Triggers of Guillain–Barré Syndrome: Campylobacter jejuni Predominates
Abstract
:1. Introduction
2. Results
2.1. Clinical Presentation of GBS
2.1.1. GBS Subtypes
2.1.2. Neurological Exam
2.1.3. Cerebrospinal Fluid Investigations
2.1.4. Electrophysiological Studies
2.1.5. Imaging
2.1.6. Ganglioside Antibodies
2.1.7. Disease Course
2.1.8. Diagnosis
2.2. Epidemiology of GBS
2.3. Triggers of GBS
2.3.1. Infections
2.3.2. Vaccinations
2.3.3. Others
2.4. Treatment
2.5. Outcome
3. Methods
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parry, G.J. Guillain-Barre Syndrome: From Diagnosis to Recovery; Demos Medical Publishing: New York, NY, USA, 2007. [Google Scholar]
- Shahrizaila, N.; Lehmann, H.C.; Kuwabara, S. Guillain-Barré syndrome. Lancet 2021, 397, 1214–1228. [Google Scholar] [CrossRef]
- Versace, V.; Campostrini, S.; Rastelli, E.; Sebastianelli, L.; Nardone, R.; Pucks-Faes, E.; Saltuari, L.; Kofler, M.; Uncini, A. Understanding hyper-reflexia in acute motor axonal neuropathy (AMAN). Neurophysiol. Clin. Neurophysiol. 2020, 50, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Kakumoto, T.; Kobayashi, S.; Yuuki, H.; Kainaga, M.; Shirota, Y.; Hamada, M.; Maeda, M.H.; Kubota, A.; Kawai, M.; Saito, M.; et al. Cranial Nerve Involvement and Dysautonomia in Post-COVID-19 Guillain-Barré Syndrome. Intern. Med. 2021, 60, 3477–3480. [Google Scholar] [CrossRef] [PubMed]
- Dukkipati, S.S.; Zhou, D.J.; Powers, A.M.; Piccione, E.A.; Koh, S. Acute Bulbar Palsy-Plus Variant of Guillain-Barré Syndrome in a 3-Year-Old Girl. Child Neurol. Open 2022, 9, 2329048X221115476. [Google Scholar] [CrossRef]
- Ahmed, M.; Jawaid, H.; Ali, F.; Saleem, A.; Ejaz, M.S. Paediatric Bickerstaff brainstem encephalitis: A rare case report. J. Pak. Med Assoc. 2020, 70, 2054–2056. [Google Scholar] [CrossRef] [PubMed]
- Islam, B.; Islam, Z.; Endtz, H.P.; Jahan, I.; Jacobs, B.C.; Mohammad, Q.D.; Franssen, H. Electrophysiology of Guillain-Barré syndrome in Bangladesh: A prospective study of 312 patients. Clin. Neurophysiol. Pract. 2021, 6, 155–163. [Google Scholar] [CrossRef]
- Nafissi, S.; Vahabi, Z.; Ghahar, M.S.; Amirzargar, A.A.; Naderi, S. The role of cytomegalovirus, Haemophilus influenzae and Epstein Barr virus in Guillain Barre syndrome. Acta Med. Iran 2013, 51, 372–376. [Google Scholar]
- Rajabally, Y.A.; Peric, S.; Bozovic, I.; Loo, L.K.; Kalac, A.; Palibrk, A.; Basta, I. Antecedent infections and vaccinations in chronic inflammatory demyelinating polyneuropathy: A European collaborative study. Muscle Nerve 2021, 64, 657–661. [Google Scholar] [CrossRef] [PubMed]
- McGrogan, A.; Madle, G.C.; Seaman, H.E.; De Vries, C.S. The Epidemiology of Guillain-Barré Syndrome Worldwide. Neuroepidemiology 2009, 32, 150–163. [Google Scholar] [CrossRef]
- Leung, J.; Sejvar, J.J.; Soares, J.; Lanzieri, T.M. Guillain-Barré syndrome and antecedent cytomegalovirus infection, USA 2009–2015. Neurol. Sci. 2020, 41, 885–891. [Google Scholar] [CrossRef]
