies
3.6. Kinetic Studies
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nour, H.F.; Mageid, R.E.A.; Radwan, E.K.; Khattab, T.A.; Olson, M.A.; El Malah, T. Adsorption isotherms and kinetic studies for the removal of toxic reactive dyestuffs from contaminated water using a viologen-based covalent polymer. New J. Chem. 2021, 45, 18983–18993. [Google Scholar] [CrossRef]
- Shaikhiev, I.G.; Kraysman, N.V.; Sverguzova, S.V. Using Cucurbits By-Products as Reagents for Disposal of Pollutants from Water Environments (a Literature Review). Biointerface Res. App. 2021, 11, 12689–12705. [Google Scholar]
- Muhammad, B.; Sadia, N.; Muhammad, A.; Sofia, P. Development and characterization of cross-linked laccase aggregates (Lac-CLEAs) from Trametes versicolor IBL-04 as ecofriendly biocatalyst for degradation of dye-based environmental pollutants. Environ. Technol. Inno. 2021, 21, 101364. [Google Scholar]
- Nuray, Y.B.; Talat, B.; Melike, Ç. Production of Pd nanoparticles embedded on micro-sized chitosan/graphitic carbon nitride hybrid spheres for treatment of environmental pollutants in aqueous medium. Ceram. Int. 2021, 47, 27736–27747. [Google Scholar]
- Baran, T.; Menteş, A. Production of palladium nanocatalyst supported on modified gum arabic and investigation of its potential against treatment of environmental contaminants. Int. J. Biol. Macromol. 2020, 161, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Manu, B.; Chaudhari, S. Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresource Technol. 2002, 82, 225–231. [Google Scholar] [CrossRef]
- Cai, H.; Liang, J.; Ning, X.; Lai, X.; Li, Y. Algal toxicity induced by effluents from textile-dyeing wastewater treatment plants. J. Environ. Sci. 2020, 91, 199–208. [Google Scholar] [CrossRef]
- Yildirim, N.C.; Yaman, M. The usability of oxidative stress and detoxification biomarkers in Gammarus pulex for ecological risk assessment of textile dye methyl orange. Chem. Ecol. 2019, 35, 319–329. [Google Scholar] [CrossRef]
- Adewuyi, A.; Gervasi, C.A.; Mirífico, M.V. Synthesis of strontium ferrite and its role in the removal of methyl orange, phenolphthalein and bromothymol blue from laboratory wastewater. Surf. Interface. 2021, 27, 101567. [Google Scholar] [CrossRef]
- Omid, M.; Afshin, P.; Sajjad, S. Synthesis and characterization Agar/GO/ZnO NPs nanocomposite for removal of methylene blue and methyl orange as azo dyes from food industrial effluents. Food Chem. Toxicol. 2022, 169, 113412. [Google Scholar]
- Ranganathan, K.; Jeyapaul, S.; Sharma, D.C. Assessment of water pollution in different bleaching based paper manufacturing and textile dyeing industries in India. Environ. Monit. Assess. 2007, 134, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, F.H.; Norzahir, S. A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today 2020, 31, A141–A150. [Google Scholar]
- Musso, Y.S.; Salgado, P.R.; Mauri, A.N. Gelatin based films capable of modifying its color against environmental pH changes. Food Hydrocolloid. 2016, 61, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Chequer, F.M.D.; Lizier, T.M.; Felício, R.D.; Zanoni, M.V.B.; Debonsi, H.M.; Lopes, N.P.; Marcos, R.; Oliveira, D.P.D. Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye Disperse Red 1. Toxicol. Vitr. 2011, 25, 2054–2063. [Google Scholar] [CrossRef] [Green Version]
- Bhavya, J.G.; Rekha, H.B.; Murthy, U.N. Electrochemical treatment of textile dye wastewater by mild steel anode. J. Environ. Sci. Eng. 2014, 56, 223–228. [Google Scholar] [PubMed]
