Integrated Genomic and Transcriptomic Elucidation of Flowering in Garlic
Abstract
:1. Introduction
2. Results and Discussion
2.1. Discovery of Flowering-Related Genes in the Garlic Genome
2.2. PEBP Genes: Only FT and TFL Clades Are Found in the Garlic Genome
2.3. Garlic LFY Homologs Are Represented by Multifunctional Genes
2.4. Gene Co-Expression Network (GCN) in Floral Transition
3. Materials and Methods
3.1. Plant Material and Transcriptome Data
3.2. Identification and Sequence Analysis of PEBP and LFY Family Members
3.3. Chromosome Distribution and Gene Structure Analysis
3.4. Analysis of AsLFY2 on Chromosome 8
3.5. Phylogenetic Analysis and Multiple Sequence Alignment
3.6. Co-Expression Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKey, D.; Elias, M.; Pujol, B.; Duputié, A. The evolutionary ecology of clonally propagated domesticated plants. New Phytol. 2010, 186, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Shemesh-Mayer, E.; Kamenetsky Goldstein, R. Recent advances in sexual propagation and breeding of garlic. In Horticultural Reviews; Warrington, I., Ed.; Wiley: Dunedin, New Zealand, 2018; Volume 46, pp. 1–38. [Google Scholar]
- Tchorzewska, D.; Deryło, K.; Winiarczyk, K. Cytological and biophysical comparative analysis of cell structures at the microsporogenesis stage in sterile and fertile Allium species. Planta 2017, 245, 137–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winiarczyk, K.; Jaroszuk-Ściseł, J.; Kupisz, K. Characterization of callase (β-1,3-d-glucanase) activity during microsporogenesis in the sterile anthers of Allium sativum L. and the fertile anthers of A. atropurpureum. Sex Plant Reprod. 2012, 25, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Shemesh-Mayer, E.; Winiarczyk, K.; Błaszczyk, L.; Kosmala, A.; Rabinowitch, H.D.; Kamenetsky, R. Male gametogenesis and sterility in garlic (Allium sativum L.): Barriers on the way to fertilization and seed production. Planta 2013, 237, 103–120. [Google Scholar] [CrossRef]
- Shemesh-Mayer, E.; Kamenetsky-Goldstein, R. Traditional and Novel Approaches in Garlic (Allium sativum L.) Breeding. In Advances in Plant Breeding Strategies, Vegetable Crops; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Cham, Switzerland, 2021; pp. 3–49. [Google Scholar]
- Peška, V.; Mandáková, T.; Ihradská, V.; Fajkus, J. Comparative dissection of three giant genomes: Allium cepa, Allium sativum, and Allium ursinum. Int. J. Mol. Sci. 2019, 20, 733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Zhu, S.; Li, N.; Cheng, Y.; Zhao, J.; Qiao, X.; Lu, L.; Liu, S.; Wang, Y.; Liu, C.; et al. A chromosome-level genome assembly of garlic (Allium sativum) provides insights into genome evolution and allicin biosynthesis. Mol. Plant. 2020, 13, 1328–1339. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, S.; Meng, F.; Liu, S. De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep. 2012, 31, 1823–1828. [Google Scholar] [CrossRef]
- Liu, T.; Zeng, L.; Zhu, S.; Chen, X.; Tang, Q.; Mei, S.; Tang, S. Large-scale development of expressed sequence tag-derived simple sequence repeat markers by deep transcriptome sequencing in garlic (Allium sativum L.). Mol. Breed. 2015, 35, 1–9. [Google Scholar] [CrossRef]
- Kamenetsky, R.; Faigenboim, A.; Shemesh-Mayer, E.; Ben Michael, T.; Gershberg, C.; Kimhi, S.; Esquira, I.; Rohkin Shalom, S.; Eshel, D.; Rabinowitch, H.D.; et al. Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic (Allium sativum L.). BMC Genom. 2015, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ben Michael, T.E.; Faigenboim, A.; Shemesh-Mayer, E.; Forer, I.; Gershberg, C.; Shafran, H.; Rabinowitch, H.D.; Kamenetsky-Goldstein, R. Crosstalk in the darkness: Bulb vernalization activates meristem transition via circadian rhythm and photoperiodic pathway. BMC Plant Biol. 2020, 20, 1–16. [Google Scholar] [CrossRef]
