Cocaine and Its Abstinence Condition Modulate Striatal and Hippocampal Wnt Signaling in a Male Rat Model of Drug Self-Administration
Abstract
:1. Introduction
2. Results
2.1. Cocaine Self-Administration
2.2. Alterations in the mRNA Expression of Wnt Signaling Pathway Elements Induced by Cocaine Self-Administration and Abstinence Conditions
2.2.1. Striatum
2.2.2. Hippocampus
2.3. Alterations in Wnt5a and β-Catenin Protein Levels Induced by Cocaine Self-Administration and Abstinence Conditions
2.3.1. Striatum
2.3.2. Hippocampus
2.4. Alterations in Selected miRNA Expression Induced by Cocaine Self-Administration
2.4.1. Striatum
2.4.2. Hippocampus
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Surgery, Cocaine Self-Administration, and Cocaine Abstinence
4.3. Brain Tissue Collection
4.4. Analysis of Gene Expression by RT-qPCR
4.5. Analysis of miRNA Expression
4.6. Determination of Wnt5a and β-Catenin Protein Concentration
4.7. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalin, N.H. Substance Use Disorders and Addiction: Mechanisms, Trends, and Treatment Implications. Am. J. Psychiatry 2020, 177, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.; Kondo, K.; Freeman, M.; Ayers, C.; Montgomery, J.; Kansagara, D. Pharmacotherapy for Cocaine Use Disorder-a Systematic Review and Meta-Analysis. J. Gen. Intern. Med. 2019, 34, 2858–2873. [Google Scholar] [CrossRef]
- A World Drug Report. 2021. Available online: https://www.unodc.org/unodc/data-and-analysis/wdr2021.html (accessed on 1 September 2022).
- Cuesta, S.; Batuecas, J.; Severin, M.J.; Funes, A.; Rosso, S.B.; Pacchioni, A.M. Role of Wnt/β-Catenin Pathway in the Nucleus Accumbens in Long-Term Cocaine-Induced Neuroplasticity: A Possible Novel Target for Addiction Treatment. J. Neurochem. 2017, 140, 114–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuesta, S.; Severin, M.J.; Batuecas, J.; Rosso, S.B.; Pacchioni, A.M. Wnt/β-Catenin Pathway in the Prefrontal Cortex Is Required for Cocaine-Induced Neuroadaptations. Addict. Biol. 2017, 22, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, S.; Pacchioni, A. Are Changes in the Wnt/β-Catenin Pathway Involved in Cocaine and Stress-Induced Long-Term Neuroadaptations? J. Add. Pre. Med. 2017, 2, 112. [Google Scholar]
- Sokol, S.Y. Spatial and Temporal Aspects of Wnt Signaling and Planar Cell Polarity during Vertebrate Embryonic Development. Semin. Cell Dev. Biol. 2015, 42, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Davis, E.K.; Zou, Y.; Ghosh, A. Wnts Acting through Canonical and Noncanonical Signaling Pathways Exert Opposite Effects on Hippocampal Synapse Formation. Neural Dev. 2008, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Palomer, E.; Buechler, J.; Salinas, P.C. Wnt Signaling Deregulation in the Aging and Alzheimer’s Brain. Front. Cell. Neurosci. 2019, 13, 227. [Google Scholar] [CrossRef] [Green Version]
- Codocedo, J.F.; Inestrosa, N.C. Wnt-5a-Regulated MiR-101b Controls COX2 Expression in Hippocampal Neurons. Biol. Res. 2016, 49, 9. [Google Scholar] [CrossRef] [Green Version]
- Coyle-Rink, J.; Del Valle, L.; Sweet, T.; Khalili, K.; Amini, S. Developmental Expression of Wnt Signaling Factors in Mouse Brain. Cancer Biol. Ther. 2002, 1, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Salinas, P.C. Wnt Signaling in the Vertebrate Central Nervous System: From Axon Guidance to Synaptic Function. Cold Spring Harb. Perspect. Biol. 2012, 4, a008003. [Google Scholar] [CrossRef] [PubMed]
