Old and New Facts and Speculations on the Role of the B Cell Receptor in the Origin of Chronic Lymphocytic Leukemia
Abstract
:1. Introduction
2. The CLL Cell BcR
2.1. Characterizing Features of the CLL BcR Repertoire
2.2. The Issue of the Comparison between the CLL and the Normal B Cell Repertoire
3. Mechanisms of CLL Cell Stimulation via BcR
3.1. BcR Signaling in CLL
3.1.1. Tonic Signals
3.1.2. Active Signals
- (i)
- Stimulation by self-antigens. The presence of frequent auto-immune manifestations, such as auto-immune hemolytic anemia or thrombocytopenia, suggested a connection between CLL and auto-immunity since the early studies [92]. This notion was substantiated more recently by the observation that a considerable number of CLL clones expressed a BcR characterized by poly-reactivity, a definition indicating that each monoclonal antibody could react with low affinity with a variety of different (auto)antigens, including platelets, aggregated IgG, nuclear antigens, double-strand (ds) and single-strand (ss) DNA, insulin, etc. Antibodies with these features are found among the “natural antibodies”, a family of antibodies mostly of the IgM isotype, of all mammalian species, representing one of the first lines of defense against assaulting pathogens [37,38]. These concepts were further refined by showing that U-CLL clones produce polyreactive IG very frequently, whereas this occurs rarely for M-CLL clones [93]. However, autoantibodies from patients with auto-immune manifestations, observed in both U- and M-CLL patients, are not produced by leukemic cells, since they are of the IgG isotype, they utilize both K and lambda light chain types and they are polyclonal [94]. Therefore, auto-immunity is not directly caused by the leukemic clone, although models in which leukemia and autoimmunity are part of the same pathogenetic process can be proposed, as we shall discuss later. Rare patients with cold agglutinin disease or cryoglobulinemia and CLL represent a notable exception. In these conditions, leukemic cells produce monoclonal low-affinity auto-antibodies to red cells or to the Fc portion of IgG [48,94,95], a feature consistent with the limited capacity of CLL cells to mature into plasma-cell-secreting antibodies [96]. Additional information came from the observation that poly-reactive antibodies often recognize antigens at the surface of apoptotic cells. Although normally located intracellularly, certain self-antigens can be expressed at the cell surface, when apoptosis is activated, and can be modified by metabolic processes, such as oxidation associated with apoptosis [97,98,99]. One physiologic function of poly-reactive antibodies is the clearance of apoptotic cells [100]. The expression of a BcR with polyreactive features, capable of recognizing apoptosis-related antigens, may become instrumental in promoting CLL clonal expansion, particularly in the presence of abundant CLL cell apoptosis. A substantial proportion of IG molecules cloned from or secreted by CLL cells react with intracellular proteins such as vimentin, tubulin and filamin B exposed at the cell surface following the induction of apoptosis [99]. Additional proteins to which these IGs have reactivity are those with which the sera of systemic lupus erythematosus (SLE) patients have reactivity, including Sm, snRNPA, Ku and other molecules which are also recognized both in the native or oxidized form by IG from the sera of SLE patients [97]. IG molecules with these reactivities are produced predominantly by U-CLL cases and many have stereotypic features, particularly those encoded for by the VH1-69 genes [97,98,99]. However, the absence of IGHV mutations and/or the utilization of a given stereotype do not classify these BcRs as specific for apoptosis-related antigens, since several of them fail to show any reactivity and different reactivities have been detected for the different BcR or BcR families investigated.