- Zhao, H.; Zhong, H.; Sun, L.; Xia, D.S.; Nevsky, A.V. Acid Orange 52 dye degradation efficiency by electrocatalytic method. Chem. Chem. Technol. 2018, 61, 64–69. [Google Scholar] [CrossRef]
- Mohammadi, A.; Veisi, P. High adsorption performance of β-cyclodextrin-functionalized multi-walled carbon nanotubes for the removal of organic dyes from water and industrial wastewater. J. Environ. Chem. Eng. 2018, 6, 4634–4643. [Google Scholar] [CrossRef]
- Fan, J.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Adsorption and biodegradation of dye in wastewater with Fe3O4 @MIL-100 (Fe) core–shell bio-nanocomposites. Chemosphere 2018, 191, 315–323. [Google Scholar] [CrossRef]
- Asiri, A.M.; Ahmed, N.S.E.; El-Shishtawy, R.M. Removal of toxic dyestuffs from aqueous solution by amphoteric bioadsorbent. Curr. Anal. Chem. 2021, 17, 957–974. [Google Scholar]
- Akkaya, G.; Uzun, İ.; Güzel, F. Adsorption of some highly toxic dyestuffs from aqueous solution by chitin and its synthesized derivatives. Desalination 2009, 249, 1115–1123. [Google Scholar] [CrossRef]
- Fu, Y.; Wan, Z.; Tian, Y.; Zhao, Z.; Zhao, G. Production, deformation and magnetorheological characteristics of the alginate/chitosan hydrogel magnetic microspheres. J. Intel. Mat. Syst. Str. 2022, 33, 1527–1537. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Celikbicak, O.; Kilic, M.; Yakup, A.M. Immobilization of Candida rugosa lipase on magnetic chitosan beads and application in flavor esters synthesis. Food Chem. 2022, 366, 130699. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpour, M.N.; Sadegh, S.; Jamshid, R.; Hamid, T.; Hosseinpour, M.A.; Farshid, H.; Samira, S.; Soleimani, A.S.; Massoud, S. Improving antiproliferative effect of the nevirapine on Hela cells by loading onto chitosan coated magnetic nanoparticles as a fully biocompatible nano drug carrier. Int. J. Biol. Macromol. 2018, 118, 1220–1228. [Google Scholar]
- Samira, K.; Ali, S.; Mojtaba, S. Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds. J. Pharmaceut. Biomed. 2016, 129, 450–457. [Google Scholar]
- Zhang, H.; Dang, Q.; Liu, C.; Yu, D.; Wang, Y.; Pu, X.; Liu, Y.; Liang, Y.; Cha, D. Fabrication of methyl acrylate and tetraethylenepentamine grafted magnetic chitosan microparticles for capture of Cd(II) from aqueous solutions. J. Hazard. Mater. 2018, 366, 346–357. [Google Scholar] [CrossRef]
- Men, J.; Shi, H.; Dong, C.; Yang, Y.; Han, Y.; Wang, R.; Zhang, Y.; Zhao, T.; Li, J. Preparation of poly(sodium 4-styrene sulfonate) grafted magnetic chitosan microspheres for adsorption of cationic dyes. Int. J. Biol. Macromol. 2021, 181, 810–823. [Google Scholar] [CrossRef]
- Mahsa, J.; Ahmad, A. Facile fabrication of magnetic chitosan hydrogel beads and modified by interfacial polymerization method and study of adsorption of cationic/anionic dyes from aqueous solution. J. Environ. Chem. Eng. 2021, 9, 105175. [Google Scholar]
- He, C.; Shi, L.; Lou, S.; Liu, B.; Zhang, W.; Zhang, L. Synthesis of spherical magnetic calcium modified chitosan micro-particles with excellent adsorption performance for anionic-cationic dyes. Int. J. Biol. Macromol. 2019, 128, 593–602. [Google Scholar] [CrossRef]
- Huang, L.; Li, W.; Du, N.; Lu, H.; Meng, L.; Huang, K.; Li, K. Preparation of quaternary ammonium magnetic chitosan microspheres and their application for Congo red adsorption. Carbohyd. Polym. 2022, 297, 119995. [Google Scholar] [CrossRef]
