Study of the Pollen Grain Metabolome under Deposition of Nitrogen and Phosphorus in Taxus baccata L. and Juniperus communis L.
Abstract
:1. Introduction
2. Results
2.1. Pollen Grain Metabolites
2.2. Effect of Long-Term Fertilization on Metabolites of Pollen Grains
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsiouris, S.; Marshall, E.J.P. Observations on patterns of granular fertiliser deposition beside hedges and its likely effects on the botanical composition of field margins. Ann. Appl. Biol. 1998, 132, 115–127. [Google Scholar] [CrossRef]
- Soons, M.B.; Hefting, M.M.; Dorland, E.; Lamers, L.P.M.; Versteeg, C.; Bobbink, R. Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. Biol. Conserv. 2017, 212, 390–397. [Google Scholar] [CrossRef]
- Lun, F.; Liu, J.; Ciais, P.; Nesme, T.; Chang, J.; Wang, R.; Goll, D.; Sardans, J.; Peñuelas, J.; Obersteiner, M. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth Syst. Sci. Data 2018, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Sardans, J.; Peñuelas, J. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. 2015, 24, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Bergh, J.; Nilsson, U.; Allen, H.L.; Johansson, U.; Fahlvik, N. Long-term responses of Scots pine and Norway spruce stands in Sweden to repeated fertilization and thinning. For. Ecol. Manag. 2014, 320, 118–128. [Google Scholar] [CrossRef]
- Dentener, F.; Drevet, J.; Lamarque, J.F.; Bey, I.; Eickhout, B.; Fiore, A.M.; Hauglustaine, D.; Horowitz, L.W.; Krol, M.; Kulshrestha, U.C.; et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Velthof, G.; Barot, S.; Bloem, J.; Butterbach-Bahl, K.; de Vries, W.; Kros, J.; Lavelle, P.; Olesen, J.E.; Oenema, O. Nitrogen as a threat to European soil quality. In The European Nitrogen Assessment; Cambridge University Press: Cambridge, UK, 2011; pp. 495–510. [Google Scholar] [CrossRef]
- Etzold, S.; Ferretti, M.; Reinds, G.J.; Solberg, S.; Gessler, A.; Waldner, P.; Schaub, M.; Simpson, D.; Benham, S.; Hansen, K.; et al. Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. For. Ecol. Manag. 2020, 458, 117762. [Google Scholar] [CrossRef]
- Bobbink, R.; Hicks, K.; Galloway, J.; Spranger, T.; Alkemade, R.; Ashmore, M.; Bustamante, M.; Cinderby, S.; Davidson, E.; Dentener, F.; et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 2010, 20, 30–59. [Google Scholar] [CrossRef] [Green Version]
- Pers-Kamczyc, E.; Mąderek, E.; Kamczyc, J. Seed quantity or quality?—Reproductive responses of female of two dioecious woody species to long term-fertilisation. Int. J. Mol. Sci. 2022, 23, 3187. [Google Scholar] [CrossRef]
- Pers-Kamczyc, E.; Tyrała-Wierucka, Ż.; Rabska, M.; Wrońska-Pilarek, D.; Kamczyc, J. The higher availability of nutrients increases the production but decreases the quality of pollen grains in Juniperus communis L. J. Plant Physiol. 2020, 248, 153156. [Google Scholar] [CrossRef]
- Pers-Kamczyc, E.; Iszkuło, G.; Rabska, M.; Wrońska-Pilarek, D.; Kamczyc, J. More isn’t always better—The effect of environmental nutritional richness on male reproduction of Taxus baccata L. Environ. Exp. Bot. 2019, 162, 468–478. [Google Scholar] [CrossRef]
- Pers-Kamczyc, E.; Suszka, J. Long-term maternal fertilizer addition increased seed size but decreased germination capacity and offspring performance in Taxus baccata L. Forests 2022, 5, 670. [Google Scholar] [CrossRef]