- Jacobs, B.C.; Rothbarth, P.H.; van der Meché, F.; Herbrink, P.; Schmitz, P.I.; de Klerk, M.A.; van Doorn, P.A. The spectrum of antecedent infections in Guillain-Barré syndrome. Neurology 1998, 51, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Leonhard, S.E.; van der Eijk, A.; Andersen, H.; Antonini, G.; Arends, S.; Attarian, S.; Barroso, F.A.; Bateman, K.J.; Batstra, M.R.; Benedetti, L.; et al. An International Perspective on Preceding Infections in Guillain-Barré Syndrome: The IGOS-1000 Cohort. Neurology 2022, 99, e1299–e1313. [Google Scholar] [CrossRef] [PubMed]
- Langerak, T.; van Rooij, I.; Doornekamp, L.; Chandler, F.; Baptista, M.; Yang, H.; Koopmans, M.P.G.; GeurtsvanKessel, C.H.; Jacobs, B.C.; Rockx, B.; et al. Guillain-Barré Syndrome in Suriname; Clinical Presentation and Identification of Preceding Infections. Front. Neurol. 2021, 12, 635753. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, W.; Jacobs, B.C.; Qiao, B.; Chen, M.; Liu, D.; Feng, X.; Wang, Y. Antecedent infections in Guillain-Barré syndrome: A single-center, prospective study. Ann. Clin. Transl. Neurol. 2019, 6, 2510–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Wolfert, M.A.; Wei, N.; Huizinga, R.; Jacobs, B.C.; Boons, G.-J. Chemoenzymatic Synthesis of Campylobacter jejuni Lipo-oligosaccharide Core Domains to Examine Guillain–Barré Syndrome Serum Antibody Specificities. J. Am. Chem. Soc. 2020, 142, 19611–19621. [Google Scholar] [CrossRef]
- Eguerry, P.; Epoly, F.; Eriddle, M.; Maue, A.C.; Echen, Y.-H.; Monteiro, M.A. Campylobacter Polysaccharide Capsules: Virulence and Vaccines. Front. Cell. Infect. Microbiol. 2012, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Hameed, A.; Woodacre, A.; Machado, L.R.; Marsden, G.L. An Updated Classification System and Review of the Lipooligosaccharide Biosynthesis Gene Locus in Campylobacter jejuni. Front. Microbiol. 2020, 11, 677. [Google Scholar] [CrossRef]
- Zang, X.; Lv, H.; Tang, H.; Jiao, X.; Huang, J. Capsular Genotype and Lipooligosaccharide Class Associated Genomic Characterizations of Campylobacter jejuni Isolates from Food Animals in China. Front. Microbiol. 2021, 12, 775090. [Google Scholar] [CrossRef]
- Lopes, G.V.; Ramires, T.; Kleinubing, N.R.; Scheik, L.K.; Fiorentini, M.; da Silva, W.P. Virulence factors of foodborne pathogen Campylobacter jejuni. Microb. Pathog. 2021, 161, 105265. [Google Scholar] [CrossRef]
- Yamamoto, S.; Iyoda, S.; Ohnishi, M. Stabilizing Genetically Unstable Simple Sequence Repeats in the Campylobacter jejuni Genome by Multiplex Genome Editing: A Reliable Approach for Delineating Multiple Phase-Variable Genes. mBio 2021, 12, e0140121. [Google Scholar] [CrossRef]
- Callahan, S.M.; Dolislager, C.G.; Johnson, J.G. The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect. Immun. 2021, 89, e0011621. [Google Scholar] [CrossRef] [PubMed]
- Institut für Mikroökologie. Der Mikrobiomspezialist. Campylobacter Jejuni, Coli, und Upsaliensis. Available online: https://www.mikrooek.de/labordiagnostik/fuer-aerzte-und-therapeuten/mikrobiota-diagnostik/enteropathogene/campylobacter/ (accessed on 16 September 2022).