- Wiese, K.E.; Nusse, R.; van Amerongen, R. Wnt Signalling: Conquering Complexity. Development 2018, 145, dev165902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano, M.; Oh, S.; Salas-Wright, C.P.; Vaughn, M.G. Cocaine Use and Overdose Mortality in the United States: Evidence from Two National Data Sources, 2002-2018. Drug Alcohol Depend. 2020, 214, 108148. [Google Scholar] [CrossRef] [PubMed]
- McLellan, A.T. Substance Misuse and Substance Use Disorders: Why Do They Matter in Healthcare? Trans. Am. Clin. Climatol. Assoc. 2017, 128, 112–130. [Google Scholar]
- Juliano, R.L. Addressing Cancer Signal Transduction Pathways with Antisense and SiRNA Oligonucleotides. NAR Cancer 2020, 2, zcaa025. [Google Scholar] [CrossRef]
- Freeman, W.M.; Brebner, K.; Patel, K.M.; Lynch, W.J.; Roberts, D.C.S.; Vrana, K.E. Repeated Cocaine Self-Administration Causes Multiple Changes in Rat Frontal Cortex Gene Expression. Neurochem. Res. 2002, 27, 1181–1192. [Google Scholar] [CrossRef]
- Freeman, W.M.; Brebner, K.; Lynch, W.J.; Robertson, D.J.; Roberts, D.C.S.; Vrana, K.E. Cocaine-Responsive Gene Expression Changes in Rat Hippocampus. Neuroscience 2001, 108, 371–380. [Google Scholar] [CrossRef]
- Freeman, W.M.; Nader, M.A.; Nader, S.H.; Robertson, D.J.; Gioia, L.; Mitchell, S.M.; Daunais, J.B.; Porrino, L.J.; Friedman, D.P.; Vrana, K.E. Chronic Cocaine-Mediated Changes in Non-Human Primate Nucleus Accumbens Gene Expression. J. Neurochem. 2001, 77, 542–549. [Google Scholar] [CrossRef]
- Schwendt, M.; Knackstedt, L.A. Extinction vs. Abstinence: A Review of the Molecular and Circuit Consequences of Different Post-Cocaine Experiences. Int. J. Mol. Sci. 2021, 22, 6113. [Google Scholar] [CrossRef]
- Frankowska, M.; Miszkiel, J.; Pomierny-Chamioło, L.; Pomierny, B.; Giannotti, G.; Suder, A.; Filip, M. Alternation in Dopamine D2-like and Metabotropic Glutamate Type 5 Receptor Density Caused by Differing Housing Conditions during Abstinence from Cocaine Self-Administration in Rats. J. Psychopharmacol. 2019, 33, 372–382. [Google Scholar] [CrossRef]
- Gawlińska, K.; Frankowska, M.; Gawliński, D.; Piechota, M.; Korostyński, M.; Filip, M. Cocaine Administration and Its Abstinence Conditions Modulate Neuroglia. Int. J. Mol. Sci. 2020, 21, 7970. [Google Scholar] [CrossRef] [PubMed]
- Kumawat, K.; Gosens, R. WNT-5A: Signaling and Functions in Health and Disease. Cell. Mol. Life Sci. 2016, 73, 567–587. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Xiang, M.; Zhang, P.; Qi, G.; He, F.; Zhang, Q.; Zhang, Z.; Lv, Z.; Peng, X.; Cai, H.; et al. Wnt-5a Promotes Neural Development and Differentiation by Regulating CDK5 via Ca2+/Calpain Pathway. Cell. Physiol. Biochem. 2018, 51, 2604–2615. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Chen, D.; Huang, X.M.; Long, F.; Cai, H.; Yao, W.X.; Chen, Z.C.; Liao, Z.J.; Deng, Z.Z.; Tan, S.; et al. Wnt5a Promotes Cortical Neuron Survival by Inhibiting Cell-Cycle Activation. Front. Cell. Neurosci. 2017, 11, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Hutchins, B.I.; Kalil, K. Wnt5a Induces Simultaneous Cortical Axon Outgrowth and Repulsive Axon Guidance through Distinct Signaling Mechanisms. J. Neurosci. 2009, 29, 5873–5883. [Google Scholar] [CrossRef] [Green Version]