- Paupière, M.J.; Müller, F.; Li, H.; Rieu, I.; Tikunov, Y.M.; Visser, R.G.F.; Bovy, A.G. Untargeted metabolomic analysis of tomato pollen development and heat stress response. Plant Reprod. 2017, 30, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Paupière, M.J.; Tikunov, Y.M.; Firon, N.; de Vos, R.C.H.; Maliepaard, C.; Visser, R.G.F.; Bovy, A.G. The effect of isolation methods of tomato pollen on the results of metabolic profiling. Metabolomics 2019, 15, 11. [Google Scholar] [CrossRef]
- Mueller, G.A.; Thompson, P.M.; DeRose, E.F.; O’Connell, T.M.; London, R.E. A metabolomic, geographic, and seasonal analysis of the contribution of pollen-derived adenosine to allergic sensation. Metabolomics 2016, 12, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Yang, X.; Huo, G.; Ge, G.; Liu, H.; Luo, L.; Hu, J.; Huang, D.; Long, P. Distinct metabolome changes during seed germination of lettuce (Lactuca sativa L.) in response to thermal stress as revealed by untargeted metabolomics analysis. Int. J. Mol. Sci. 2020, 21, 1481. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Ramírez, A.; Grivet, D.; Robledo-Arnuncio, J.J. Measuring recent effective gene flow among large populations in Pinus sylvestris: Local pollen shedding does not preclude substantial long-distance pollen immigration. PLoS ONE 2021, 16, e0255776. [Google Scholar] [CrossRef]
- Chybicki, I.J.; Oleksa, A. Seed and pollen gene dispersal in Taxus baccata, a dioecious conifer in the face of strong population fragmentation. Ann. Bot. 2018, 122, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Robledo-Arnuncio, J.J. Wind pollination over mesoscale distances: An investigation with Scots pine. New Phytol. 2011, 190, 222–233. [Google Scholar] [CrossRef]
- Batos, B.; Miljkovic, D. Pollen viability in Quercus robur L. Arch. Biol. Sci. 2017, 69, 111–117. [Google Scholar] [CrossRef]
- Alonso, C.; Navarro-Fernández, C.M.; Arceo-Gómez, G.; Meindl, G.A.; Parra-Tabla, V.; Ashman, T.-L. Among-species differences in pollen quality and quantity limitation: Implications for endemics in biodiverse hotspots. Ann. Bot. 2013, 112, 1461–1469. [Google Scholar] [CrossRef] [Green Version]
- Gruwez, R.; Leroux, O.; De Frenne, P.; Tack, W.; Viane, R.; Verheyen, K. Critical phases in the seed development of common juniper (Juniperus communis). Plant Biol. 2013, 15, 210–219. [Google Scholar] [CrossRef]
- Pacini, E. Harmomegathic Characters of Pteridophyta Spores and Spermatophyta Pollen; Hesse, M., Ehrendorfer, F., Eds.; Springer: Vienna, Austria, 1990; pp. 53–69. [Google Scholar]
- Shivanna, K.R.; Rangaswamy, N.S. Pollen Biology: A Laboratory Manual; Springer: Berlin/Heidelberg, Germany, 1992; ISBN 978-3-540-55170-6. [Google Scholar]
- Słomka, A.; Kawalec, P.; Kellner, K.; Jędrzejczyk-Korycińska, M.; Rostański, A.; Kuta, E. Was reduced pollen viability in Viola tricolor L. the result of heavy metal pollution or rather the tests applied? Acta Biol. Crac. Bot. 2010, 52, 123–127. [Google Scholar] [CrossRef]
- Fragallah, S.A.D.A.; Wang, P.; Li, N.; Chen, Y.; Lin, S. Metabolomic analysis of pollen grains with different germination abilities from two clones of Chinese Fir (Cunninghamia lanceolata (Lamb) Hook). Molecules 2018, 23, 3162. [Google Scholar] [CrossRef] [Green Version]
- Welling, M.T.; Deseo, M.A.; Bacic, A.; Doblin, M.S. Untargeted metabolomic analyses reveal chemical complexity of dioecious cannabis flowers. Aust. J. Chem. 2021, 74, 463–479. [Google Scholar] [CrossRef]