- Rotem, N.; Shemesh, E.; Peretz, Y.; Akad, F.; Edelbaum, O.; Rabinowitch, H.D.; Sela, I.; Kamenetsky, R. Reproductive development and phenotypic differences in garlic are associated with expression and splicing of LEAFY homologue gaLFY. J. Exp. Bot. 2007, 58, 1133–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotem, N.; David-Schwartz, R.; Peretz, Y.; Sela, I.; Rabinowitch, H.D.; Flaishman, M.; Kamenetsky, R. Flower development in garlic: The ups and downs of gaLFY expression. Planta 2011, 233, 1063–1072. [Google Scholar] [CrossRef]
- Rohkin Shalom, S.; Gillett, D.; Zemach, H.; Kimhi, S.; Forer, I.; Zutahy, Y.; Tam, Y.; Teper-Bamnolker, P.; Kamenetsky, R.; Eshel, D. Storage temperature controls the timing of garlic bulb formation via shoot apical meristem termination. Planta 2015, 242, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.K.; Shalom Shalom, R.; Faigenboim-Doron, A.; Teper-Bamnolker, P.; Salam, B.B.; Daus, A.; Kamenetsky, R.; Eshel, D. Differential carbohydrate gene expression during preplanting temperature treatments controls meristem termination and bulbing in garlic. Environ. Exp. Bot. 2018, 150, 280–291. [Google Scholar] [CrossRef]
- Shemesh-Mayer, E.; Ben-Michael, T.; Kimhi, S.; Forer, I.; Rabinowitch, H.D.; Kamenetsky, R. Effects of different temperature regimes on flower development, microsporogenesis and fertility in bolting garlic (Allium sativum). Funct. Plant Biol. 2015, 42, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Khosa, J.; Bellinazzo, F.; Kamenetsky Goldstein, R.; Macknight, R.; Immink, R.G. PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS: The conductors of dual reproduction in plants with vegetative storage organs. J. Exp. Bot. 2021, 72, 2845–2856. [Google Scholar] [CrossRef]
- Ben Michael, T.E.; Rozenblat, L.; Faigenboim, A.; Shemesh-Mayer, E.; Forer, I.; Peters, R.; Klein, J.D.; Rabinowitch, H.D.; Kamenetsky Goldstein, R. From Embryo to Adult: Low Temperatures Affect Phase Transitions of Allium sativum L. from Germination to Flowering. Agronomy 2020, 10, 1651. [Google Scholar] [CrossRef]
- Jin, S.; Nasim, Z.; Susila, H.; Ahn, J.H. Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. In Seminars in Cell & Developmental Biology; Academic Press: Cambridge, MA, USA, 2021; Volume 109, pp. 20–30. [Google Scholar] [CrossRef]
- Zheng, X.M.; Wu, F.Q.; Zhang, X.; Lin, Q.B.; Wang, J.; Guo, X.P.; Lei, C.L.; Cheng, Z.J.; Zou, C.; Wan, J.M. Evolution of the PEBP gene family and selective signature on FT-like clade. J. Syst. Evol. 2016, 54, 502–510. [Google Scholar] [CrossRef]
- Wickland, D.P.; Hanzawa, Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: Functional evolution and molecular mechanisms. Mol. Plant. 2015, 8, 983–997. [Google Scholar] [CrossRef]
- Zhu, Y.; Klasfeld, S.; Jeong, C.W.; Jin, R.; Goto, K.; Yamaguchi, N.; Wagner, D. TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Zhu, Y.; Klasfeld, S.; Wagner, D. Molecular regulation of plant developmental transitions and plant architecture via PEPB family proteins: An update on mechanism of action. J. Exp. Bot. 2021, 172, 2301–2311. [Google Scholar] [CrossRef] [PubMed]