- (ii)
- Stimulation by microbial antigens. In the absence of a clinically evident infection, such as the HP infection in gastric lymphoma, it is difficult to determine whether the BcRs of CLL cells may have specificity for antigens of a given pathogen. Nevertheless, researchers were able to trace a BcR with specificity for certain microorganisms in CLL. Hoogeboon and colleagues [39] analyzed 82 CLL patients, whose cells expressed an IGHV3-7-encoded BcR. The choice of this cohort was suggested by the reported over-representation of this gene in CLL and by the observation of a frequent SHM in these CLL clones, indicating antigenic stimulation and passage through germinal centers. A further selection within the cohort led to the choice of four patients in whom the BcR was characterized by a very short HCDR3 sequence of 5–6 amino acids (aa) instead of the canonical 15 aa. These BcRs were characterized by the utilization of nearly identical IGKV2-24-encoded Ig light chains and for sharing a glutamic acid at position 106 of HCDR3, which was not detected in any of the other sequences utilizing the IGHV3-7 gene. Cloning of genes and the expression of fully assembled IgM molecules led to the observation that the antibody bound 4/33 commensal yeast species and presented a specific binding to the β-(1,6)-glucan of the yeast. The substitution of the glutamic acid at position 106 of the HCDR3 via site-directed mutagenesis caused inhibition of the high-affinity binding to glucan, as did the substitution of certain aa of the short HCDR3. Finally, in vitro exposure of CLL cells with this BcR to the β-(1,6)-glucan resulted in specific cell proliferation. Together, these observations suggest a process of antigen selection, which may be more frequent than possibly thought, particularly if the stimulating antigens are carried by commensal rather than pathogenic microorganisms. Autoreactivity, described in the preceding section, and reactivity with microbial antigens may represent two aspects of the same phenomenon. Antibodies reacting with molecules exposed on the surface of apoptotic cells and/or with molecules oxidized following apoptosis show cross-reactivity for several microbial components. Therefore, this cross-reaction, which can be demonstrated in vitro, may also operate in vivo in CLL patients and certain CLL BcRs can concomitantly recognize antigens of micro-organisms and self-antigens [99].
- (iii)
- Autonomous signaling. This definition relates to the capacity of CLL cell BcRs to autonomously deliver activation signals to leukemic cells, as discovered in a very elegant system in vitro. Using retroviral gene transfer, BcRs from CLL clones were expressed in murine cells lacking endogenous BcR components and were thus unable to be signaled via their own BcR [101]. Positive signaling, revealed by Ca++ mobilization, was consistently noted following cell transfection with the BcRs from 17/17 CLL clones and not with the BcRs from other lymphoproliferative disorders including mantle cell, marginal zone and follicular lymphoma and myeloma (15/15 cases, collectively). This phenomenon was observed with the BcRs from U- and M-CLL cases and from cases expressing BcRs with/without poly-specific reactivity. Autonomous signaling also was observed with the BcRs from leukemic cell clones from mice that were transgenic for the T cell Leukemia 1 or tcl1 gene. These mice, obtained following the observation that U-CLL clones showed high TCL1 protein levels, expressed a tcl1 transgene under the control of the IGHV promotor and the Eμ-enhancer [102]. They developed a lymphoproliferative disorder characterized by the expression of CD5 and the utilization of unmutated IGHV genes, thus resembling human U-CLL [103]. Autonomous signaling was not observed when transfecting the BcRs from murine non-leukemic clones specific for several antigens, indicating that the phenomenon occurs preferentially in malignant cells [101]. Autonomous signaling can be reminiscent of that observed in other cancers, such as breast, lung or gastrointestinal tract cancers, in which activating mutations of receptors for growth factors enable the receptors to deliver signals similar to those of normal receptors following interaction with specific ligands [104,105]. Because of mutations, the receptor acquires the property of self-aggregation or dimerization or undergoes conformational changes, which can activate downstream signals (see Figure 2). However, there are no activating mutations in the BcR transducing the downstream signaling, and the system is more complex in comparison to these models. Ca++ mobilization is observed when the transfected BcR displays a HCDR3 motif which enables binding to a conserved epitope in the framework region 2 (FR2) of the IGHV domain of the same BcR molecule [101]. An alternative epitope for BcR autologous binding is found in FR3 [106]. Although these mechanisms have the same effect as the activating mutations of growth factor receptors present in other cancers, the underlying molecular mechanisms are different, as the recognition of a specific epitope of the “leukemic” BcR by the antigen-combining site of the same BcR expressed by the leukemic clone is required for receptor activation. In other words, autonomous signaling is intra-clonal and implies a specific interaction between BcR molecules on the surface of the same cell (or the BcRs of different cells from the same clone), given that the BcR recognizes a self-epitope (see Figure 2) [101]. A good example of the relevance of autonomous signaling is provided by a subgroup of CLL of the subset #2 stereotypes. These cases carry a single-point mutation, termed R110, at the junction between the variable and the constant region of the light chain. Although subset #2 stereotype is itself a poor prognosis indicator, R110+ cases display an even worse outcome. Light-chain mutation has been found to facilitate homotypic BcR-BcR interactions which result in a more robust activation of autonomous signaling [107].