- Thomas, P.A.; Polwart, A. Taxus baccata. J. Ecol. 2003, 91, 489–524. [Google Scholar] [CrossRef]
- Enescu, C.M.; Houston Durrant, T.; Caudullo, G.; de Rigo, D. Juniperus communis in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of European Union: Luxembourg, 2016; p. 104. [Google Scholar]
- Fernando, D.D.; Lazzaro, M.D.; Owens, J.N. Growth and development of conifer pollen tubes. Sex. Plant Reprod. 2005, 18, 149–162. [Google Scholar] [CrossRef]
- Piffanelli, P.; Ross, J.H.E.; Murphy, D.J. Biogenesis and function of the lipidic structures of pollen grains. Sex. Plant Reprod. 1998, 11, 65–80. [Google Scholar] [CrossRef]
- Huarancca Reyes, T.; Scartazza, A.; Lu, Y.; Yamaguchi, J.; Guglielminetti, L. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana. Plant Physiol. Biochem. 2016, 105, 195–202. [Google Scholar] [CrossRef]
- Selinski, J.; Scheibe, R. Pollen tube growth: Where does the energy come from? Plant Signal. Behav. 2014, 9, e977200. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.A.; El-Barghathi, M.; Polwart, A. Biological Flora of the British Isles: Juniperus communis L. J. Ecol. 2007, 95, 1404–1440. [Google Scholar] [CrossRef]
- Couée, I.; Sulmon, C.; Gouesbet, G.; El Amrani, A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 2006, 57, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khouider, S.; Borges, F.; LeBlanc, C.; Ungru, A.; Schnittger, A.; Martienssen, R.; Colot, V.; Bouyer, D. Male fertility in Arabidopsis requires active DNA demethylation of genes that control pollen tube function. Nat. Commun. 2021, 12, 410. [Google Scholar] [CrossRef] [PubMed]
- Surso, M. Pollination and pollen germination in common juniper (Juniperus communis: Cupressaceae). Arct. Environ. Res. 2018, 18, 162–174. [Google Scholar] [CrossRef]
- Moing, A. Sugar alcohols as carbohydrate reserves in some higher plants. Dev. Crop Sci. 2000, 26, 337–358. [Google Scholar] [CrossRef]
- McConn, M.; Browse, J. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 1996, 8, 403–416. [Google Scholar] [CrossRef]
- Wang, J.; Kambhampati, S.; Allen, D.K.; Chen, L.Q. Comparative metabolic analysis reveals a metabolic switch in mature, hydrated, and germinated pollen in Arabidopsis thaliana. Front. Plant Sci. 2022, 13, 836665. [Google Scholar] [CrossRef]
- Rabska, M.; Pers-Kamczyc, E.; Żytkowiak, R.; Adamczyk, D.; Iszkuło, G. Sexual dimorphism in the chemical composition of male and female in the dioecious tree, Juniperus communis L., growing under different nutritional conditions. Int. J. Mol. Sci. 2020, 21, 8094. [Google Scholar] [CrossRef]
- Mandal, M.; Sarkar, M.; Khan, A.; Biswas, M.; Masi, A.; Rakwal, R.; Agrawal, G.K.; Srivastava, A.; Sarkar, A. Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) in plants– maintenance of structural individuality and functional blend. Adv. Redox Res. 2022, 5, 100039. [Google Scholar] [CrossRef]
- Muthuramalingam, P.; Krishnan, S.R.; Pandian, S.; Mareeswaran, N.; Aruni, W.; Pandian, S.K.; Ramesh, M. Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci. Rep. 2018, 8, 9270. [Google Scholar] [CrossRef] [Green Version]
- Bentayeb, Y.; Moumen, Y.; Boulahbal, S.; Chentouh, S.; Bouagui Algeria, E. The protective role of the date palm pollen (Phoenix dactilyfera) on liver and haematological changes induced by the diethyl phthalate. World J. Environ. Biosci. 2014, 7, 90–94. [Google Scholar]