- Shaumbwa, V.R.; Liu, D.; Archer, B.; Li, J.; Su, F. Preparation and application of magnetic chitosan in environmental remediation and other fields: A review. J. Appl. Polym. Sci. 2021, 138, e51241. [Google Scholar] [CrossRef]
- Wang, X.; Deng, A.; Cao, W.; Li, Q.; Wang, L.; Zhou, J.; Hu, B.; Xing, X. Synthesis of chitosan/poly (ethylene glycol)-modified magnetic nanoparticles for antibiotic delivery and their enhanced anti-biofilm activity in the presence of magnetic field. J. Mater. Sci. 2018, 53, 6433–6449. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Peng, Y.; Feng, L.; Li, X.; Zhao, C.; Sarfaraz, K. Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range. Int. J. Biol. Macromol. 2020, 156, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Azizian, S.; Eris, S.; Wilson, L.D. Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution. Chem. Phys. 2018, 513, 99–104. [Google Scholar] [CrossRef]
- Krajewska, M.; Dopierała, K.; Prochaska, K. Lipid-protein interactions in Langmuir monolayers under dynamically varied conditions. J. Phys. Chem. B 2020, 124, 302–311. [Google Scholar] [CrossRef]
- Large, M.J.; Ogilvie, S.P.; King, A.A.K.; Dalton, A.B. Understanding solvent spreading for Langmuir deposition of nanomaterial films: A Hansen solubility parameter approach. Langmuir B 2017, 33, 14766–14771. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Hayati, B.; Arami, M.; Lan, C. Adsorption of textile dyes on Pine Cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination B 2010, 268, 117–125. [Google Scholar] [CrossRef]
- Borys, P.; Grzywna, Z.J. On the fractality of the Freundlich adsorption isotherm in equilibrium and non-equilibrium cases. Phys. Chem. Chem. Phys. 2016, 30, 20784–20789. [Google Scholar] [CrossRef]
- Shafqat, M.N.; Pierzynski, G.M. The Freundlich adsorption isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils. Chemosphere 2014, 99, 72–80. [Google Scholar] [CrossRef]
- Asif, N.; Muhammad, A.; Waqar, A. Optimizing available phosphorus in calcareous soils fertilized with diammonium phosphate and phosphoric acid using Freundlich adsorption isotherm. Sci. World J. 2013, 2013, 680257. [Google Scholar]
- Xu, Z.; Zhang, W.; Pan, B.; Hong, C.; Lv, L.; Zhang, Q.; Pan, B.; Zhang, Q. Application of the Polanyi potential theory to phthalates adsorption from aqueous solution with hyper-cross-linked polymer resins. J. Colloid Interf. Sci. 2008, 319, 392–397. [Google Scholar] [CrossRef]
- Nimibofa, A.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem.-NY 2017, 2017, 3039817. [Google Scholar]
- Pilot, C. A new type of phase transition based on the clausius-clapeyron relation involving a change in spatial dimension. JHEPGC 2019, 5, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Li, Q.; Wan, S.; Zhang, J. Molecular dynamics simulation and free energy calculation studies of the binding mechanism of allosteric inhibitors with TrkA kinase. J. Biomol. Struct. Dyn. 2019, 39, 202–208. [Google Scholar] [CrossRef]
- Kim, T.K.; Son, Y.A.; Lim, Y.J. Thermodynamic analysis of 1, 4-diaminoanthraquinone adsorption on polyethylene terephthalate in alkane media. Dye. Pigment. 2007, 72, 246–250. [Google Scholar] [CrossRef]
- Lian, F.; Zheng, M.; Chen, M.; Zhu, Y.; Zhang, L.; Zheng, B. Modified xanthan gum for methyl orange uptake: Kinetic, isotherm, and thermodynamic behaviors. Int. J. Biol. Macromol. 2020, 165, 2442–2450. [Google Scholar] [CrossRef] [PubMed]
- Sani, O.N.; Fezabady, A.A.N.; Yazdani, M.; Taghavi, M. Catalytic ozonation of ciprofloxacin using γ-Al2O3 nanoparticles in synthetic and real wastewaters. J. Water Process Eng. 2019, 32, 100894. [Google Scholar] [CrossRef]
