Therapeutic Efficacy of Natural Product ‘C-Phycocyanin’ in Alleviating Streptozotocin-Induced Diabetes via the Inhibition of Glycation Reaction in Rats
Abstract
:1. Introduction
2. Results
2.1. Antidiabetic Activity
2.1.1. Body Weight Assessment
2.1.2. Reduction in the Blood Glucose Levels in C-PC-Treated Rats
2.1.3. Reduction in the HbA1c Levels in C-PC-Treated Rats
2.1.4. Alterations in the Serum Lipid Profile
2.1.5. Alterations in the Liver Function Parameters
2.1.6. Alterations in the Kidney Function Parameters
2.2. Antiglycation Parameters
2.2.1. Changes in the Level of Ketoamine
2.2.2. Changes in the Amount of Carbonyl Content Moieties
2.2.3. Detection of GSH
2.2.4. Conjugated Diene and TBARS Estimation
Carboxymethyllysine (CML) Estimation
2.3. Histopathological Studies
2.3.1. Kidneys
2.3.2. Eyeballs
3. Discussion
4. Material and Methods
4.1. Materials
4.2. Methods
4.2.1. Ethical Statements and Animals
4.2.2. C-PC Acute Toxicity Evaluation
4.2.3. Induction of Diabetes in the Experimental Rats
4.2.4. Design of Experiments
4.2.5. Preparation of Metformin and C-PC for Dosing
4.2.6. Collection of Blood Samples from Experimental Groups of Animals
4.2.7. Antidiabetic Activity
Body Weight, Blood Glucose, and HbA1c Detection
Lipid Profile, Liver Function, and Kidney Function Parameters
4.2.8. In Vivo Glycation Inhibition through C-PC
Nitro Blue Tetrazolium (NBT) Assay
Carbonyl Content (CC) Estimation in Animal Sera
Detection of Reduced Glutathione (GSH)
Detection of Conjugated Diene (CD) and Thiobarbituric Acid Reactive Substances (TBARS)
Carboxymethyllysine (CML) Detection in Animal Sera
Histopathology of the Kidney Tissue Section and Eyeball of Experimental Rats
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashcroft, F.M.; Rohm, M.; Clark, A.; Brereton, M.F. Is Type 2 Diabetes a Glycogen Storage Disease of Pancreatic β Cells? Cell Metab. 2017, 26, 17–23. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetesd 2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [Green Version]
- International Diabetes Federation (9th Editio). Available online: https://diabetesatlas.org/atlas/ninth-edition/ (accessed on 24 February 2022).
- American Diabetes Association. Standards of Medical Care in Diabetes—2013. Diabetes Care 2013, 36, S11–S66. [Google Scholar] [CrossRef] [Green Version]
- Petrie, J.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Fishman, S.L.; Sonmez, H.; Basman, C.; Singh, V.; Poretsky, L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: A review. Mol. Med. 2018, 24, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katakami, N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J. Atheroscler. Thromb. 2018, 25, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, S.A.A.Z. Protein Glycation: A Firm Link to Cause Metabolic Disease and their Complications. J. Glycom. Lipidom. 2015, 5, 1. [Google Scholar] [CrossRef]
- Khanam, A.; Ahmad, S.; Husain, A.; Rehman, S.; Farooqui, A.; Yusuf, M.A. Glycation and Antioxidants: Hand in the Glove of Antiglycation and Natural Antioxidants. Curr. Protein Pept. Sci. 2020, 21, 899–915. [Google Scholar] [CrossRef] [PubMed]
- Chhipa, A.S.; Borse, S.P.; Baksi, R.; Lalotra, S.; Nivsarkar, M. Targeting receptors of advanced glycation end products (RAGE): Preventing diabetes induced cancer and diabetic complications. Pathol. Res. Pract. 2019, 215, 152643. [Google Scholar] [CrossRef]
- Ahmed, N.; Thornalley, P. Advanced glycation endproducts: What is their relevance to diabetic complications? Diabetes Obes. Metab. 2007, 9, 233–245. [Google Scholar] [CrossRef]