- Quino, W.; Caro-Castro, J.; Mestanza, O.; Hurtado, V.; Zamudio, M.L.; Cruz-Gonzales, G.; Gavilan, R.G. Emergence and Molecular Epidemiology of Campylobacter jejuni ST-2993 Associated with a Large Outbreak of Guillain-Barré Syndrome in Peru. Microbiol. Spectr. 2022, 10, e0118722. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Ben Pascoe, B.; Wu, Z.; Bayliss, S.C.; Zeng, X.; Edwinson, A.; Veerabadhran-Gurunathan, S.; Jawahir, S.; Calland, J.K.; Mourkas, E.; et al. Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans. Commun. Biol. 2021, 4, 1015. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Ueno, T.; Horiuchi, M.; Mitsuhashi, T.; Yamamoto, S.; Arai, A.; Tomiyama, M. Campylobacter coli infection causes spinal epidural abscess with Guillain–Barré syndrome: A case report. BMC Neurol. 2022, 22, 9. [Google Scholar] [CrossRef]
- Schönberg-Norio, D.; Mattila, L.; Lauhio, A.; Katila, M.-L.; Kaukoranta, S.-S.; Koskela, M.; Pajarre, S.; Uksila, J.; Eerola, E.; Sarna, S.; et al. Patient-reported complications associated with Campylobacter jejuni infection. Epidemiol. Infect. 2010, 138, 1004–1011. [Google Scholar] [CrossRef]
- Mousavi, S.; Bereswill, S.; Heimesaat, M.M. Novel Clinical Campylobacter jejuni Infection Models Based on Sensitization of Mice to Lipooligosaccharide, a Major Bacterial Factor Triggering Innate Immune Responses in Human Campylobacteriosis. Microorganisms 2020, 8, 482. [Google Scholar] [CrossRef] [Green Version]
- Stein, R.A. Campylobacter jejuni and Postinfectious Autoimmune Diseases: A Proof of Concept in Glycobiology. ACS Infect. Dis. 2022, 8, 1981–1991. [Google Scholar] [CrossRef]
- Dardiotis, E.; Sokratous, M.; Tsouris, Z.; Siokas, V.; Mentis, A.A.; Aloizou, A.; Michalopoulou, A.; Bogdanos, D.P.; Xiromerisiou, G.; Deretzi, G.; et al. Association between Helicobacter pylori infection and Guillain-Barré Syndrome: A meta-analysis. Eur. J. Clin. Investig. 2020, 50, e13218. [Google Scholar] [CrossRef]
- Charles, J.L.S.; Brooks, P.T.; Bell, J.A.; Ahmed, H.; Van Allen, M.; Manning, S.D.; Mansfield, L.S. Zoonotic Transmission of Campylobacter jejuni to Caretakers from Sick Pen Calves Carrying a Mixed Population of Strains With and Without Guillain Barré Syndrome-Associated Lipooligosaccharide Loci. Front. Microbiol. 2022, 13, 800269. [Google Scholar] [CrossRef]
- Meidaninikjeh, S.; Sabouni, N.; Taheri, M.; Borjkhani, M.; Bengar, S.; Zolbanin, N.M.; Khalili, A.; Jafari, R. SARS-CoV-2 and Guillain–Barré Syndrome: Lessons from Viral Infections. Viral Immunol. 2022, 35, 404–417. [Google Scholar] [CrossRef]
- Jahan, I.; Hayat, S.; Khalid, M.M.; Ahammad, R.U.; Asad, A.; Islam, B.; Mohammad, Q.D.; Jacobs, B.C.; Islam, Z. Association of mannose-binding lectin 2 gene polymorphisms with Guillain-Barré syndrome. Sci. Rep. 2022, 12, 5791. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Brudvig, J.M.; Gadsden, B.J.; Ethridge, A.D.; Mansfield, L.S. Campylobacter jejuni induces autoimmune peripheral neuropathy via Sialoadhesin and Interleukin-4 axes. Gut Microbes 2022, 14, 2064706. [Google Scholar] [CrossRef]