- Cerpa, W.; Farías, G.G.; Godoy, J.A.; Fuenzalida, M.; Bonansco, C.; Inestrosa, N.C. Wnt-5a Occludes Aβ Oligomer-Induced Depression of Glutamatergic Transmission in Hippocampal Neurons. Mol. Neurodegener. 2010, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Arredondo, S.B.; Guerrero, F.G.; Herrera-Soto, A.; Jensen-Flores, J.; Bustamante, D.B.; Oñate-Ponce, A.; Henny, P.; Varas-Godoy, M.; Inestrosa, N.C.; Varela-Nallar, L. Wnt5a Promotes Differentiation and Development of Adult-Born Neurons in the Hippocampus by Noncanonical Wnt Signaling. Stem Cells 2020, 38, 422–436. [Google Scholar] [CrossRef]
- Ramos-Fernández, E.; Arrázola, M.S.; Oliva, C.A.; Arredondo, S.B.; Varela-Nallar, L.; Inestrosa, N.C. Wnt5a Promotes Hippocampal Postsynaptic Development and GluN2B-Induced Expression via the EIF2α HRI Kinase. Sci. Rep. 2021, 11, 7395. [Google Scholar] [CrossRef]
- McQuate, A.; Latorre-Esteves, E.; Barria, A. A Wnt/Calcium Signaling Cascade Regulates Neuronal Excitability and Trafficking of NMDARs. Cell Rep. 2017, 21, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.M.; Orefice, L.L.; Chiu, S.L.; LeGates, T.A.; Hattar, S.; Huganir, R.L.; Zhao, H.; Xu, B.; Kuruvilla, R. Wnt5a Is Essential for Hippocampal Dendritic Maintenance and Spatial Learning and Memory in Adult Mice. Proc. Natl. Acad. Sci. USA 2017, 114, E619–E628. [Google Scholar] [CrossRef] [Green Version]
- Chavali, M.; Klingener, M.; Kokkosis, A.G.; Garkun, Y.; Felong, S.; Maffei, A.; Aguirre, A. Non-Canonical Wnt Signaling Regulates Neural Stem Cell Quiescence during Homeostasis and after Demyelination. Nat. Commun. 2018, 9, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, M.E.; Bernis, M.E.; McLeod, F.; Podpolny, M.; Coullery, R.P.; Casadei, I.M.; Salinas, P.C.; Rosso, S.B. Wnt7b Signalling through Frizzled-7 Receptor Promotes Dendrite Development by Coactivating CaMKII and JNK. J. Cell Sci. 2018, 131, jcs216101. [Google Scholar] [CrossRef] [PubMed]
- Rosso, S.B.; Inestrosa, N.C. WNT Signalling in Neuronal Maturation and Synaptogenesis. Front. Cell. Neurosci. 2013, 7, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palamarchouk, V.; Smagin, G.; Goeders, N.E. Self-Administered and Passive Cocaine Infusions Produce Different Effects on Corticosterone Concentrations in the Medial Prefrontal Cortex (MPC) of Rats. Pharmacol. Biochem. Behav. 2009, 94, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.T.; Bowers, M.S.; Martin, M.; Hopf, F.W.; Guillory, A.M.; Carelli, R.M.; Chou, J.K.; Bonci, A. Cocaine but Not Natural Reward Self-Administration nor Passive Cocaine Infusion Produces Persistent LTP in the VTA. Neuron 2008, 59, 288–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caffino, L.; Cassina, C.; Giannotti, G.; Orrù, A.; Moro, F.; Di Clemente, A.; Racagni, G.; Fumagalli, F.; Cervo, L. Short-Term Abstinence from Cocaine Self-Administration, but Not Passive Cocaine Infusion, Elevates ACaMKII Autophosphorylation in the Rat Nucleus Accumbens and Medial Prefrontal Cortex. Int. J. Neuropsychopharmacol. 2014, 17, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Stefański, R.; Ziółkowska, B.; Kuśmider, M.; Mierzejewski, P.; Wyszogrodzka, E.; Kołomańska, P.; Dziedzicka-Wasylewska, M.; Przewłocki, R.; Kostowski, W. Active versus Passive Cocaine Administration: Differences in the Neuroadaptive Changes in the Brain Dopaminergic System. Brain Res. 2007, 1157, 1–10. [Google Scholar] [CrossRef]
