Biological Activity of Picrorhiza kurroa: A Source of Potential Antimicrobial Compounds against Yersinia enterocolitica
Abstract
:1. Introduction
2. Results
2.1. The Antimicrobial Potential of the Aqueous, Petroleum Ether, and Ethanolic Extract of P. kurroa against Yersinia enterocolitica, Using Agar–Well Diffusion, MIC, and MBC
2.2. Antimicrobial Potential of Ethanolic Extracts of the P. kurroa Rhizome, Checked in Skim Milk, at Different pH, Acidity, and aw
2.3. Microscopic Observation of the Effect of the Herbal Extract of the P. kurroa Rhizome on the Physiology of the Microbe
2.4. Isolation and Characterization of Antibacterial Compounds from P. kurroa
2.5. Isolation of Chemical Constituents from the P. kurroa Rhizome Using Column Chromatography
2.6. Antibacterial Potential of the Ethanolic Extract of Picroside–1
2.7. Microscopic Observation of the Effect of Picroside–1 on the Physiology of Yersinia enterocolitica
2.8. Ramachandran Plots for the Homology Modeling of Dihydrofolate Reductase (DHFR) of Yersinia enterocolitica
2.9. Effect of Picroside–1 on DHFR Protein of Yersinia enterocolitica
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Processing of Herbs and the Preparation of Herb Extracts
4.3. Antimicrobial Assay
4.4. Effectiveness of P. kurroa against Yersinia enterocolitica in the Food System
4.4.1. Effect of pH
4.4.2. Effect of Water Activity on Antimicrobial Potential
4.4.3. Effect of Acidity on Antimicrobial Potential
4.5. Microscopic Observation of the Effect of P. kurroa on the Physiology of Yersinia enterocolitica
4.6. Bioactive Compounds Identification from P. kurroa Using LC–MS
4.7. Isolation of Chemical Constituents from the P. kurroa Rhizome Using Column Chromatography
4.8. Antibacterial Potential of Picroside–1 against Yersinia enterocolitica
4.9. Microscopic Observation of the Effect of Antibacterial Compounds on the Physiology of the Microbe
4.10. Homology Modeling of Dihydrofolate Reductase (DHFR)
4.11. Docking Studies of the Antimicrobial Compound against Dihydrofolate Reductase (DHFR)
4.12. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Z.; Su, X.; Chen, J.; Qin, M.; Sheng, H.; Zhang, Q.; Zhang, J.; Yang, J.; Cui, S.; Yang, B.; et al. Prevalence, bio–serotype, antibiotic susceptibility and genotype of Yersinia enterocolitica and other Yersinia species isolated from retail and processed meats in Shaanxi Province, China. LWT 2022, 168, 113962. [Google Scholar] [CrossRef]
- Heydari, M.; Firouzbakhsh, F.; Paknejad, H. Effects of Mentha longifolia extract on some blood and immune parameters, and disease resistance against yersiniosis in rainbow trout. Aquaculture 2020, 515, 734586. [Google Scholar] [CrossRef]
- Durofil, A.; Maddela, N.R.; Naranjo, R.A.; Radice, M. Evidence on antimicrobial activity of essential oils and herbal extracts against Yersinia enterocolitica—A review. Food Biosci. 2022, 47, 101712. [Google Scholar] [CrossRef]
- Kumar, P.V.; Sivaraj, A.; Madhumitha, G.; Saral, A.M.; Kumar, B.S. In-vitro anti-bacterial activities of Picrorhiza kurroa rhizome extract using agar well diffusion method. Int. J. Curr. Pharm. Res. 2010, 2, 30–33. [Google Scholar]
- Rathee, D.; Rathee, P.; Rathee, S.; Rathee, D. Phytochemical screening and antimicrobial activity of Picrorrhiza kurroa, an indian traditional plant used to treat chronic diarrhea. Arab. J. Chem. 2016, 9, S1307–S1313. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.R.M.; Surekha, Y.; Chhaya, G.; Devendra, S. Preliminary screening and antimicrobial activity of Picrorrhiza kurroa royle ethanolic extracts. Int. J. Pharm. Sci. Rev. Res. 2012, 14, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Naveed, J.F.M.; Bharathi, V.; Muhamad, N.; Faizi, F. Evaluation of anti-microbial activity in Picrorhiza kurroa plant extract using thin-layer chromatography and FTIR. Int. J. Pharm. Technol. 2016, 8, 15717–15722. [Google Scholar]