- Ji, B.; Wang, J.; Song, H.; Chen, W. Removal of methylene blue from aqueous solutions using biochar derived from a fallen leaf by slow pyrolysis: Behavior and mechanism. J. Environ. Chem. Eng. 2019, 7, 103036. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, Y.; Xu, P.; Pang, Y.; Du, C. Enhancement of Pb (II) adsorption by boron doped ordered mesoporous carbon: Isotherm and kinetics modeling. Sci. Total Environ. 2020, 708, 134918. [Google Scholar] [CrossRef]
- Manobala, T.; Sudhir, K.S.; Subba, R.T.; Dharmendira, K.M. Kinetic modelling of the uranium biosorption by Deinococcus radiodurans biofilm. Chemosphere 2021, 269, 2442–2450. [Google Scholar] [CrossRef]
- Fan, S.; Huang, Z.; Zhang, Y.; Hu, H.; Liang, X.; Gong, S.; Zhou, J.; Tu, R. Magnetic chitosan-hydroxyapatite composite microspheres: Preparation, characterization, and application for the adsorption of phenolic substances. Bioresour. Technol. 2019, 274, 48–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, Z.; Cui, W.; Zhang, X.; Wang, S. Removing copper and cadmium from water and sediment by magnetic microspheres—MnFe2O4/chitosan prepared by waste shrimp shells. J. Environ. Chem. Eng. 2021, 9, 104647. [Google Scholar] [CrossRef]
- You, Y.-W.; Moon, E.-H.; Heo, I.; Park, H.; Hong, J.-S.; Suh, J.-K. Preparation and characterization of porous carbons from ion-exchange resins with different degree of cross-linking for hydrogen storage. J. Ind. Eng. Chem. 2016, 45, 164–170. [Google Scholar] [CrossRef]
- Sumthane, Y.Y.; Nimkar, A.U. Effect of phenol formaldehyde resin on thickness, moisture content, density and water absorption of particle board. Int. J. Farm. Sci. 2016, 6, 149–152. [Google Scholar]
- Yu, Y.; Sun, Y.; He, B. Preparation and characterization of crosslinked chitosan resin. J. Tianjin Univ. 2000, 33, 113–117. [Google Scholar]
- Ren, G.; Li, Z.; He, B. The immobilization of urease on magnetic chitosan microspheresⅠSynthesis and characterization of magnetic chitosan microspheres. Ion Exch. Adsorpt. 2000, 16, 304–310. [Google Scholar]
Moisture Content (%) | Cross-Linking Degree (%) | Pile-Up Density (g/mL) | Pore Degree | Suspension Aldehyde Group (mmol/g) | Weak Alkali Exchange Capacity (mmol/g) |
---|---|---|---|---|---|
52.106 ± 2.084 | 10.400 ± 0.400 | 0.922 ± 0.058 | 0.527 ± 0.045 | 0.267 ± 0.012 | 1.393 ± 0.095 |
pH 1.0 | pH 3.0 | pH 5.0 | pH 7.0 | pH 9.0 | pH 11.0 | pH 13.0 | |
---|---|---|---|---|---|---|---|
Swelling rates | 0.216 a,b ± 0.008 | 0.228 a ± 0.020 | 0.205 a,b ± 0.008 | 0.193 b,c ± 0.018 | 0.165 c ± 0.008 | 0.167 c ± 0.011 | 0.208 a,b ± 0.034 |
Time (h) | pH 1.0 | pH 2.0 | pH 3.0 | pH 4.0 | pH 5.0 | pH 6.0 | pH 7.0 | pH 8.0 |
---|---|---|---|---|---|---|---|---|
12 | 6.327 ± 0.106 | 0.083 ± 0.008 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
24 | 6.257 ± 0.112 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
36 | 9.414 ± 0.098 | 0.003 ± 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
48 | 6.726 ± 0.101 | 0.043 ± 0.005 | 0.003 ± 0.001 | 0.003 ± 0.001 | 0.000 | 0.013 ± 0.001 | 0.000 | 0.000 |
60 | 8.854 ± 0.124 | 0.023 ± 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
72 | 8.564 ± 0.116 | 0.023 ± 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 ± 0.001 | 0.013 ± 0.002 |
84 | 8.934 ± 0.131 | 0.023 ± 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
96 | 8.904 ± 0.123 | 0.023 ± 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
T(K) | Regression Equation | Qs (mg/g) | Kb (L/mg) | R2 |