- Bilderback, D.E. Impatiens pollen germination and tube growth as a bioassay for toxic substances. Environ. Health Perspect. 1981, 37, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Feng, L.; Zhao, L.; Liu, X.; Hassani, D.; Huang, D. Effect of glycine nitrogen on lettuce growth under soilless culture: A metabolomics approach to identify the main changes occurred in plant primary and secondary metabolism. J. Sci. Food Agric. 2018, 98, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wishart, D.S. Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinforma. 2016, 55, 14.10.1–14.10.91. [Google Scholar] [CrossRef] [PubMed]
Compound | Log2 (FC F/NF) 1 | p-Value | VIP Value 2 | |
---|---|---|---|---|
Juniperus communis L. | Linolenic acid | −37.13 | 0.015 | 2.157 |
γ-Linolenic acid | −36.54 | 0.036 | 1.753 | |
5,6-Dihydrouracil | −27.03 | 0.033 | 1.594 | |
Maltotriose | −26.86 | 0.008 | 2.181 | |
Threonine | −26.71 | 0.044 | 1.429 | |
Galactonic acid | −24.94 | 0.011 | 2.008 | |
D-Xylulose | −23.84 | 0.034 | 1.552 | |
3-Hydroxyisovaleric acid | −5.10 | 0.047 | 1.184 | |
(−)-Shikimic acid | −1.54 | 0.042 | 1.414 | |
Methanolphosphate | 2.19 | 0.020 | 0.771 | |
5-Methylcytosine | 3.39 | 0.019 | 0.818 | |
1,5-anhydro-D-Glucitol | 30.12 | 0.018 | 2.480 | |
D-(−)-Sorbitol | 31.54 | 0.006 | 2.607 | |
D-(+)-Glucosamine | 34.64 | 0.002 | 2.826 | |
Taxus baccata L. | Glycerol-α-phosphate | −21.81 | 1.93 × 10−6 | 3.927 |
Allose 1 | −2.66 | 0.006 | 1.367 | |
Cysteamine | −2.39 | 0.002 | 1.284 | |
Quinic acid | −2.06 | 0.004 | 1.036 | |
Trisaccharide | −2.00 | 0.008 | 0.991 | |
L-Ascorbic acid | −1.93 | 0.009 | 1.087 | |
Isoleucine | 1.19 | 0.039 | 0.706 | |
4-Hydroxybenzoic acid | 1.25 | 0.018 | 0.799 | |
Nicotinic acid | 2.04 | 0.022 | 1.194 | |
Methylmalonic acid | 2.25 | 0.029 | 0.874 | |
5-Methylcytosine | 2.26 | 0.036 | 0.875 | |
N-Methyl-DL-alanine | 2.50 | 0.013 | 1.250 | |
3-Hydroxyisovaleric acid | 2.50 | 0.016 | 1.106 | |
L(+)-Cystathionine | 3.90 | 0.027 | 1.157 | |
n-Acetyl-d-hexosamine | 13.71 | 0.026 | 1.995 | |
Dimethyl phthalate | 13.85 | 0.026 | 2.253 | |
Glycine | 14.65 | 0.047 | 1.855 | |
Galactose-6-phosphate | 15.57 | 0.016 | 2.370 | |
D-Fructose 6-phosphate | 16.09 | 0.015 | 2.422 | |
Pyroglutamic acid | 16.70 | 0.014 | 2.352 | |
3-(3-Hydroxyphenyl)- 3-hydroxypropionic acid | 20.38 | 0.037 | 2.246 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pers-Kamczyc, E.; Kamczyc, J. Study of the Pollen Grain Metabolome under Deposition of Nitrogen and Phosphorus in Taxus baccata L. and Juniperus communis L. Int. J. Mol. Sci. 2022, 23, 14105. https://doi.org/10.3390/ijms232214105
Pers-Kamczyc E, Kamczyc J. Study of the Pollen Grain Metabolome under Deposition of Nitrogen and Phosphorus in Taxus baccata L. and Juniperus communis L. International Journal of Molecular Sciences. 2022; 23(22):14105. https://doi.org/10.3390/ijms232214105
Chicago/Turabian StylePers-Kamczyc, Emilia, and Jacek Kamczyc. 2022. "Study of the Pollen Grain Metabolome under Deposition of Nitrogen and Phosphorus in Taxus baccata L. and Juniperus communis L." International Journal of Molecular Sciences 23, no. 22: 14105. https://doi.org/10.3390/ijms232214105
APA StylePers-Kamczyc, E., & Kamczyc, J. (2022). Study of the Pollen Grain Metabolome under Deposition of Nitrogen and Phosphorus in Taxus baccata L. and Juniperus communis L. International Journal of Molecular Sciences, 23(22), 14105. https://doi.org/10.3390/ijms232214105