- Navarro, C.; Abelenda, J.A.; Cruz-Oró, E.; Cuéllar, C.A.; Tamaki, S.; Silva, J.; Shimamoto, K.; Prat, S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 2011, 478, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Nitcher, R.; Han, X.; Wang, S.; Ni, F.; Li, K.; Pearce, S.; Wu, J.; Dubcovsky, J.; Fu, D. Characterization of FLOWERING LOCUS T1 (FT1) gene in Brachypodium and wheat. PLoS ONE 2014, 9, e94171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauley, A.; Boden, S.A. Stepwise increases in FT1 expression regulate seasonal progression of flowering in wheat (Triticum aestivum). New Phytol. 2021, 229, 1163–1176. [Google Scholar] [CrossRef]
- Leeggangers, H.A.; Rosilio-Brami, T.; Bigas-Nadal, J.; Rubin, N.; Van Dijk, A.D.; Nunez de Caceres Gonzalez, F.F.; Saadon-Shitrit, S.; Nijveen, H.; Hilhorst, H.W.; Immink, R.G.; et al. Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control. Plant Cell Physiol. 2018, 59, 90–106. [Google Scholar] [CrossRef] [Green Version]
- Li, X.F.; Jia, L.Y.; Xu, J.; Deng, X.J.; Wang, Y.; Zhang, W.; Zhang, X.P.; Fang, Q.; Zhang, D.M.; Sun, Y.; et al. FT-like NFT1 gene may play a role in flower transition induced by heat accumulation in Narcissus tazetta var. chinensis. Plant Cell Physiol. 2013, 54, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Noy-Porat, T.; Cohen, D.; Mathew, D.; Eshel, A.; Kamenetsky, R.; Flaishman, M.A. Turned on by heat: Differential expression of FT and LFY-like genes in Narcissus tazetta during floral transition. J. Exp. Bot. 2013, 64, 3273–3284. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Baldwin, S.; Kenel, F.; McCallum, J.; Macknight, R. FLOWERING LOCUS T genes control onion bulb formation and flowering. Nat. Commun. 2013, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Manoharan, R.K.; Han, J.S.H.; Vijayakumar, H.; Subramani, B.; Thamilarasan, S.K.; Park, J.I.; Nou, I.S. Molecular and functional characterization of FLOWERING LOCUS T homologs in Allium cepa. Molecules 2016, 21, 217. [Google Scholar] [CrossRef]
- Zeevaart, J.A. Leaf-produced floral signals. Curr. Opin. Plant Biol. 2008, 11, 541–547. [Google Scholar] [CrossRef]
- Gursky, V.V.; Kozlov, K.N.; Nuzhdin, S.V.; Samsonova, M.G. Dynamical modeling of the core gene network controlling flowering suggests cumulative activation from the FLOWERING LOCUS T gene homologs in chickpea. Front. Genet. 2018, 9, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, N. LEAFY, a pioneer transcription factor in plants: A mini-review. Front. Plant Sci. 2021, 12, 1274. [Google Scholar] [CrossRef] [PubMed]
- Chamala, S.; Feng, G.; Chavarro, C.; Barbazuk, W.B. Genome-wide identification of evolutionarily conserved alternative splicing events in flowering plants. Front. Bioeng. Biotechnol. 2015, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.Y.; Chen, M.X.; Ye, N.H.; Shi, L.; Ma, K.L.; Yang, J.F.; Cao, Y.Y.; Zhang, Y.; Yoshida, T.; Fernie, A.R.; et al. Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant J. 2017, 91, 518–533. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, S.; Jabre, I.; Reddy, A.S.; Staiger, D.; Syed, N.H. Perspective on alternative splicing and proteome complexity in plants. Trends Plant Sci. 2019, 24, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Xiong, F.; Ren, Q.P.; Wang, X.L. Regulation of flowering transition by alternative splicing: The role of the U2 auxiliary factor. J. Exp. Bot. 2020, 71, 751–758. [Google Scholar] [CrossRef] [PubMed]
- King, J.J.; Bradeen, J.M.; Bark, O.; McCallum, J.A.; Havey, M.J. A low-density genetic map of onion reveals a role for tandem duplication in the evolution of an extremely large diploid genome. Theor. Appl. Genet. 1998, 96, 52–62. [Google Scholar] [CrossRef]