- Ganeshkumar, Y.; Ramarao, A.; Veeresham, C. Picroside I and picroside II from tissue cultures of Picrorhiza kurroa. Pharmacogn. Res. 2017, 9, S53–S56. [Google Scholar] [CrossRef]
- Shaba, P.; Dey, S.; Kurade, P.; Singh, R.K. Anti-trypanosomal activity of Picrorrhiza kurroa rhizomes against Trypanos. Evansi. Adv. Pharmacogn. Phytomed. 2015, 1, 49–54. [Google Scholar]
- Nisar, J.; Shah, S.M.A.; Akram, M.; Ayaz, S.; Rashid, A. Phytochemical Screening, Antioxidant, and Inhibition Activity of Picrorhiza kurroa Against α–Amylase and α–Glucosidase. Dose–Response 2022, 20, 15593258221095960. [Google Scholar] [CrossRef]
- Mehta, S.; Sharma, A.K.; Singh, R.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb Picrorhiza kurroa (kutki): A comprehensive review. Mini Rev. Med. Chem. 2021, 21, 2976–2995. [Google Scholar] [CrossRef] [PubMed]
- Raina, D.; Singh, B.; Bhat, A.K.; Satti, N.K.; Singh, V.K. Antimicrobial activity of endophytes isolated from Picrorhiza kurroa. Indian Phytopathol. 2018, 71, 103–113. [Google Scholar] [CrossRef]
- Dheer, P.; Pant, M.; Dan, S.; Semwal, S.; Garg, R. Antimicrobial property of Picrorhiza kurroa against multi–drug resistant uropathogenic Escherichia coli. Lett. Appl. NanoBioSci. 2022, 11, 3598–3604. [Google Scholar]
- Gibson, A.M.; Bratchell, N.; Roberts, T.A. Predicting microbial growth: Growth responses of salmonellae in a laboratory medium as affected by ph, sodium chloride and storage temperature. Int. J. Food Microbiol. 1988, 6, 155–178. [Google Scholar] [CrossRef]
- Singariya, P.; Mourya, K.K.; Kumar, P. Antimicrobial activity of the crude extracts of Withania somnifera and Cenchrus setigerus in–vitro. Pharmacogn. J. 2012, 4, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Krupashree, K.; Kumar, K.H.; Rachitha, P.; Jayashree, G.V.; Khanum, F. Chemical composition, antioxidant and macromolecule damage protective effects of Picrorhiza kurroa royle ex benth. S. Afr. J. Bot. 2014, 94, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhao, W.; Choomuenwai, V.; Andrews, K.T.; Quinn, R.J.; Feng, Y. Chemical investigation of an antimalarial chinese medicinal herb picrorhiza scrophulariiflora. Bioorg. Med. Chem. Lett. 2013, 23, 5915–5918. [Google Scholar] [CrossRef] [Green Version]
- Sultan, P.; Jan, A.; Pervaiz, Q. Phytochemical studies for quantitative estimation of iridoid glycosides in Picrorhiza kurroa royle. Bot. Stud. 2016, 57, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Feldman, M.F.; Müller, S.; Wüest, E.; Cornelis, G.R. Syce allows secretion of yope–dhfr hybrids by the Yersinia enterocolitica type iii ysc system. Mol. Microbiol. 2002, 46, 1183–1197. [Google Scholar] [CrossRef]
- Tabassam, Q.; Mehmood, T.; Ahmed, S.; Saeed, S.; Raza, A.R.; Anwar, F. GC–MS Metabolomics profiling and HR–APCI–MS characterization of potential anticancer compounds and antimicrobial activities of extracts from Picrorhiza kurroa roots. J. Appl. Biomed. 2021, 19, 26–39. [Google Scholar] [CrossRef]
- Kalusalingam, M.; Balakrishnan, V. Phytochemical, Antimicrobial and Antioxidant Analysis of Indigenously used Folk Medicinal Plant Ixora notoniana Wall. Curr. Trends Biotechnol. Pharm. 2022, 16, 64–76. [Google Scholar]
- Akbar, S. Picrorhiza kurroa Royle ex Benth. (Plantaginaceae). In Handbook of 200 Medicinal Plants; Springer: Cham, Switzerland, 2020; pp. 1409–1417. [Google Scholar]
- Sharma, S.K.; Kumar, N. Antimicrobial Screening of Picrorhiza kurroa Royle ex Benth rhizome. Int. J. Curr. Pharm. Rev. Res. 2012, 3, 60–65. [Google Scholar]