3.2. Outcome of BcR Engagement
3.2.1. Identification of the Proliferating Cell Fraction of the CLL Clone
3.2.2. Choice between Proliferation and Apoptosis following BcR Stimulation
3.2.3. Tolerance of CLL Cells
3.2.4. The Function of BcR Other Than IgM
3.3. Inhibition of BcR-Dependent Tyrosine Kinases (TK)
4. Stimulation of CLL Cells via Surface Structures Different from the BcR
5. Disease Progression and Clonal Evolution
6. The Cell of Origin of CLL
6.1. Origin from Mature B Cells
6.2. Origin from HSCs
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiorazzi, N.; Rai, K.R.; Ferrarini, M. Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2005, 352, 804–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, J.A. Treatment of Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2020, 383, 460–473. [Google Scholar] [CrossRef]
- Stevenson, F.K.; Forconi, F.; Kipps, T.J. Exploring the Pathways to Chronic Lymphocytic Leukemia. Blood 2021, 138, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M. Chronic Lymphocytic Leukemia: 2020 Update on Diagnosis, Risk Stratification and Treatment. Am. J. Hematol. 2019, 94, 1266–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, K.R.; Jain, P. Chronic Lymphocytic Leukemia (CLL)-Then and Now. Am. J. Hematol. 2016, 91, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Damle, R.N.; Wasil, T.; Fais, F.; Ghiotto, F.; Valetto, A.; Allen, S.L.; Buchbinder, A.; Budman, D.; Dittmar, K.; Kolitz, J.; et al. Ig V Gene Mutation Status and CD38 Expression as Novel Prognostic Indicators in Chronic Lymphocytic Leukemia. Blood 1999, 94, 1840–1847. [Google Scholar] [CrossRef]
- Hamblin, T.J.; Davis, Z.; Gardiner, A.; Oscier, D.G.; Stevenson, F.K. Unmutated Ig V(H) Genes Are Associated with a More Aggressive Form of Chronic Lymphocytic Leukemia. Blood 1999, 94, 1848–1854. [Google Scholar] [CrossRef]
- Dameshek, W. Chronic Lymphocytic Leukemia—An Accumulative Disease of Immunolgically Incompetent Lymphocytes. Blood 1967, 29, S566–S584. [Google Scholar] [CrossRef] [Green Version]
- Messmer, B.T.; Messmer, D.; Allen, S.L.; Kolitz, J.E.; Kudalkar, P.; Cesar, D.; Murphy, E.J.; Koduru, P.; Ferrarini, M.; Zupo, S.; et al. In Vivo Measurements Document the Dynamic Cellular Kinetics of Chronic Lymphocytic Leukemia B Cells. J. Clin. Investig. 2005, 115, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.J.; Neuberg, D.S.; Rassenti, L.Z.; Hayes, G.; Redd, R.; Emson, C.; Li, K.; Brown, J.R.; Wierda, W.G.; Turner, S.; et al. Leukemia-Cell Proliferation and Disease Progression in Patients with Early Stage Chronic Lymphocytic Leukemia. Leukemia 2017, 31, 1348–1354. [Google Scholar] [CrossRef]
- Mazzarello, A.N.; Fitch, M.; Hellerstein, M.K.; Chiorazzi, N. Measurement of Leukemic B-Cell Growth Kinetics in Patients with Chronic Lymphocytic Leukemia. Methods Mol. Biol. Clifton N. J. 2019, 1881, 129–151. [Google Scholar] [CrossRef]
- Damle, R.N.; Temburni, S.; Banapour, T.; Paul, S.; Mongini, P.K.A.; Allen, S.L.; Kolitz, J.E.; Rai, K.R.; Chiorazzi, N. T-Cell Independent, B-Cell Receptor-Mediated Induction of Telomerase Activity Differs among IGHV Mutation-Based Subgroups of Chronic Lymphocytic Leukemia Patients. Blood 2012, 120, 2438–2449. [Google Scholar] [CrossRef] [Green Version]