- Ipek, M.E.; Ipek, A.H.; Almquist, S.G.; Simon, P.W. Demonstration of linkage and development of the first low-density genetic map of garlic, based on AFLP markers. Theor. Appl. Genet. 2005, 110, 228–236. [Google Scholar] [CrossRef]
- Khosa, J.; Lee, R.; McCallum, J.; Macknight, R. Gene Family Evolution in Allium Species. In The Allium Genomes; Shigyo, M., Khar, A., Abdelrahman, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 145–159. [Google Scholar]
- Hedman, H.; Källman, T.; Lagercrantz, U. Early evolution of the MFT-like gene family in plants. Plant Mol. Biol. 2009, 70, 359–369. [Google Scholar] [CrossRef]
- Karlgren, A.; Gyllenstrand, N.; Källman, T.; Sundström, J.F.; Moore, D.; Lascoux, M.; Lagercrantz, U. Evolution of the PEBP gene family in plants: Functional diversification in seed plant evolution. Plant Physiol. 2011, 156, 1967–1977. [Google Scholar] [CrossRef] [Green Version]
- Klintenäs, M.; Pin, P.A.; Benlloch, R.; Ingvarsson, P.K.; Nilsson, O. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytol. 2012, 196, 1260–1273. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, X.; Chen, X.; Chen, Y.; Zhang, Z.; Xuhan, X.; Lin, Y.; Lai, Z. Seed-Specific Gene MOTHER of FT and TFL1 (MFT) Involved in Embryogenesis, Hormones and Stress Responses in Dimocarpus longan Lour. Int. J. Mol. Sci. 2018, 19, 2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Liu, H.; Sang, N.; Li, Y.; Zhang, T.; Sun, J.; Huang, X. Identification of cotton MOTHER OF FT AND TFL1 homologs, GhMFT1 and GhMFT2, involved in seed germination. PLoS ONE 2019, 14, e0215771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.Y.; Yang, K.Z.; Wei, X.X.; Wang, X.Q. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution. New Phytol. 2016, 212, 730–744. [Google Scholar] [CrossRef] [Green Version]
- Kuligowska Mackenzie, K.; Lopes Coelho, L.; Lütken, H.; Müller, R. Phylogenomic analysis of the PEBP gene family from Kalanchoë. Agronomy 2019, 9, 171. [Google Scholar] [CrossRef] [Green Version]
- Ospina-Zapata, D.A.; Madrigal, Y.; Alzate, J.F.; Pabón-Mora, N. Evolution and expression of reproductive transition regulatory genes FT/TFL1 with emphasis in selected neotropical orchids. Front. Plant Sci. 2020, 11, 469. [Google Scholar] [CrossRef] [Green Version]
- iTOL. Available online: https://itol.embl.de/login.cgi (accessed on 11 January 2022).
- Shemesh-Mayer, E.; Ben-Michael, T.; Rotem, N.; Rabinowitch, H.D.; Doron-Faigenboim, A.; Kosmala, A.; Perlikowski, D.; Sherman, A.; Kamenetsky, R. Garlic (Allium sativum L.) fertility: Transcriptome and proteome analyses provide insight into flower and pollen development. Front. Plant Sci. 2015, 6, 271. [Google Scholar] [CrossRef]
- MORPHEUS. Available online: https://software.broadinstitute.org/morpheus (accessed on 11 January 2022).
- Mulki, M.A.; Bi, X.; von Korff, M. FLOWERING LOCUS T3 controls spikelet initiation but not floral development. Plant Physiol. 2018, 178, 1170–1186. [Google Scholar] [CrossRef] [Green Version]
- Soares, J.M.; Weber, K.C.; Qiu, W.; Stanton, D.; Mahmoud, L.M.; Wu, H.; Huyck, P.; Zale, J.; Al Jasim, K.; Grosser, J.W.; et al. The vascular targeted citrus FLOWERING LOCUS T3 gene promotes non-inductive early flowering in transgenic Carrizo rootstocks and grafted juvenile scions. Sci. Rep. 2020, 10, 1–18. [Google Scholar] [CrossRef]