- Hayat, S.; Asad, A.; Hasan, I.; Jahan, I.; Papri, N.; Howlader, Z.H.; Islam, Z. Nucleotide oligomerization domain polymorphism confers no risk to Guillain –Barré syndrome. Acta Neurol. Scand. 2022, 146, 177–185. [Google Scholar] [CrossRef]
- Heikema, A.P.; Strepis, N.; Horst-Kreft, D.; Huynh, S.; Zomer, A.; Kelly, D.J.; Cooper, K.K.; Parker, C.T. Biomolecule sulphation and novel methylations related to Guillain-Barré syndrome-associated Campylobacter jejuni serotype HS:19. Microb. Genom. 2021, 7, 000660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, H.; Yang, G.; Li, Y.; Liu, Y. Gene Polymorphisms of Interleukin-27 Correlate with the Susceptibility, Severity, and Clinical Outcomes of Elderly People with Guillain-Barré Syndrome. Gerontology 2022, 68, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Babu, G.; Das, A.; Howlader, Z.H.; Mahmud, I.; Islam, Z. Fc-gamma IIIa-V158F receptor polymorphism contributes to the severity of Guillain-Barré syndrome. Ann. Clin. Transl. Neurol. 2020, 7, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Watanabe, G.; Watari, T. Guillain-Barre Syndrome Caused by Mycoplasma pneumoniae Infection in an Elderly Patient Initially Misdiagnosed As Frailty. Cureus 2022, 14, e22386. [Google Scholar] [CrossRef]
- Gaspari, E.; Koehorst, J.J.; Frey, J.; dos Santos, V.A.M.; Suarez-Diez, M. Galactocerebroside biosynthesis pathways of Mycoplasma species: An antigen triggering Guillain–Barré–Stohl syndrome. Microb. Biotechnol. 2021, 14, 1201–1211. [Google Scholar] [CrossRef]
- Condon, E.M.; Tobin, A. Haemophilus Influenzae Associated Guillain Barre Syndrome with Thrombocytopenic Purpura and Hyperthermia. Anaesth. Intensiv. Care 2008, 36, 722–725. [Google Scholar] [CrossRef] [Green Version]
- Tagami, S.; Susuki, K.; Takeda, M.; Koga, M. Fulminant case of Guillain-Barré syndrome with poor recovery and depression following Haemophilus influenzaeinfection. Psychiatry Clin. Neurosci. 2008, 62, 486. [Google Scholar] [CrossRef]
- Malhis, J.R.; Mahmoud, A.; Belote, A.; Ebers, A. Case of ehrlichiosis induced Guillain-Barre Syndrome in a 71 year-old female. IDCases 2021, 26, e01301. [Google Scholar] [CrossRef] [PubMed]
- Raghunathan, V.; Dhaliwal, M.; Singhi, P.; Singhi, S. Scrub Typhus Associated with Guillain–Barré Syndrome (GBS). Indian J. Pediatr. 2022, 89, 1129–1130. [Google Scholar] [CrossRef] [PubMed]
- Spyromitrou-Xioufi, P.; Ntoulios, G.; Ladomenou, F.; Niotakis, G.; Tritou, I.; Vlachaki, G. Miller Fisher Syndrome Triggered by Infections: A Review of the Literature and a Case Report. J. Child Neurol. 2021, 36, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.-S.; Choi, J.-Y.; Chung, H.; Kim, Y.; Na, S.-J. Recurrent Guillain-Barré Syndrome Following Urinary Tract Infection by Escherichia coli. J. Korean Med. Sci. 2018, 33, e29. [Google Scholar] [CrossRef]
- Ginanneschi, F.; Giannini, F.; Sicurelli, F.; Battisti, C.; Capoccitti, G.; Bartalini, S.; Mignarri, A.; Volpi, N.; Cioncoloni, D.; Franci, L.; et al. Clinical Features and Outcome of the Guillain–Barre Syndrome: A Single-Center 11-Year Experience. Front. Neurol. 2022, 13, 856091. [Google Scholar] [CrossRef] [PubMed]