- Jebaraj, B.M.C.; Stilgenbauer, S. Telomere Dysfunction in Chronic Lymphocytic Leukemia. Front. Oncol. 2020, 10, 612665. [Google Scholar] [CrossRef]
- Küppers, R.; Klein, U.; Hansmann, M.L.; Rajewsky, K. Cellular Origin of Human B-Cell Lymphomas. N. Engl. J. Med. 1999, 341, 1520–1529. [Google Scholar] [CrossRef]
- Shiramizu, B.; Barriga, F.; Neequaye, J.; Jafri, A.; Dalla-Favera, R.; Neri, A.; Guttierez, M.; Levine, P.; Magrath, I. Patterns of Chromosomal Breakpoint Locations in Burkitt’s Lymphoma: Relevance to Geography and Epstein-Barr Virus Association. Blood 1991, 77, 1516–1526. [Google Scholar] [CrossRef] [Green Version]
- Küppers, R.; Dalla-Favera, R. Mechanisms of Chromosomal Translocations in B Cell Lymphomas. Oncogene 2001, 20, 5580–5594. [Google Scholar] [CrossRef] [Green Version]
- Carbone, A.; Roulland, S.; Gloghini, A.; Younes, A.; von Keudell, G.; López-Guillermo, A.; Fitzgibbon, J. Follicular Lymphoma. Nat. Rev. Dis. Primer 2019, 5, 83. [Google Scholar] [CrossRef]
- Pekarsky, Y.; Balatti, V.; Croce, C.M. BCL2 and MiR-15/16: From Gene Discovery to Treatment. Cell Death Differ. 2018, 25, 21–26. [Google Scholar] [CrossRef]
- Döhner, H.; Stilgenbauer, S.; Benner, A.; Leupolt, E.; Kröber, A.; Bullinger, L.; Döhner, K.; Bentz, M.; Lichter, P. Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2000, 343, 1910–1916. [Google Scholar] [CrossRef] [Green Version]
- Malcikova, J.; Tausch, E.; Rossi, D.; Sutton, L.A.; Soussi, T.; Zenz, T.; Kater, A.P.; Niemann, C.U.; Gonzalez, D.; Davi, F.; et al. ERIC Recommendations for TP53 Mutation Analysis in Chronic Lymphocytic Leukemia-Update on Methodological Approaches and Results Interpretation. Leukemia 2018, 32, 1070–1080. [Google Scholar] [CrossRef]
- Pavlova, S.; Smardova, J.; Tom, N.; Trbusek, M. Detection and Functional Analysis of TP53 Mutations in CLL. Methods Mol. Biol. Clifton N. J. 2019, 1881, 63–81. [Google Scholar] [CrossRef]
- Condoluci, A.; Rossi, D. Genetic Mutations in Chronic Lymphocytic Leukemia: Impact on Clinical Treatment. Expert Rev. Hematol. 2019, 12, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Nadeu, F.; Delgado, J.; Royo, C.; Baumann, T.; Stankovic, T.; Pinyol, M.; Jares, P.; Navarro, A.; Martín-García, D.; Beà, S.; et al. Clinical Impact of Clonal and Subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM Mutations in Chronic Lymphocytic Leukemia. Blood 2016, 127, 2122–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabbri, G.; Dalla-Favera, R. The Molecular Pathogenesis of Chronic Lymphocytic Leukaemia. Nat. Rev. Cancer 2016, 16, 145–162. [Google Scholar] [CrossRef] [PubMed]
- Marti, G.E.; Rawstron, A.C.; Ghia, P.; Hillmen, P.; Houlston, R.S.; Kay, N.; Schleinitz, T.A.; Caporaso, N. International Familial CLL Consortium Diagnostic Criteria for Monoclonal B-Cell Lymphocytosis. Br. J. Haematol. 2005, 130, 325–332. [Google Scholar] [CrossRef]