- Rashid, M.; Ar, H.; Cheng, W.; Thomas, B. Temporal and spatial expression of Arabidopsis gene homologs control daylength adaptation and bulb formation in onion (Allium cepa L.). Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Krylova, E.A. The Role of TFL1 Orthologs in Determining of Plant Architectonics. Russ. J. Genet. 2020, 56, 1308–1322. [Google Scholar] [CrossRef]
- Zhang, X.; Campbell, R.; Ducreux, L.J.; Morris, J.; Hedley, P.E.; Mellado-Ortega, E.; Roberts, A.G.; Stephens, J.; Bryan, G.J.; Torrance, L.; et al. TERMINAL FLOWER-1/CENTRORADIALIS inhibits tuberisation via protein interaction with the tuberigen activation complex. Plant J. 2020, 103, 2263–2278. [Google Scholar] [CrossRef] [PubMed]
- Kaneko-Suzuki, M.; Kurihara-Ishikawa, R.; Okushita-Terakawa, C.; Kojima, C.; Nagano-Fujiwara, M.; Ohki, I.; Tsuji, H.; Shimamoto, K.; Taoka, K.I. TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD. Plant Cell Physiol. 2018, 59, 458–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalvi, V.S.; Patil, Y.A.; Krishna, B.; Sane, P.V.; Sane, A.P. Indeterminate growth of the umbel inflorescence and bulb is associated with increased expression of the TFL1 homologue, AcTFL1, in onion. Plant Sci. 2019, 287, 110165. [Google Scholar] [CrossRef]
- Adeyemo, O.S.; Hyde, P.T.; Setter, T.L. Identification of FT family genes that respond to photoperiod, temperature and genotype in relation to flowering in cassava (Manihot esculenta, Crantz). Plant Reprod. 2019, 32, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Bouché, F.; D’Aloia, M.; Tocquin, P.; Lobet, G.; Detry, N.; Périlleux, C. Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Ye, Y.; Song, C.; Chen, D.; Jiang, B.; Wang, Y. Cloning and functional identification of the AcLFY gene in Allium cepa. Biochem. Biophys. Res. Commun. 2016, 473, 1100–1105. [Google Scholar] [CrossRef]
- Vetaryan, S.; Kwan, Y.Y.; Namasivayam, P.; Ho, C.L.; Syed Alwee, S.S.R. Isolation and characterisation of oil palm LEAFY transcripts. Biotechnol. Biotechnol. Equip. 2018, 32, 888–898. [Google Scholar] [CrossRef] [Green Version]
- Wada, M.; Cao, Q.F.; Kotoda, N.; Soejima, J.I.; Masuda, T. Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol. Biol. 2002, 49, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Bomblies, K.; Wang, R.L.; Ambrose, B.A.; Schmidt, R.J.; Meeley, R.B.; Doebley, J. Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 2003, 130, 2385–2395. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Zhang, L.; Xu, J.; Wang, L.; Liu, B.; Hao, M.; Chang, X.; Zhang, T.; Li, S.; Zhang, H.; et al. The alternative splicing of EAM8 contributes to early flowering and short-season adaptation in a landrace barley from the Qinghai-Tibetan Plateau. Theor. Appl. Genet. 2017, 130, 757–766. [Google Scholar] [CrossRef]
- Eckardt, N.A. Alternative splicing and the control of flowering time. Plant Cell. 2002, 14, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Sun, J.; Cao, P.; Zhang, R.; Fu, Q.; Chen, S.; Chen, F.; Jiang, J. Functional analysis of alternative splicing of the FLOWERING LOCUS T orthologous gene in Chrysanthemum morifolium. Hortic. Res. 2016, 3, 16058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, W.; Liu, R.; Zhang, J.; Mason, A.S.; Li, Z.; Gong, S.; Zhong, Y.; Dou, Y.; Sun, X.; Fan, H.; et al. Alternative splicing of flowering time gene FT is associated with halving of time to flowering in coconut. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, T.; Kay, S.A. Photoperiodic control of flowering: Not only by coincidence. Trends Plant Sci. 2006, 11, 550–558. [Google Scholar] [CrossRef]
- Dennis, E.S.; Peacock, W.J. Epigenetic regulation of flowering. Curr. Opin. Plant Biol. 2007, 10, 520–527. [Google Scholar] [CrossRef]