- González-Salazar, C.; Tartaglia, J.S.; Dourado, M.E.T.; França, M.C. Clinical Neurophysiology of Zika Virus–Related Disorders of the Peripheral Nervous System in Adults. J. Clin. Neurophysiol. 2022, 39, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Scorza, F.A. Guillain-Barre syndrome in 220 patients with COVID-19. Egypt. J. Neurol. Psychiatry Neurosurg. 2021, 57, 1–7. [Google Scholar] [CrossRef]
- Payus, A.O.; Ibrahim, A.; Lin, C.L.S.; Jan, T.H. Sensory Predominant Guillain-Barré Syndrome Concomitant with Dengue Infection: A Case Report. Case Rep. Neurol. 2022, 14, 281–285. [Google Scholar] [CrossRef]
- Vasconcelos, A.; Abecasis, F.; Monteiro, R.; Camilo, C.; Vieira, M.; de Carvalho, M.; Correia, M. A 3-month-old baby with H1N1 and Guillain-Barre syndrome. BMJ Case Rep. 2012, 2012, bcr1220115462. [Google Scholar] [CrossRef]
- Abidoye, O.; Raybon-Rojas, E.; Ogbuagu, H. A Rare Case of Epstein-Barr Virus: Infectious Mononucleosis Complicated by Guillain-Barré Syndrome. Cureus 2022, 14, e21085. [Google Scholar] [CrossRef]
- Tarisawa, M.; Ando, R.; Eguchi, K.; Abe, M.; Matsushima, M.; Yabe, I. A case of Guillain–Barré syndrome following hepatitis E virus infection. Rinsho Shinkeigaku 2021, 61, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Filia, A.; Lauria, G. Guillain−Barré syndrome following measles infection: Case report and review of the literature. Neurol. Sci. 2014, 35, 2017–2018. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.J.; Thomas, R.H.; Pickersgill, T.P.; Lyons, M.; Lowe, G.; Stiff, R.E.; Moore, C.; Jones, R.; Howe, R.; Brunt, H.; et al. Cluster of atypical adult Guillain-Barré syndrome temporally associated with neurological illness due to EV-D68 in children, South Wales, United Kingdom, October 2015 to January 2016. Eurosurveillance 2016, 21, 30119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalcanti, T.Y.V.d.L.; Pereira, M.R.; de Paula, S.O.; Franca, R.F.D.O. A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses 2022, 14, 969. [Google Scholar] [CrossRef] [PubMed]
- Pellegrinelli, L.; Gambara, S.; Micheli, R.; Binda, S.; Fazzi, E.; Pariani, E. Human parechovirus type 6 and Guillain-Barré syndrome: A case report. J. NeuroVirology 2018, 24, 656–659. [Google Scholar] [CrossRef] [PubMed]
- Rota, E.; Morelli, N.; Immovilli, P.; De Mitri, P.; Guidetti, D. Guillain-Barré-like axonal polyneuropathy associated with Toscana virus infection. Medicine 2017, 96, e8081. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Yang, J.; Wen, Y. The underlying mechanism of Guillain-Barré syndrome in a young patient suffered from Japanese encephalitis virus infection: A case report. Virol. J. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Patone, M.; Handunnetthi, L.; Saatci, D.; Pan, J.; Katikireddi, S.V.; Razvi, S.; Hunt, D.; Mei, X.W.; Dixon, S.; Zaccardi, F.; et al. Publisher Correction: Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat. Med. 2021, 27, 2249. [Google Scholar] [CrossRef]
- Chang, K.H.; Lyu, R.K.; Lin, W.T.; Huang, Y.T.; Lin, H.S.; Chang, S.H. Gulllain Barre syndrome after trivalent influenza vac-cination in adults. Front. Neurol. 2019, 10, 768. [Google Scholar] [CrossRef] [Green Version]