- Bystrowska, B.; Frankowska, M.; Smaga, I.; Pomierny-Chamioło, L.; Filip, M. Effects of Cocaine Self-Administration and Its Extinction on the Rat Brain Cannabinoid CB1 and CB2 Receptors. Neurotox. Res. 2018, 34, 547–558. [Google Scholar] [CrossRef] [Green Version]
- Bystrowska, B.; Frankowska, M.; Smaga, I.; Niedzielska-Andres, E.; Pomierny-Chamioło, L.; Filip, M. Cocaine-Induced Reinstatement of Cocaine Seeking Provokes Changes in the Endocannabinoid and N-Acylethanolamine Levels in Rat Brain Structures. Molecules 2019, 24, 1125. [Google Scholar] [CrossRef] [Green Version]
- Twining, R.C.; Bolan, M.; Grigson, P.S. Yoked Delivery of Cocaine Is Aversive and Protects against the Motivation for Drug in Rats. Behav. Neurosci. 2009, 123, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Guo, X.; Li, W.; Zhang, H. Activation of Wnt/β-Catenin Signalling via GSK3 Inhibitors Direct Differentiation of Human Adipose Stem Cells into Functional Hepatocytes. Sci. Rep. 2017, 7, 40716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.S.; Tallarida, R.J.; Unterwald, E.M. Cocaine-Induced Hyperactivity and Sensitization Are Dependent on GSK3. Neuropharmacology 2009, 56, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.S.; Barr, J.L.; Harper, L.J.; Poole, R.L.; Gould, T.J.; Unterwald, E.M. The GSK3 Signaling Pathway Is Activated by Cocaine and Is Critical for Cocaine Conditioned Reward in Mice. PLoS ONE 2014, 9, e88026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dexheimer, P.J.; Cochella, L. MicroRNAs: From Mechanism to Organism. Front. Cell Dev. Biol. 2020, 8, 409. [Google Scholar] [CrossRef]
- Qureshi, I.A.; Mehler, M.F. Epigenetic Mechanisms Underlying Nervous System Diseases. Handb. Clin. Neurol. 2018, 147, 43. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Z. MiRNAs in Synapse Development and Synaptic Plasticity. Curr. Opin. Neurobiol. 2017, 45, 24–31. [Google Scholar] [CrossRef]
- Meruvu, S.; Schutz, L.F.; Choudhury, M. Nutritional Influence on MiRNA Epigenetic Regulation: Effect of Maternal Diet and MiRNAs on the Fetal Metabolic Programming. Mol. Nutr. Mother Infant 2021, 401–420. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Dubes, S.; Favereaux, A.; Thoumine, O.; Letellier, M. MiRNA-Dependent Control of Homeostatic Plasticity in Neurons. Front. Cell. Neurosci. 2019, 13, 536. [Google Scholar] [CrossRef] [Green Version]
- Dash, S.; Balasubramaniam, M.; Martínez-Rivera, F.J.; Godino, A.; Peck, E.G.; Patnaik, S.; Suar, M.; Calipari, E.S.; Nestler, E.J.; Villalta, F.; et al. Cocaine-Regulated MicroRNA MiR-124 Controls Poly (ADP-Ribose) Polymerase-1 Expression in Neuronal Cells. Sci. Rep. 2020, 10, 11197. [Google Scholar] [CrossRef]
- Eipper-Mains, J.E.; Kiraly, D.D.; Palakodeti, D.; Mains, R.E.; Eipper, B.A.; Graveley, B.R. MicroRNA-Seq Reveals Cocaine-Regulated Expression of Striatal MicroRNAs. RNA 2011, 17, 1529–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Periyasamy, P.; Liao, K.; Kook, Y.H.; Niu, F.; Callen, S.E.; Guo, M.L.; Buch, S. Cocaine-Mediated Downregulation of MiR-124 Activates Microglia by Targeting KLF4 and TLR4 Signaling. Mol. Neurobiol. 2018, 55, 3196–3210. [Google Scholar] [CrossRef] [PubMed]