- Razzaq, P.A.; Iftikhar, M.; Faiz, A.; Aman, F.; Ijaz, A.; Iqbal, S.; Khalid, A.; Sarwar, S. A Comprehensive Review on Antidiabetic Properties of Turmeric. Life Sci. J. 2020, 17, 26–39. [Google Scholar]
- Miller, E.; Shubrook, J.H. Sodium Glucose Co-Transporter 2 Inhibitors in the Treatment of Type 2 Diabetes Mellitus. Osteopath. Fam. Physician 2015, 7, 10–30. [Google Scholar]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahimi-Madiseh, M.; Malekpour-Tehrani, A.; Bahmani, M.; Rafieian-Kopaei, M. The research and development on the antioxidants in prevention of diabetic complications. Asian Pac. J. Trop. Med. 2016, 9, 825–831. [Google Scholar] [CrossRef] [Green Version]
- Osadebe, P.O.; Odoh, E.U.; Uzor, P.F. Natural Products as Potential Sources of Antidiabetic Drugs. Br. J. Pharm. Res. 2014, 4, 2075–2095. [Google Scholar] [CrossRef]
- Yakubu, O.E.; Imo, C.; Shaibu, C.; Akighir, J.; Ameh, D.S. Effects of Ethanolic Leaf and Stem-bark Extracts of Adansonia digitata in Alloxan-induced Diabetic Wistar Rats. J. Pharmacol. Toxicol. 2019, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- James, P.; Davis, S.P.; Ravisankar, V.; Nazeem, P.A.; Mathew, D. Novel Antidiabetic Molecules from the Medicinal Plants of Western Ghats of India, Identified Through Wide-Spectrumin SilicoAnalyses. J. Herbs Spices Med. Plants 2017, 23, 249–262. [Google Scholar] [CrossRef]
- Elberry, A.A.; Harraz, F.M.; Ghareib, S.A.; Gabr, S.A.; Nagy, A.A.; Abdel-Sattar, E. Methanolic extract of Marrubium vulgare ameliorates hyperglycemia and dyslipidemia in streptozotocin-induced diabetic rats. Int. J. Diabetes Mellit. 2015, 3, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Beutler, J.A. Natural Products as a Foundation for Drug Discovery. Curr. Protoc. Pharmacol. 2009, 46, 9–11. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Parihar, P.; Singh, M.; Bajguz, A.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects. Front. Microbiol. 2017, 8, 515. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, R.P.; Sinha, R.P. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 2009, 27, 521–539. [Google Scholar] [CrossRef] [PubMed]
- Husain, A.; Alouffi, S.; Khanam, A.; Akasha, R.; Khan, S.; Khan, M.; Farooqui, A.; Ahmad, S. Non-Inhibitory Effects of the Potent Antioxidant C-Phycocyanin from Plectonema Sp. on the in Vitro Glycation Reaction. Rev. Rom. Med. Lab. 2022, 30, 199–213. [Google Scholar] [CrossRef]
- Yan, M.; Liu, B.; Jiao, X.; Qin, S. Preparation of phycocyanin microcapsules and its properties. Food Bioprod. Process. 2014, 92, 89–97. [Google Scholar] [CrossRef]
- Chawla, A.; Chawla, R.; Jaggi, S. Microvasular and Macrovascular Complications in Diabetes Mellitus: Distinct or Continuum? Indian J. Endocrinol. Metab. 2016, 20, 546–553. [Google Scholar] [CrossRef]
- Elosta, A.; Ghous, T.; Ahmed, N. Natural Products as Anti-glycation Agents: Possible Therapeutic Potential for Diabetic Complications. Curr. Diabetes Rev. 2012, 8, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Golson, M.L.; Maulis, M.F.; Dunn, J.; Poffenberger, G.; Schug, J.; Kaestner, K.H.; Gannon, M.A. Activated FoxM1 Attenuates Streptozotocin-Mediated β-Cell Death. Mol. Endocrinol. 2014, 28, 1435–1447. [Google Scholar] [CrossRef]
- Montilla, P.; Barcos, M.; Muñoz, M.; Muñoz-Castañeda, J.R.; Bujalance, I.; Túnez, I. Protective effect of Montilla-Moriles appellation red wine on oxidative stress induced by streptozotocin in the rat. J. Nutr. Biochem. 2004, 15, 688–693. [Google Scholar] [CrossRef]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark. Insights 2016, 11, 95–104. [Google Scholar] [CrossRef]