- Sharma, S.K.; Kumar, N. Antimicrobial potential of Plumeria rubra Syn Plumeria acutifolia bark. Pharma Chem. 2012, 4, 1591–1593. [Google Scholar]
- Rolfe, C.; Daryaei, H. Intrinsic and extrinsic factors affecting microbial growth in food systems. In Food Safety Engineering; Springer: Cham, Switzerland, 2020; pp. 3–24. [Google Scholar]
- Schiemann, D.A. Yersinia enterocolitica: Observations on some growth characteristics and response to selective agents. Can. J. Microbiol. 1980, 26, 1232–1240. [Google Scholar] [CrossRef]
- Donato CJ, R.; Cendoya, E.; Demonte, L.D.; Repetti, M.R.; Chulze, S.N.; Ramirez, M.L. Influence of abiotic factors (water activity and temperature) on growth and aflatoxin production by Aspergillus flavus in a chickpea–based medium. Int. J. Food Microbiol. 2022, 379, 109841. [Google Scholar] [CrossRef]
- Patil, A.A.; Sachin, B.S.; Shinde, D.B.; Wakte, P.S. Supercritical co₂ assisted extraction and lc–ms identification of picroside i and picroside ii from Picrorhiza kurroa. Phytochem. Anal. 2013, 24, 97–104. [Google Scholar] [CrossRef]
- Vipul, K.; Nitin, M.; Gupta, R.C. A sensitive and selective lc–ms–ms method for simultaneous determination of picroside–i and kutkoside (active principles of herbal preparation picroliv) using solid phase extraction in rabbit plasma: Application to pharmacokinetic study. J. Chromatogr. B 2005, 820, 221–227. [Google Scholar] [CrossRef]
- Sharma, S.; Kaushik, R.; Sharma, P.; Sharma, R.; Thapa, A.; Kp, I. Antimicrobial activity of herbs against Yersinia enterocolitica and mixed microflora. Ann. Univ. Dunarea Galati Fascicle VI Food Technol. 2016, 40, 119–134. [Google Scholar]
- Najda, A.; Bains, A.; Chawla, P.; Kumar, A.; Balant, S.; Walasek–Janusz, M.; Wach, D.; Kaushik, R. Assessment of Anti–Inflammatory and Antimicrobial Potential of Ethanolic Extract of Woodfordia fruticosa Flowers: GC–MS Analysis. Molecules 2021, 26, 7193. [Google Scholar] [CrossRef]
- Stiefel, P.; Schmidt–Emrich, S.; Maniura–Weber, K.; Ren, Q. Critical aspects of using bacterial cell viability assays with the fluorophores syto9 and propidium iodide. BMC Microbiol. 2015, 15, 36. [Google Scholar] [CrossRef] [Green Version]
- Nandam, S.S.; Prakash, D.V.S.; Vangalapati, M. Purification of cinnamaldehyde from cinnamon species by column chromatography. Int. Res. J. Biol. Sci. 2012, 1, 49–51. [Google Scholar]
- Lee, H.S.; Kim, S.Y.; Lee, C.H.; Ahn, Y.J. Cytotoxic and mutagenic effects of cinnamomum cassia bark-derived materials. J. Microbiol. Biotechnol. 2004, 14, 1176–1181. [Google Scholar]
- Yossa, N.; Patel, J.; Macarisin, D.; Millner, P.; Murphy, C.; Bauchan, G.; Lo, Y.M. Antibacterial activity of cinnamaldehyde and sporan against Escherichia coli o157:H7 and salmonella. J. Food Process. Preserv. 2014, 38, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Hait, W.N.; Rubin, E.; Bertino, J.R. Chapter 48—cancer therapeutics. In The Molecular Basis of Cancer, 3rd ed.; Mendelsohn, J., Howley, P.M., Israel, M.A., Gray, J.W., Thompson, C.B., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 571–581. [Google Scholar]
- He, J.; Qiao, W.; An, Q.; Yang, T.; Luo, Y. Dihydrofolate reductase inhibitors for use as antimicrobial agents. Eur. J. Med. Chem. 2020, 195, 112268. [Google Scholar] [CrossRef] [PubMed]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Affiliated East–West Press, Iowa State University Press: Ames, IA, USA, 1994. [Google Scholar]
Antimicrobial Substance | Zone of Inhibition (mm) | Activity Index (In Comparison to Ciprofloxacin) | ||||
---|---|---|---|---|---|---|
Aqueous | Ethanol | Petroleum Ether | Aqueous | Ethanol | Petroleum Ether | |