- Sadakierska-Chudy, A.; Frankowska, M.; Miszkiel, J.; Wydra, K.; Jastrzębska, J.; Filip, M. Prolonged Induction of MiR-212/132 and REST Expression in Rat Striatum Following Cocaine Self-Administration. Mol. Neurobiol. 2017, 54, 2241–2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vannan, A.; Powell, G.L.; Dell’Orco, M.; Wilson, M.A.; Perrone-Bizzozero, N.I.; Neisewander, J.L. MicroRNA Regulation Related to the Protective Effects of Environmental Enrichment against Cocaine-Seeking Behavior. Drug Alcohol Depend. 2021, 221, 108585. [Google Scholar] [CrossRef]
- Viola, T.W.; Heberle, B.A.; Zaparte, A.; Sanvicente-Vieira, B.; Wainer, L.M.; Fries, G.R.; Walss-Bass, C.; Grassi-Oliveira, R. Peripheral Blood MicroRNA Levels in Females with Cocaine Use Disorder. J. Psychiatr. Res. 2019, 114, 48–54. [Google Scholar] [CrossRef]
- Becker, J.B.; McClellan, M.L.; Reed, B.G. Sex Differences, Gender and Addiction. J. Neurosci. Res. 2017, 95, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Carroll, M.E.; Lynch, W.J. How to Study Sex Differences in Addiction Using Animal Models. Addict. Biol. 2016, 21, 1007–1029. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.T.; Milovanovic, M.; Christian, D.T.; Loweth, J.A.; Wolf, M.E. Response of the Ubiquitin-Proteasome System to Memory Retrieval After Extended-Access Cocaine or Saline Self-Administration. Neuropsychopharmacology 2015, 40, 3006–3014. [Google Scholar] [CrossRef] [Green Version]
- Frankowska, M.; Miszkiel, J.; Pomierny-Chamioło, L.; Pomierny, B.; Borelli, A.C.; Suder, A.; Filip, M. Extinction Training Following Cocaine or MDMA Self-Administration Produces Discrete Changes in D2-like and MGlu5 Receptor Density in the Rat Brain. Pharmacol. Rep. 2019, 71, 870–878. [Google Scholar] [CrossRef]
- Gawliński, D.; Gawlińska, K.; Frankowska, M.; Filip, M. Maternal High-Sugar Diet Changes Offspring Vulnerability to Reinstatement of Cocaine-Seeking Behavior: Role of Melanocortin-4 Receptors. FASEB J. 2020, 34, 9192–9206. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 4th ed.; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawliński, D.; Gawlińska, K.; Frankowska, M.; Filip, M. Cocaine and Its Abstinence Condition Modulate Striatal and Hippocampal Wnt Signaling in a Male Rat Model of Drug Self-Administration. Int. J. Mol. Sci. 2022, 23, 14011. https://doi.org/10.3390/ijms232214011
Gawliński D, Gawlińska K, Frankowska M, Filip M. Cocaine and Its Abstinence Condition Modulate Striatal and Hippocampal Wnt Signaling in a Male Rat Model of Drug Self-Administration. International Journal of Molecular Sciences. 2022; 23(22):14011. https://doi.org/10.3390/ijms232214011
Chicago/Turabian StyleGawliński, Dawid, Kinga Gawlińska, Małgorzata Frankowska, and Małgorzata Filip. 2022. "Cocaine and Its Abstinence Condition Modulate Striatal and Hippocampal Wnt Signaling in a Male Rat Model of Drug Self-Administration" International Journal of Molecular Sciences 23, no. 22: 14011. https://doi.org/10.3390/ijms232214011
APA StyleGawliński, D., Gawlińska, K., Frankowska, M., & Filip, M. (2022). Cocaine and Its Abstinence Condition Modulate Striatal and Hippocampal Wnt Signaling in a Male Rat Model of Drug Self-Administration. International Journal of Molecular Sciences, 23(22), 14011. https://doi.org/10.3390/ijms232214011