- Lacy, M.E.; Gilsanz, P.; Karter, A.J.; Quesenberry, C.P.; Pletcher, M.J.; Whitmer, R.A. Long-term Glycemic Control and Dementia Risk in Type 1 Diabetes. Diabetes Care 2018, 41, 2339–2345. [Google Scholar] [CrossRef] [Green Version]
- Lippi, G.; Targher, G. Glycated hemoglobin (HbA1c): Old dogmas, a new perspective? Clin. Chem. Lab. Med. 2010, 48, 609–614. [Google Scholar] [CrossRef]
- Singh, R.; Rao, H.K.; Singh, T.G. Review Article Advanced Glycated End Products (AGES) in Diabetes and Its Complications: An Insight. Plant Arch. 2020, 20, 3838–3841. [Google Scholar]
- Shahab, U.; Faisal, M.; Alatar, A.A.; Ahmad, S. Impact of wedelolactone in the anti-glycation and anti-diabetic activity in experimental diabetic animals. IUBMB Life 2018, 70, 547–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.; Akhter, F.; Moinuddin; Shahab, U.; Khan, M.S. Studies on glycation of human low density lipoprotein: A functional insight into physico-chemical analysis. Int. J. Biol. Macromol. 2013, 62, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Koike, S.; Kayama, T.; Arai, M.; Horiuchi, Y.; Kobori, A.; Miyashita, M.; Itokawa, M.; Ogasawara, Y. Characterization of modified proteins in plasma from a subtype of schizophrenia based on carbonyl stress: Protein carbonyl is a possible biomarker of psychiatric disorders. Biochem. Biophys. Res. Commun. 2015, 467, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Mantha, S.V.; Muir, A.D.; Westcott, N.D. Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism. Mol. Cell. Biochem. 2000, 206, 141–150. [Google Scholar] [CrossRef]
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced Glycation End Products and Diabetic Complications. Korean J. Physiol. Pharmacol. 2014, 18, 1025926. [Google Scholar] [CrossRef] [Green Version]
- Li, L.Y.; Li, L.Q.; Guo, C.H. Evaluation of in Vitro Antioxidant and Antibacterial Activities of Laminaria Japonica Polysaccharides. J. Med. Plants Res. 2010, 4, 2194–2198. [Google Scholar]
- Abirami, R.G.; Kowsalya, S. Antidiabetic Activity of Ulva Fasciata and Its Impact on Carbohydrate Metabol- Ism Enzymes in Alloxan Induced Diabetic Rats. Int. J. Res. Phytochem. Pharmacol. 2013, 3, 136–141. [Google Scholar]
- Sarmah, S.; Roy, A.S. A review on prevention of glycation of proteins: Potential therapeutic substances to mitigate the severity of diabetes complications. Int. J. Biol. Macromol. 2022, 195, 565–588. [Google Scholar] [CrossRef]
- Inouye, M.; Mio, T.; Sumino, K. Link between glycation and lipoxidation in red blood cells in diabetes. Clin. Chim. Acta 1999, 285, 35–44. [Google Scholar] [CrossRef]
- Mahdavifard, S.; Nakhjavani, M. Thiamine pyrophosphate improved vascular complications of diabetes in rats with type 2 diabetes by reducing glycation, oxidative stress, and inflammation markers. Med. J. Islam. Repub. Iran 2020, 34, 331–336. [Google Scholar] [CrossRef]
- Gill, V.; Kumar, V.; Singh, K.; Kumar, A.; Kim, J.-J. Advanced Glycation End Products (AGEs) May Be a Striking Link Between Modern Diet and Health. Biomolecules 2019, 9, 888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramkissoon, J.; Mahomoodally, M.; Ahmed, N.; Subratty, A. Antioxidant and anti–glycation activities correlates with phenolic composition of tropical medicinal herbs. Asian Pac. J. Trop. Med. 2013, 6, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Romay, C.; Gonzalez, R.; Ledon, N.; Remirez, D.; Rimbau, V. C-Phycocyanin: A Biliprotein with Antioxidant, Anti-Inflammatory and Neuroprotective Effects. Curr. Protein Pept. Sci. 2005, 4, 207–216. [Google Scholar] [CrossRef]