- Strati, P.; Shanafelt, T.D. Monoclonal B-Cell Lymphocytosis and Early-Stage Chronic Lymphocytic Leukemia: Diagnosis, Natural History, and Risk Stratification. Blood 2015, 126, 454–462. [Google Scholar] [CrossRef]
- Karube, K.; Scarfò, L.; Campo, E.; Ghia, P. Monoclonal B Cell Lymphocytosis and “in Situ” Lymphoma. Semin. Cancer Biol. 2014, 24, 3–14. [Google Scholar] [CrossRef]
- Nieto, W.G.; Almeida, J.; Romero, A.; Teodosio, C.; López, A.; Henriques, A.F.; Sánchez, M.L.; Jara-Acevedo, M.; Rasillo, A.; González, M.; et al. Increased Frequency (12%) of Circulating Chronic Lymphocytic Leukemia-like B-Cell Clones in Healthy Subjects Using a Highly Sensitive Multicolor Flow Cytometry Approach. Blood 2009, 114, 33–37. [Google Scholar] [CrossRef]
- Fazi, C.; Scarfò, L.; Pecciarini, L.; Cottini, F.; Dagklis, A.; Janus, A.; Talarico, A.; Scielzo, C.; Sala, C.; Toniolo, D.; et al. General Population Low-Count CLL-like MBL Persists over Time without Clinical Progression, Although Carrying the Same Cytogenetic Abnormalities of CLL. Blood 2011, 118, 6618–6625. [Google Scholar] [CrossRef] [Green Version]
- Rawstron, A.C.; Ssemaganda, A.; de Tute, R.; Doughty, C.; Newton, D.; Vardi, A.; Evans, P.A.S.; Stamatopoulos, K.; Owen, R.G.; Lightfoot, T.; et al. Monoclonal B-Cell Lymphocytosis in a Hospital-Based UK Population and a Rural Ugandan Population: A Cross-Sectional Study. Lancet Haematol. 2017, 4, e334–e340. [Google Scholar] [CrossRef]
- Goldin, L.R.; Slager, S.L.; Caporaso, N.E. Familial Chronic Lymphocytic Leukemia. Curr. Opin. Hematol. 2010, 17, 350–355. [Google Scholar] [CrossRef]
- Slager, S.L.; Skibola, C.F.; Di Bernardo, M.C.; Conde, L.; Broderick, P.; McDonnell, S.K.; Goldin, L.R.; Croft, N.; Holroyd, A.; Harris, S.; et al. Common Variation at 6p21.31 (BAK1) Influences the Risk of Chronic Lymphocytic Leukemia. Blood 2012, 120, 843–846. [Google Scholar] [CrossRef] [Green Version]
- Crowther-Swanepoel, D.; Broderick, P.; Di Bernardo, M.C.; Dobbins, S.E.; Torres, M.; Mansouri, M.; Ruiz-Ponte, C.; Enjuanes, A.; Rosenquist, R.; Carracedo, A.; et al. Common Variants at 2q37.3, 8q24.21, 15q21.3, and 16q24.1 Influence Chronic Lymphocytic Leukemia Risk. Nat. Genet. 2010, 42, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Di Bernardo, M.C.; Crowther-Swanepoel, D.; Broderick, P.; Webb, E.; Sellick, G.; Wild, R.; Sullivan, K.; Vijayakrishnan, J.; Wang, Y.; Pittman, A.M.; et al. A Genome-Wide Association Study Identifies Six Susceptibility Loci for Chronic Lymphocytic Leukemia. Nat. Genet. 2008, 40, 1204–1210. [Google Scholar] [CrossRef]
- Goldin, L.R.; Pfeiffer, R.M.; Li, X.; Hemminki, K. Familial Risk of Lymphoproliferative Tumors in Families of Patients with Chronic Lymphocytic Leukemia: Results from the Swedish Family-Cancer Database. Blood 2004, 104, 1850–1854. [Google Scholar] [CrossRef]
- Chiorazzi, N.; Ferrarini, M. B Cell Chronic Lymphocytic Leukemia: Lessons Learned from Studies of the B Cell Antigen Receptor. Annu. Rev. Immunol. 2003, 21, 841–894. [Google Scholar] [CrossRef] [Green Version]