- Trevaskis, B.; Hemming, M.N.; Dennis, E.S.; Peacock, W.J. The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci. 2007, 12, 352–357. [Google Scholar] [CrossRef]
- Simpson, G.G.; Dean, C. Arabidopsis, the Rosetta stone of flowering time? Science 2002, 296, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Caicedo, A.L.; Stinchcombe, J.R.; Olsen, K.M.; Schmitt, J.; Purugganan, M.D. Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc. Natl. Acad. Sci. USA 2004, 101, 15670–15675. [Google Scholar] [CrossRef]
- Kim, D.H.; Sung, S. Environmentally coordinated epigenetic silencing of FLC by protein and long noncoding RNA components. Curr. Opin. Plant Biol. 2012, 15, 51–56. [Google Scholar] [CrossRef]
- Luo, X.; He, Y. Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization. J. Integr. Plant Biol. 2020, 62, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Hassankhah, A.; Rahemi, M.; Ramshini, H.; Sarikhani, S.; Vahdati, K. Flowering in Persian walnut: Patterns of gene expression during flower development. BMC Plant Biol. 2020, 20, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ben Michael, T.E.; Shemesh-Mayer, E.; Kimhi, S.; Gershberg, C.; Forer, I.; de Ávila, V.T.; Rabinowitch, H.D.; Kamenetsky Goldstein, R. Temporal and spatial effect of low pre-planting temperatures on plant architecture and flowering in bolting garlic. Sci. Hortic. 2018, 242, 69–75. [Google Scholar] [CrossRef]
- Rozenblat, L. Seed Development and Germination Mmechanisms in Allium Species. Master’s Thesis, The Hebrew University of Jerusalem, Jerusalem, Israel, 2017; p. 60. [Google Scholar]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [Green Version]
- Tair. Available online: http://www.arabidopsis.org (accessed on 11 January 2022).
- Figshare. Available online: https://doi.org/10.6084/m9.figshare.12570947.v1 (accessed on 5 November 2020).
- PhenoGram. Available online: http://visualization.ritchielab.org/phenograms/plot (accessed on 11 January 2022).
- Robinson, J.T.; Thorvaldsdóttir, H.; Wenger, A.M.; Zehir, A.; Mesirov, J.P. Variant review with the integrative genomics viewer. Cancer Res. 2017, 77, e31–e34. [Google Scholar] [CrossRef] [Green Version]
- MAFFT. Available online: https://mafft.cbrc.jp/alignment/server (accessed on 11 January 2022).
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef]
- Cytoscape. Available online: http://www.cytoscape.org (accessed on 11 January 2022).
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Faust, K.; Raes, J. CoNet app: Inference of biological association networks using Cytoscape. F1000Research 2016, 5, 151. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Accession ID | Start of Base-Pair Location on Chromosome | End of Base-Pair Location on Chromosome | |
---|---|---|---|---|
1 | AsFT1.1 | Asa7G06383.1 | 1,751,818,141 | 1,751,820,541 |
2 | AsFT1.2 | Asa7G06386.1 | 1,752,347,327 | 1,752,356,242 |
3 | AsFT2.1 | Asa6G06199.1 | 1,723,019,079 | 1,723,031,572 |
4 | AsFT2.2 | Asa6G06200.1 | 1,723,318,919 | 1,723,326,950 |
5 | AsFT3.1 | Asa6G00732.1 | 188,122,544 | 188,125,123 |
6 | AsFT3.2 | Asa6G01063.1 | 285,605,894 | 285,607,102 |
7 | AsFT4.1 | Asa6G00187.1 | 58,999,873 | 59,000,089 |
8 | AsFT4.2 | Asa6G00188.1 | 59,419,215 | 59,428,386 |
9 | AsFT4.3 | Asa8G01025.1 | 303,417,313 | 303,419,144 |
10 | AsFT4.4 | Asa8G01036.1 | 304,772,513 | 304,774,348 |
11 | AsFT5.1 | Asa0G05138.1 | 22,173 | 24,968 |
12 | AsFT5.2 | Asa8G04470.1 | 1,187,736,524 | 1,187,738,945 |