---|---|---|---|---|
293 | Ce/Q = 0.012 Ce + 0.1961 | 83.333 | 0.061 | 0.9911 |
303 | Ce/Q = 0.0128 Ce + 0.1546 | 78.125 | 0.083 | 0.9862 |
313 | Ce/Q = 0.0123 Ce + 0.1567 | 81.301 | 0.078 | 0.9845 |
323 | Ce/Q = 0.0111 Ce + 0.0702 | 90.090 | 0.158 | 0.9988 |
333 | Ce/Q = 0.0111 Ce + 0.0418 | 90.090 | 0.266 | 0.9988 |
T(K) | Regression Equation | Kf | n | R2 |
---|---|---|---|---|
293 | lnQ = 0.2685 lnCe + 2.943 | 18.973 | 3.724 | 0.8587 |
303 | lnQ = 0.2269 lnCe + 3.1178 | 22.597 | 4.407 | 0.9328 |
313 | lnQ = 0.2387 lnCe + 3.0963 | 22.116 | 4.189 | 0.9530 |
323 | lnQ = 0.2195 lnCe + 3.3598 | 28.783 | 4.556 | 0.9169 |
333 | lnQ = 0.2068 lnCe + 3.4614 | 31.862 | 4.836 | 0.8871 |
T(K) | Regression Equation | Qm (mg/g) | K (mol/kJ) 2 | R2 |
---|---|---|---|---|
293 | lnQe = −0.0256 E2 + 4.4130 | 82.517 | 0.026 | 0.8418 |
303 | lnQe = −0.0141 E2 + 4.3079 | 74.284 | 0.014 | 0.9631 |
313 | lnQe = −0.0132 E2 + 4.3334 | 76.203 | 0.013 | 0.9490 |
323 | lnQe = −0.0103 E2 + 4.5217 | 91.992 | 0.010 | 0.9885 |
333 | lnQe = −0.0082 E2 + 4.5506 | 94.689 | 0.008 | 0.9478 |
T (K) | Regression Equation | Qm (mg/g) | K (mol/kJ) 2 | R2 |
---|---|---|---|---|
293 | lnQe = −0.0256 E2 + 4.4130 | 82.517 | 0.026 | 0.8418 |
303 | lnQe = −0.0141 E2 + 4.3079 | 74.284 | 0.014 | 0.9631 |
313 | lnQe = −0.0132 E2 + 4.3334 | 76.203 | 0.013 | 0.9490 |
323 | lnQe = −0.0103 E2 + 4.5217 | 91.992 | 0.010 | 0.9885 |
333 | lnQe = −0.0082 E2 + 4.5506 | 94.689 | 0.008 | 0.9478 |
Q | ΔH | ΔG (kJ/mol) | ΔS (kJ/mol × K) | ||||||
---|---|---|---|---|---|---|---|---|---|
(mg/g) | (kJ/mol) | 293 K | 303 K | 323 K | 333 K | 293 K | 303 K | 323 K | 333 K |
40 | 33.485 | −9.091 | −11.102 | −12.235 | −13.389 | 0.145 | 0.147 | 0.142 | 0.141 |
50 | 34.765 | −9.091 | −11.102 | −12.235 | −13.389 | 0.150 | 0.151 | 0.146 | 0.145 |
60 | 37.090 | −9.091 | −11.102 | −12.235 | −13.389 | 0.158 | 0.159 | 0.153 | 0.152 |
70 | 42.756 | −9.091 | −11.102 | −12.235 | −13.389 | 0.177 | 0.178 | 0.170 | 0.169 |
Kinetics Models | K | Qe (mg/g) | R2 | Equation |
---|---|---|---|---|
Pseudo–first–order Lagergren model | 0.046 (1/min) | 16.150 | 0.9612 | ln(Qe − Qt) = 2.7891 − 0.0199t |
Pseudo-second-order kinetics equation | 0.001 (g/mg·min) | 23.585 | 0.9799 | t/Qt = 1.5608 + 0.0424t |
Liquid film diffusion model | 0.0191 (1/min) | - | 0.9492 | ln(1 − F) = 0.0191t + 0.3042 |
Intra-particle diffusion model | 1.229 (mg/g·t0.5) | - | 0.8603 | Qt = 1.2293t0.5 + 4.2819 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Bi, J.; Song, Y.; Wang, M. Isotherm, Thermodynamics, and Kinetics of Methyl Orange Adsorption onto Magnetic Resin of Chitosan Microspheres. Int. J. Mol. Sci. 2022, 23, 13839. https://doi.org/10.3390/ijms232213839
Yu L, Bi J, Song Y, Wang M. Isotherm, Thermodynamics, and Kinetics of Methyl Orange Adsorption onto Magnetic Resin of Chitosan Microspheres. International Journal of Molecular Sciences. 2022; 23(22):13839. https://doi.org/10.3390/ijms232213839
Chicago/Turabian StyleYu, Lina, Jie Bi, Yu Song, and Mingqing Wang. 2022. "Isotherm, Thermodynamics, and Kinetics of Methyl Orange Adsorption onto Magnetic Resin of Chitosan Microspheres" International Journal of Molecular Sciences 23, no. 22: 13839. https://doi.org/10.3390/ijms232213839
APA StyleYu, L., Bi, J., Song, Y., & Wang, M. (2022). Isotherm, Thermodynamics, and Kinetics of Methyl Orange Adsorption onto Magnetic Resin of Chitosan Microspheres. International Journal of Molecular Sciences, 23(22), 13839. https://doi.org/10.3390/ijms232213839