- Sthoeger, Z.M.; Wakai, M.; Tse, D.B.; Vinciguerra, V.P.; Allen, S.L.; Budman, D.R.; Lichtman, S.M.; Schulman, P.; Weiselberg, L.R.; Chiorazzi, N. Production of Autoantibodies by CD5-Expressing B Lymphocytes from Patients with Chronic Lymphocytic Leukemia. J. Exp. Med. 1989, 169, 255–268. [Google Scholar] [CrossRef]
- Borche, L.; Lim, A.; Binet, J.L.; Dighiero, G. Evidence That Chronic Lymphocytic Leukemia B Lymphocytes Are Frequently Committed to Production of Natural Autoantibodies. Blood 1990, 76, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Hoogeboom, R.; van Kessel, K.P.M.; Hochstenbach, F.; Wormhoudt, T.A.; Reinten, R.J.A.; Wagner, K.; Kater, A.P.; Guikema, J.E.J.; Bende, R.J.; van Noesel, C.J.M. A Mutated B Cell Chronic Lymphocytic Leukemia Subset That Recognizes and Responds to Fungi. J. Exp. Med. 2013, 210, 59–70. [Google Scholar] [CrossRef]
- Burger, J.A.; Wiestner, A. Targeting B Cell Receptor Signalling in Cancer: Preclinical and Clinical Advances. Nat. Rev. Cancer 2018, 18, 148–167. [Google Scholar] [CrossRef]
- Fais, F.; Ghiotto, F.; Hashimoto, S.; Sellars, B.; Valetto, A.; Allen, S.L.; Schulman, P.; Vinciguerra, V.P.; Rai, K.; Rassenti, L.Z.; et al. Chronic Lymphocytic Leukemia B Cells Express Restricted Sets of Mutated and Unmutated Antigen Receptors. J. Clin. Investig. 1998, 102, 1515–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, H.W.; Dighiero, G. The Pathogenesis of Chronic Lymphocytic Leukemia: Analysis of the Antibody Repertoire. Immunol. Today 1994, 15, 288–294. [Google Scholar] [CrossRef]
- Johnson, T.A.; Rassenti, L.Z.; Kipps, T.J. Ig VH1 Genes Expressed in B Cell Chronic Lymphocytic Leukemia Exhibit Distinctive Molecular Features. J. Immunol. Baltim. 1997, 158, 235–246. [Google Scholar]
- Stamatopoulos, K.; Belessi, C.; Hadzidimitriou, A.; Smilevska, T.; Kalagiakou, E.; Hatzi, K.; Stavroyianni, N.; Athanasiadou, A.; Tsompanakou, A.; Papadaki, T.; et al. Immunoglobulin Light Chain Repertoire in Chronic Lymphocytic Leukemia. Blood 2005, 106, 3575–3583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widhopf, G.F.; Kipps, T.J. Normal B Cells Express 51p1-Encoded Ig Heavy Chains That Are Distinct from Those Expressed by Chronic Lymphocytic Leukemia B Cells. J. Immunol. Baltim. 2001, 166, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.-K.; Trama, A.M.; Kozink, D.M.; Chen, X.; Wiehe, K.; Cooper, A.J.; Xia, S.-M.; Wang, M.; Marshall, D.J.; Whitesides, J.; et al. IGHV1-69 B Cell Chronic Lymphocytic Leukemia Antibodies Cross-React with HIV-1 and Hepatitis C Virus Antigens as Well as Intestinal Commensal Bacteria. PLoS ONE 2014, 9, e90725. [Google Scholar] [CrossRef]
- Thorpe, S.J.; Turner, C.E.; Stevenson, F.K.; Spellerberg, M.B.; Thorpe, R.; Natvig, J.B.; Thompson, K.M. Human Monoclonal Antibodies Encoded by the V4-34 Gene Segment Show Cold Agglutinin Activity and Variable Multireactivity Which Correlates with the Predicted Charge of the Heavy-Chain Variable Region. Immunology 1998, 93, 129–136. [Google Scholar] [CrossRef]
- Tucci, F.A.; Kitanovski, S.; Johansson, P.; Klein-Hitpass, L.; Kahraman, A.; Dürig, J.; Hoffmann, D.; Küppers, R. Biased IGH VDJ Gene Repertoire and Clonal Expansions in B Cells of Chronically Hepatitis C Virus-Infected Individuals. Blood 2018, 131, 546–557. [Google Scholar] [CrossRef]