13 | AsFT6 | Asa2G02821.1 | 756,995,398 | 756,998,250 |
14 | AsFT7 | Asa7G06501.1 | 1,791,516,624 | 1,791,519,654 |
15 | AsFT8.1 | Asa5G01472.1 | 361,294,195 | 361,296,104 |
16 | AsFT8.2 | Asa6G04367.1 | 1,172,852,584 | 1,172,853,324 |
17 | AsFT9.1 | Asa2G04443.1 | 1,196,742,904 | 1,196,743,080 |
18 | AsFT9.2 | Asa2G04445.1 | 1,196,975,248 | 1,196,979,775 |
19 | AsFT10 | Asa7G06404.1 | 1,756,659,830 | 1,756,660,064 |
20 | AsFT11 | Asa6G01542.1 | 402,410,306 | 402,412,331 |
21 | AsTFL1.1 | Asa5G02970.1 | 759,662,461 | 759,663,257 |
22 | AsTFL1.2 | Asa5G02971.1 | 759,823,509 | 759,824,327 |
23 | AsTFL1.3 | Asa5G02972.1 | 759,853,529 | 759,854,342 |
24 | AsTFL1.4 | Asa0G01615.1 | 7639 | 8045 |
25 | AsTFL1.5 | Asa4G04758.1 | 1,298,705,414 | 1,298,706,219 |
26 | AsCEN | Asa4G03276.1 | 890,356,000 | 890,356,793 |
27 | AsLFY1.1 | Asa4G05355.1 | 1,466,526,753 | 1,466,528,007 |
28 | AsLFY1.2 | Asa4G05365.1 | 1,469,543,395 | 1,469,544,649 |
29 | AsLFY2 | Asa8G01094.1 | 318,450,068 | 318,450,234 |
Organ/Sample | Description | Bio-Project * | Ref ** | Reps *** |
---|---|---|---|---|
Non-vernalized apical meristem | Apical buds from the cloves stored at ambient temperature 20–30 °C | PRJNA566287 | [12] | 2 |
Vernalized apical meristem | Apical buds from the cloves stored in at 4 °C for 12 weeks | PRJNA566287 | [12] | 2 |
Storage scale | Bulb cloves at the end of the growing season | PRJNA243415 | [11] | 1 |
Roots | Fresh roots during active growth | PRJNA243415 | [11] | 1 |
Basal plate | Plant basal plate during active growth | PRJNA243415 | [11] | 1 |
Leaves | Green foliage leaves during active growth | PRJNA243415 | [11] | 1 |
Inflorescence primordia | Young inflorescences with differentiating flower primordia | PRJNA243415 | [11] | 1 |
Flower bud | Differentiated flower bud with green tepals, 2.5–3 mm long | PRJNA264944 | [52] | 3 |
Flower young | Differentiated flower bud with green tepals, 3–4 mm long | PRJNA264944 | [52] | 3 |
Flower mature | Pre-anthesis flower with pink tepals, 3–4 mm long | PRJNA264944 | [52] | 3 |
Ovary | Post-fertilization stage, seed setting, ovule length 2–2.5 mm | PRJNA647152 | [80] | 2 |
Dry seed | Dry seeds stored after harvest in paper bags at room temperature | PRJNA647152 | [19,80] | 2 |
Imbibed seed | Seeds imbibed in water for 6 h | PRJNA647152 | [19,80] | 2 |
Stratified seed | Seed stratified at 4 °C for 4 weeks | PRJNA647152 | [19,80] | 2 |
Seedling | Seedling with 1–2 leaves | PRJNA647152 | [80] | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shemesh-Mayer, E.; Faigenboim, A.; Ben Michael, T.E.; Kamenetsky-Goldstein, R. Integrated Genomic and Transcriptomic Elucidation of Flowering in Garlic. Int. J. Mol. Sci. 2022, 23, 13876. https://doi.org/10.3390/ijms232213876
Shemesh-Mayer E, Faigenboim A, Ben Michael TE, Kamenetsky-Goldstein R. Integrated Genomic and Transcriptomic Elucidation of Flowering in Garlic. International Journal of Molecular Sciences. 2022; 23(22):13876. https://doi.org/10.3390/ijms232213876
Chicago/Turabian StyleShemesh-Mayer, Einat, Adi Faigenboim, Tomer E. Ben Michael, and Rina Kamenetsky-Goldstein. 2022. "Integrated Genomic and Transcriptomic Elucidation of Flowering in Garlic" International Journal of Molecular Sciences 23, no. 22: 13876. https://doi.org/10.3390/ijms232213876
APA StyleShemesh-Mayer, E., Faigenboim, A., Ben Michael, T. E., & Kamenetsky-Goldstein, R. (2022). Integrated Genomic and Transcriptomic Elucidation of Flowering in Garlic. International Journal of Molecular Sciences, 23(22), 13876. https://doi.org/10.3390/ijms232213876