- Naeem, S.; Shabbir, A.; Khan, A.S.; Ahmad, S.; Mustafa, K.J.; Fahim, A. Guillain–Barre syndrome following oral polio vaccination. J. NeuroVirol. 2016, 22, 546–549. [Google Scholar] [CrossRef]
- Schonberger, L.B.; Bregman, D.J.; Sullivan Bolyai, J.Z.; Keenlyside, R.A.; Ziegler, D.W.; Retailliau, H.F.; Eddins, D.L.; Bryan, J.A. Guillain Barre syndrome following vaccination in the National Influenza Immunization Program, United States, 1976–1977. Am. J. Epidemiol. 1979, 110, 105–123. [Google Scholar] [CrossRef] [PubMed]
- Khamaisi, M.; Shoenfeld, Y.; Orbach, H. Guillain-Barré syndrome following hepatitis B vaccination. Clin. Exp. Rheumatol. 2004, 22, 767–770. [Google Scholar] [PubMed]
- Manaud, A.; Geraudie, A.; Viguier, A.; Mengelle, C.; Fortenfant, F.; Baudou, E.; Cheuret, E. Post-CMV Guillain-Barré Syndrome with Anti-GM2 Antibodies: Two Cases and a Review of the Literature. Neuropediatrics 2022, 53, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Shiga, Y.; Shimoe, Y.; Chigusa, M.; Kusunoki, S.; Mori, M.; Kuriyama, M. Guillain-Barré syndrome following cytomegalovirus infection with increased level of antibody against moesin—A case report. Rinsho Shinkeigaku 2018, 58, 385–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobori, S.; Kubo, T.; Otani, M.; Muramatsu, K.; Fujino, Y.; Adachi, H.; Horiguchi, H.; Fushimi, K.; Matsuda, S. Coexisting infectious diseases on admission as a risk factor for mechanical ventilation in patients with Guillain–Barré syndrome. J. Epidemiol. 2017, 27, 311–316. [Google Scholar] [CrossRef]
- Mamishi, S.; Ashrafi, M.R.; Mohammadi, M.; Zamani, G.; Pourakbari, B.; Mahmoudi, S.; Aziz-Ahari, S. Cytomegalovirus In-fection and Guillain-Barré Syndrome: The First Case-Control Study in Iran. Iran. J. Child. Neurol. 2021, 15, 35–41. [Google Scholar] [CrossRef]
- Watrin, L.; Ghawché, F.; Larre, P.; Neau, J.-P.; Mathis, S.; Fournier, E. Guillain–Barré Syndrome (42 Cases) Occurring During a Zika Virus Outbreak in French Polynesia. Medicine 2016, 95, e3257. [Google Scholar] [CrossRef]
- Gigli, G.L.; Vogrig, A.; Nilo, A.; Fabris, M.; Biasotto, A.; Curcio, F.; Miotti, V.; Tascini, C.; Valente, M. HLA and immunological features of SARS-CoV-2-induced Guillain-Barré syndrome. Neurol. Sci. 2020, 41, 3391–3394. [Google Scholar] [CrossRef]
- Kulkarni, R.; Pujari, S.; Gupta, D. Neurological manifestations of dengue fever. Ann. Indian Acad. Neurol. 2021, 24, 693–702. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Chu, X.; Xu, Y.; Ma, F. Vaccines and the risk of Guillain-Barré syndrome. Eur. J. Epidemiol. 2020, 35, 363–370. [Google Scholar] [CrossRef]
- Safranek, T.J.; Lawrence, D.N.; Kuriand, L.T.; Culver, D.H.; Wiederholt, W.C.; Hayner, N.S.; Osterholm, M.T.; O’Brien, P.; Hughes, J.M. Expert Neurology Group Reassessment of the Association between Guillain-Barré Syndrome and Receipt of Swine Influenza Vaccine in 1976–1977: Results of a Two-State Study. Am. J. Epidemiol. 1991, 133, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Levison, L.S.; Thomsen, R.W.; Andersen, H. Guillain–Barré syndrome following influenza vaccination: A 15-year nationwide population-based case–control study. Eur. J. Neurol. 