- Forconi, F.; Potter, K.N.; Sozzi, E.; Henderson, I.; Cencini, E.; Rossi, D.; Bomben, R.; Gattei, V.; Gaidano, G.; Packham, G.; et al. The IGHV1-69/IGHJ3 Recombinations of Unmutated CLL Are Distinct from Those of Normal B Cells. Blood 2012, 119, 2106–2109. [Google Scholar] [CrossRef] [Green Version]
- Ghiotto, F.; Fais, F.; Valetto, A.; Albesiano, E.; Hashimoto, S.; Dono, M.; Ikematsu, H.; Allen, S.L.; Kolitz, J.; Rai, K.R.; et al. Remarkably Similar Antigen Receptors among a Subset of Patients with Chronic Lymphocytic Leukemia. J. Clin. Investig. 2004, 113, 1008–1016. [Google Scholar] [CrossRef]
- Widhopf, G.F.; Rassenti, L.Z.; Toy, T.L.; Gribben, J.G.; Wierda, W.G.; Kipps, T.J. Chronic Lymphocytic Leukemia B Cells of More than 1% of Patients Express Virtually Identical Immunoglobulins. Blood 2004, 104, 2499–2504. [Google Scholar] [CrossRef]
- Messmer, B.T.; Albesiano, E.; Efremov, D.G.; Ghiotto, F.; Allen, S.L.; Kolitz, J.; Foa, R.; Damle, R.N.; Fais, F.; Messmer, D.; et al. Multiple Distinct Sets of Stereotyped Antigen Receptors Indicate a Role for Antigen in Promoting Chronic Lymphocytic Leukemia. J. Exp. Med. 2004, 200, 519–525. [Google Scholar] [CrossRef]
- Tobin, G.; Thunberg, U.; Karlsson, K.; Murray, F.; Laurell, A.; Willander, K.; Enblad, G.; Merup, M.; Vilpo, J.; Juliusson, G.; et al. Subsets with Restricted Immunoglobulin Gene Rearrangement Features Indicate a Role for Antigen Selection in the Development of Chronic Lymphocytic Leukemia. Blood 2004, 104, 2879–2885. [Google Scholar] [CrossRef] [Green Version]
- Thorsélius, M.; Kröber, A.; Murray, F.; Thunberg, U.; Tobin, G.; Bühler, A.; Kienle, D.; Albesiano, E.; Maffei, R.; Dao-Ung, L.-P.; et al. Strikingly Homologous Immunoglobulin Gene Rearrangements and Poor Outcome in VH3-21-Using Chronic Lymphocytic Leukemia Patients Independent of Geographic Origin and Mutational Status. Blood 2006, 107, 2889–2894. [Google Scholar] [CrossRef]
- Stamatopoulos, K.; Belessi, C.; Moreno, C.; Boudjograh, M.; Guida, G.; Smilevska, T.; Belhoul, L.; Stella, S.; Stavroyianni, N.; Crespo, M.; et al. Over 20% of Patients with Chronic Lymphocytic Leukemia Carry Stereotyped Receptors: Pathogenetic Implications and Clinical Correlations. Blood 2007, 109, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Agathangelidis, A.; Chatzidimitriou, A.; Gemenetzi, K.; Giudicelli, V.; Karypidou, M.; Plevova, K.; Davis, Z.; Yan, X.-J.; Jeromin, S.; Schneider, C.; et al. Higher-Order Connections between Stereotyped Subsets: Implications for Improved Patient Classification in CLL. Blood 2021, 137, 1365–1376. [Google Scholar] [CrossRef]
- Agathangelidis, A.; Darzentas, N.; Hadzidimitriou, A.; Brochet, X.; Murray, F.; Yan, X.-J.; Davis, Z.; van Gastel-Mol, E.J.; Tresoldi, C.; Chu, C.C.; et al. Stereotyped B-Cell Receptors in One-Third of Chronic Lymphocytic Leukemia: A Molecular Classification with Implications for Targeted Therapies. Blood 2012, 119, 4467–4475. [Google Scholar] [CrossRef]