- Ou, Y.; Lin, L.; Yang, X.; Pan, Q.; Cheng, X. Antidiabetic potential of phycocyanin: Effects on KKAy mice. Pharm. Biol. 2013, 51, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Srivastava, S.; Kakkar, P. Bacopa monnieri modulates antioxidant responses in brain and kidney of diabetic rats. Environ. Toxicol. Pharmacol. 2009, 27, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Szkudelski, T. Streptozotocin-Nicotinamide-Induced Diabetes in the Rat. Characteristics of the Experimental Model. Exp. Biol. Med. 2012, 237, 481–490. [Google Scholar] [CrossRef]
- Ghasemi, A.; Khalifi, S.; Jedi, S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiol. Hung. 2014, 101, 408–420. [Google Scholar] [CrossRef]
- Hashim, A.; Alvi, S.S.; Ansari, I.A.; Salman Khan, M. Phyllanthus Virgatus Forst Extract and It’s Partially Purified Fraction Ameliorates Oxidative Stress and Retino-Nephropathic Architecture in Streptozotocin-Induced Diabetic Rats. Pak. J. Pharm. Sci. 2019, 32, 2697–2708. [Google Scholar]
- Majd, N.E.; Azizian, H.; Tabandeh, M.R.; Shahriari, A. Effect of Abelmoschus esculentus powder on ovarian histology, expression of apoptotic genes and oxidative stress in diabetic rats fed with high fat diet. Iran. J. Pharm. Res. 2019, 18, 369–382. [Google Scholar] [CrossRef]
- Shawky, L.M.; Morsi, A.A.; El Bana, E.; Hanafy, S.M. The Biological Impacts of Sitagliptin on the Pancreas of a Rat Model of Type 2 Diabetes Mellitus: Drug Interactions with Metformin. Biology 2020, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, Y.; Lin, L.; Pan, Q.; Yang, X.; Cheng, X. Preventive effect of phycocyanin from Spirulina platensis on alloxan-injured mice. Environ. Toxicol. Pharmacol. 2012, 34, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Ren, Z.; Wang, J.; Yang, X. Phycocyanin ameliorates alloxan-induced diabetes mellitus in mice: Involved in insulin signaling pathway and GK expression. Chem. Biol. Interact. 2016, 247, 49–54. [Google Scholar] [CrossRef]
- Tzeng, T.-F.; Liou, S.-S.; Chang, C.J.; Liu, I.-M. The Ethanol Extract of Zingiber zerumbet Attenuates Streptozotocin-Induced Diabetic Nephropathy in Rats. Evid.-Based Complement. Altern. Med. 2013, 2013, 340645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghisaidoobe, A.B.T.; Chung, S.J. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques. Int. J. Mol. Sci. 2014, 15, 22518–22538. [Google Scholar] [CrossRef]
- Khanam, A.; Alouffi, S.; Rehman, S.; Ansari, I.A.; Shahab, U.; Ahmad, S. An in vitro approach to unveil the structural alterations in d-ribose induced glycated fibrinogen. J. Biomol. Struct. Dyn. 2021, 39, 5209–5223. [Google Scholar] [CrossRef]
- Oyenihi, O.R.; Brooks, N.L.; Oguntibeju, O.O. Effects of kolaviron on hepatic oxidative stress in streptozotocin induced diabetes. BMC Complement. Altern. Med. 2015, 15, 236. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I.; Kode, A.; Biswas, S.K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 2007, 1, 3159–3165. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Ahotupa, M.; Ruutu, M.; Mäntylä, E. Simple Methods of Quantifying Oxidation Products and Antioxidant Potential of Low Density Lipoproteins. Clin. Biochem. 1996, 29, 139–144. [Google Scholar] [CrossRef]
- Alvi, S.S.; Ansari, I.A.; Ahmad, M.K.; Iqbal, J.; Khan, M.S. Lycopene amends LPS induced oxidative stress and hypertriglyceridemia via modulating PCSK-9 expression and Apo-CIII mediated lipoprotein lipase activity. Biomed. Pharmacother. 2017, 96, 1082–1093. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Vlassara, H.; Palace, M. Diabetes and advanced glycation endproducts. J. Intern. Med. 2002, 251, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem. Med. 1976, 15, 212–216. [Google Scholar] [CrossRef]