2022, 29, 3389–3394. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.-C.; Wei, K.-C.; Wang, W.-H.; Huang, Y.-T.; Chang, Y.-C. Risk of Guillain-Barré Syndrome Among Older Adults Receiving Influenza Vaccine in Taiwan. JAMA Netw. Open 2022, 5, e2232571. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; Harun, F.M.; Yamamoto, N.; Yuki, N. Contamination with gangliosides in brain-derived rabies vaccine may trigger Guillain–Barré syndrome. J. Neurol. Neurosurg. Psychiatry 2012, 83, 467–469. [Google Scholar] [CrossRef]
- Finsterer, J.; Scorza, C.A.; Scorza, F.A. Guillain-Barre syndrome related to SARS-CoV-2 vaccinations. Clinics 2022, 77, 100113. [Google Scholar] [CrossRef] [PubMed]
- Howell, N.A.; Arya, S.; Tai, P.C.; Sadeghian, H.; Sakhdari, A.; Wu, R.; Prica, A. Guillain-Barré syndrome as an early manifestation of angioimmunoblastic T-cell lymphoma. BMJ Case Rep. 2022, 15, e246176. [Google Scholar] [CrossRef]
- Ostman, C.; Chacko, B. Guillain-Barré syndrome post renal transplant: A systematic review. Transpl. Infect. Dis. 2019, 21, e13021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, P.; Zhu, M.; Wang, Y.; Zheng, X.; Wu, X.; Zhu, J.; Feng, J.; Zhang, H.-L. Axonal variants of Guillain–Barré syndrome: An update. J. Neurol. 2021, 268, 2402–2419. [Google Scholar] [CrossRef]
- van Doorn, P.A.; Ruts, L.; Jacobs, B.C. Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. Lancet Neurol. 2008, 7, 939–950. [Google Scholar] [CrossRef]
Trigger | Frequency | Reference | |
---|---|---|---|
Bacteria | |||
Campylobacter jejuni | +++ | [7] | |
Mycoplamsa pneumoniae | ++ | [39] | |
Hemophilus influenza | + | [45] | |
Erlichia chaffeenensis | + | [43] | |
Orientia tsutsugamushi | + | [44] | |
Escherichia coli | + | [46] | |
Viruses | |||
Cytomegaly | +++ | [47] | |
Zika | +++ | [48] | |
SARS-CoV-2 | +++ | [49] | |
Dengue | ++ | [50] | |
Influenza-A (H1N1) | + | [51] | |
Epstein Barr | + | [52] | |
Hepatitis-E | + | [53] | |
Measles | + | [54] | |
Enterovirus D68 | + | [55] | |
Chikungunya | + | [56] | |
Parecho | + | [57] | |
Toscana virus | + | [58] | |
Japanese encephalitis | + | [59] | |
Vaccinations | |||
SARS-CoV-2 | +++ | [60] | |
Influenza | + | [61] | |
Polio | + | [62] | |
Rabies | + | [63] | |
Hepatitis-A, -B | + | [64] | |
Others |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finsterer, J. Triggers of Guillain–Barré Syndrome: Campylobacter jejuni Predominates. Int. J. Mol. Sci. 2022, 23, 14222. https://doi.org/10.3390/ijms232214222
Finsterer J. Triggers of Guillain–Barré Syndrome: Campylobacter jejuni Predominates. International Journal of Molecular Sciences. 2022; 23(22):14222. https://doi.org/10.3390/ijms232214222
Chicago/Turabian StyleFinsterer, Josef. 2022. "Triggers of Guillain–Barré Syndrome: Campylobacter jejuni Predominates" International Journal of Molecular Sciences 23, no. 22: 14222. https://doi.org/10.3390/ijms232214222
APA StyleFinsterer, J. (2022). Triggers of Guillain–Barré Syndrome: Campylobacter jejuni Predominates. International Journal of Molecular Sciences, 23(22), 14222. https://doi.org/10.3390/ijms232214222