Ciprofloxacin | 28.4 ± 0.28 aA | 29.4 ± 0.23 aB | 29.3 ± 0.51 aB | - | - | - |
Picrorhiza kurroa | 21.3 ± 0.34 bB | 29.8 ± 0.40 aC | 6.5 ± 034 bA | 0.75 | 1.01 | 0.21 |
MIC (mg/mL) | ||||||
Picrorhiza kurroa | 2.6 ± 0.04 cB | 2.45 ± 0.04 bA | 2.85 ± 0.05 cC | 1.17 | 0.83 | 0.90 |
MBC (mg/mL) | ||||||
Picrorhiza kurroa | 2.62 ± 0.02 cB | 2.4 ± 0.02 bA | 2.82 ± 0.03 cC | - | - | - |
Antimicrobial Potential of Herbal Extracts in Milk | ||||
---|---|---|---|---|
Samples | On 12th h | On 24th h | ||
Milk with Bacterial culture | 50 ± 0.05 a | 56 ± 0.18 c | ||
Milk with Ciprofloxacin | 37 ± 0.57 b | 43 ± 1.15 b | ||
Milk with Picrorhiza kurroa | 0 ± 0.00 a | 0 ± 0.00 a | ||
Antimicrobial Potential of Herbal Extracts at Different pH | ||||
Samples | Microbial Count (×10−7 cfu/mL) | |||
pH 3 | pH 4 | pH 5 | pH 6 | |
Ciprofloxacin | 72 ± 1.15 b | 77 ± 1.15 b | 88 ± 1.15 b | 93 ± 1.15 b |
Picrorhiza kurroa | 00 ± 0.0 a | 00 ± 0.0 a | 00 ± 0.0 a | 00 ± 0.0 a |
Antimicrobial Potential of Herbal Extracts at Different Concentrations of HCl | ||||
Samples | Zone of Inhibition (mm) | |||
0.4% HCl | 2% HCl | 4% HCl | ||
Ciprofloxacin | 12.2 ± 0.17 b | 15.2 ± 0.17 b | 20.2 ± 0.17 b | |
Picrorhiza kurroa | 19.8 ± 0.28 a | 20.6 ± 0.28 a | 23.2 ± 0.23 a | |
Antimicrobial Potential of Herbal Extracts at Different aw | ||||
Samples | Zone of Inhibition (mm) | |||
0.99 aw | 0.95 aw | 0.85 aw | 0.75 aw | |
Ciprofloxacin | 12.4 ± 0.11 b | 15.2 ± 0.23 b | 18.3 ± 0.11 b | 20.2 ± 0.17 b |
Picrorhiza kurroa | 15.4 ± 0.28 a | 18.3 ± 0.23 a | 20.3 ± 0.28 a | 21.4 ± 0.17 a |
Ethanolic Extracts | Zone of Inhibition (mm) | Activity Index (in Comparison to Ciprofloxacin) |
---|---|---|
Ciprofloxacin | 20.4 ± 0.28 a | - |
Picroside–1 | 23.3 ± 0.34 b | 1.14 |
Most favored regions | [A,B,L] | 127 | 95.5% |
Additional allowed regions | [a,b,l,p] | 6 | 4.5% |
Generously allowed regions | [~a,~b,~l,~p] | 0 | 0.0% |
Disallowed regions | [XX] | 0 | 0.0% |
Compound | Yersinia enterocolitica | ||
---|---|---|---|
E–Total | Hydrophilic Interaction | Hydrophobic Interaction | |
Picroside–1 | −303.24 | Trp–22, Gly–26, Glu–27 and Gln–28 | Ile–20, Ser–23, Ala–24 and Lys–25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thapa, A.; Kaushik, R.; Arora, S.; Jaglan, S.; Jaswal, V.; Yadav, V.K.; Singh, M.; Bains, A.; Chawla, P.; Khan, A.; et al. Biological Activity of Picrorhiza kurroa: A Source of Potential Antimicrobial Compounds against Yersinia enterocolitica. Int. J. Mol. Sci. 2022, 23, 14090. https://doi.org/10.3390/ijms232214090
Thapa A, Kaushik R, Arora S, Jaglan S, Jaswal V, Yadav VK, Singh M, Bains A, Chawla P, Khan A, et al. Biological Activity of Picrorhiza kurroa: A Source of Potential Antimicrobial Compounds against Yersinia enterocolitica. International Journal of Molecular Sciences. 2022; 23(22):14090. https://doi.org/10.3390/ijms232214090
Chicago/Turabian StyleThapa, Anju, Ravinder Kaushik, Smriti Arora, Sundeep Jaglan, Varun Jaswal, Virendra Kumar Yadav, Manjeet Singh, Aarti Bains, Prince Chawla, Azhar Khan, and et al. 2022. "Biological Activity of Picrorhiza kurroa: A Source of Potential Antimicrobial Compounds against Yersinia enterocolitica" International Journal of Molecular Sciences 23, no. 22: 14090. https://doi.org/10.3390/ijms232214090
APA StyleThapa, A., Kaushik, R., Arora, S., Jaglan, S., Jaswal, V., Yadav, V. K., Singh, M., Bains, A., Chawla, P., Khan, A., Fogarasi, M., & Fogarasi, S. (2022). Biological Activity of Picrorhiza kurroa: A Source of Potential Antimicrobial Compounds against Yersinia enterocolitica. International Journal of Molecular Sciences, 23(22), 14090. https://doi.org/10.3390/ijms232214090