- Khan, M.Y.; Alouffi, S.; Ahmad, S. Immunochemical studies on native and glycated LDL—An approach to uncover the structural perturbations. Int. J. Biol. Macromol. 2018, 115, 287–299. [Google Scholar] [CrossRef]
- Akhter, F.; Khan, M.S.; Singh, S.; Ahmad, S. An Immunohistochemical Analysis to Validate the Rationale behind the Enhanced Immunogenicity of D-Ribosylated Low Density Lipo-Protein. PLoS ONE 2014, 9, e113144. [Google Scholar] [CrossRef]
- Chauhan, A.; Sharma, S. Comments on: Microvascular and Macrovascular Complications in Diabetes Mellitus: Distinct or Continuum? Indian J. Endocrinol. Metab. 2016, 20, 881–882. [Google Scholar] [CrossRef]
S.No | Parameters | Groups | ||||
---|---|---|---|---|---|---|
I | II | III | IV | V | ||
Normal Control | Negative Control | Positive Control | C-PC-100 | C-PC-200 | ||
1. | Body Weight (grams) | |||||
i | Initial | 245 ± 8.4 | 246 ± 7.5 | 243 ± 9.1 | 238 ± 10.2 | 241 ± 9.7 |
ii | Final | 295 ± 9.4 | 210 ± 8.9 | 289 ± 8.2 | 286 ± 9.5 | 291 ± 10.1 |
2. | Blood Glucose (mg/dL) | |||||
i | Initial | 73.5 ± 2.51 | 320.3 ± 2.23 | 347.8 ± 2.89 | 335.4 ± 2.45 | 345.7 ± 2.71 |
ii | Final | 91.7 ± 2.19 | 501.2 ± 2.31 | 203.7 ± 2.54 | 247.9 ± 2.43 | 197.5 ± 2.61 |
3. | HbA1c (mg/dL) | 3.9 ± 0.7 | 7.6 ± 1.1 | 5.0 ± 0.9 | 5.8 ± 1.2 | 4.1 ± 1.3 |
4. | Serum Lipid Profile (mg/dL) | |||||
i | Total Cholesterol | 71 ± 1.4 | 113 ± 2.1 | 78 ± 2.3 | 92 ± 1.5 | 81 ± 1.4 |
ii | Triglycerides | 97 ± 1.5 | 167 ± 1.8 | 101 ± 1.4 | 112 ± 2.0 | 107 ± 2.2 |
iii | LDL Cholesterol | 20 ± 0.9 | 46 ± 1.7 | 18 ± 1.9 | 17 ± 1.3 | 16 ± 1.8 |
iv | HDL Cholesterol | 32 ± 1.6 | 18 ± 1.5 | 23 ± 1.6 | 34 ± 1.9 | 32 ± 1.4 |
5. | Liver Function Parameters | |||||
i | SGOT/AST (U/L) | 79 ± 1.5 | 193 ± 1.7 | 152 ± 2.1 | 172 ± 3.1 | 164 ± 2.5 |
ii | SGPT/ALT (U/L) | 38 ± 1.8 | 69 ± 2.4 | 42 ± 2.3 | 47 ± 2.1 | 45 ± 2.2 |
iii | Alkaline Phosphatase (U/L) | 124 ± 2.3 | 178 ± 2.5 | 132 ± 2.8 | 135 ± 2.7 | 131 ± 2.9 |
iv | Total Bilirubin (mg/dL) | 0.49 ± 0.02 | 1.2 ± 0.03 | 0.54 ± 0.2 | 0.62 ± 0.02 | 0.56 ± 0.4 |
6. | Kidney Function Parameters (mg/dL) | |||||
i | Urea | 28 ± 2.2 | 108 ± 3.5 | 36 ± 3.2 | 33 ± 2.1 | 16 ± 1.2 |
ii | Blood Urea Nitrogen | 13 ± 1.1 | 26 ± 1.2 | 17 ± 1.7 | 16 ± 1.8 | 15 ± 1.5 |
iii | Serum Creatinine | 0.41 ± 0.02 | 0.49 ± 0.03 | 0.41 ± 0.02 | 0.39 ± 0.03 | 0.41 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husain, A.; Alouffi, S.; Khanam, A.; Akasha, R.; Farooqui, A.; Ahmad, S. Therapeutic Efficacy of Natural Product ‘C-Phycocyanin’ in Alleviating Streptozotocin-Induced Diabetes via the Inhibition of Glycation Reaction in Rats. Int. J. Mol. Sci. 2022, 23, 14235. https://doi.org/10.3390/ijms232214235
Husain A, Alouffi S, Khanam A, Akasha R, Farooqui A, Ahmad S. Therapeutic Efficacy of Natural Product ‘C-Phycocyanin’ in Alleviating Streptozotocin-Induced Diabetes via the Inhibition of Glycation Reaction in Rats. International Journal of Molecular Sciences. 2022; 23(22):14235. https://doi.org/10.3390/ijms232214235
Chicago/Turabian StyleHusain, Arbab, Sultan Alouffi, Afreen Khanam, Rihab Akasha, Alvina Farooqui, and Saheem Ahmad. 2022. "Therapeutic Efficacy of Natural Product ‘C-Phycocyanin’ in Alleviating Streptozotocin-Induced Diabetes via the Inhibition of Glycation Reaction in Rats" International Journal of Molecular Sciences 23, no. 22: 14235. https://doi.org/10.3390/ijms232214235
APA StyleHusain, A., Alouffi, S., Khanam, A., Akasha, R., Farooqui, A., & Ahmad, S. (2022). Therapeutic Efficacy of Natural Product ‘C-Phycocyanin’ in Alleviating Streptozotocin-Induced Diabetes via the Inhibition of Glycation Reaction in Rats. International Journal of Molecular Sciences, 23(22), 14235. https://doi.org/10.3390/ijms232214235