- Marcatili, P.; Ghiotto, F.; Tenca, C.; Chailyan, A.; Mazzarello, A.N.; Yan, X.-J.; Colombo, M.; Albesiano, E.; Bagnara, D.; Cutrona, G.; et al. Igs Expressed by Chronic Lymphocytic Leukemia B Cells Show Limited Binding-Site Structure Variability. J. Immunol. 2013, 190, 5771–5778. [Google Scholar] [CrossRef] [Green Version]
- Potter, K.N.; Li, Y.; Pascual, V.; Williams, R.C.; Byres, L.C.; Spellerberg, M.; Stevenson, F.K.; Capra, J.D. Molecular Characterization of a Cross-Reactive Idiotope on Human Immunoglobulins Utilizing the VH4-21 Gene Segment. J. Exp. Med. 1993, 178, 1419–1428. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, Y.; Ye, A.Y.; Du, Z.; Xu, M.; Lee, C.-S.; Hwang, J.K.; Kyritsis, N.; Ba, Z.; Neuberg, D.; et al. BCR Selection and Affinity Maturation in Peyer’s Patch Germinal Centres. Nature 2020, 582, 421–425. [Google Scholar] [CrossRef]
- Rosenquist, R.; Ghia, P.; Hadzidimitriou, A.; Sutton, L.-A.; Agathangelidis, A.; Baliakas, P.; Darzentas, N.; Giudicelli, V.; Lefranc, M.-P.; Langerak, A.W.; et al. Immunoglobulin Gene Sequence Analysis in Chronic Lymphocytic Leukemia: Updated ERIC Recommendations. Leukemia 2017, 31, 1477–1481. [Google Scholar] [CrossRef] [PubMed]
- Xochelli, A.; Baliakas, P.; Kavakiotis, I.; Agathangelidis, A.; Sutton, L.-A.; Minga, E.; Ntoufa, S.; Tausch, E.; Yan, X.-J.; Shanafelt, T.; et al. Chronic Lymphocytic Leukemia with Mutated IGHV4-34 Receptors: Shared and Distinct Immunogenetic Features and Clinical Outcomes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 5292–5301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ten Hacken, E.; Gounari, M.; Ghia, P.; Burger, J.A. The Importance of B Cell Receptor Isotypes and Stereotypes in Chronic Lymphocytic Leukemia. Leukemia 2019, 33, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Condoluci, A.; Terzi di Bergamo, L.; Langerbeins, P.; Hoechstetter, M.A.; Herling, C.D.; De Paoli, L.; Delgado, J.; Rabe, K.G.; Gentile, M.; Doubek, M.; et al. International Prognostic Score for Asymptomatic Early-Stage Chronic Lymphocytic Leukemia. Blood 2020, 135, 1859–1869. [Google Scholar] [CrossRef] [PubMed]
- Slager, S.L.; Lanasa, M.C.; Marti, G.E.; Achenbach, S.J.; Camp, N.J.; Abbasi, F.; Kay, N.E.; Vachon, C.M.; Cerhan, J.R.; Johnston, J.B.; et al. Natural History of Monoclonal B-Cell Lymphocytosis among Relatives in CLL Families. Blood 2021, 137, 2046–2056. [Google Scholar] [CrossRef]
- Kolijn, P.M.; Hosnijeh, F.S.; Späth, F.; Hengeveld, P.J.; Agathangelidis, A.; Saleh, M.; Casabonne, D.; Benavente, Y.; Jerkeman, M.; Agudo, A.; et al. High-Risk Subtypes of Chronic Lymphocytic Leukemia Are Detectable as Early as 16 Years Prior to Diagnosis. Blood 2022, 139, 1557–1563. [Google Scholar] [CrossRef]
- Henriques, A.; Rodríguez-Caballero, A.; Nieto, W.G.; Langerak, A.W.; Criado, I.; Lécrevisse, Q.; González, M.; Pais, M.L.; Paiva, A.; Almeida, J.; et al. Combined Patterns of IGHV Repertoire and Cytogenetic/Molecular Alterations in Monoclonal B Lymphocytosis versus Chronic Lymphocytic Leukemia. PLoS ONE 2013, 8, e67751. [Google Scholar] [CrossRef] [Green Version]
- Rossi, D.; Sozzi, E.; Puma, A.; De Paoli, L.; Rasi, S.; Spina, V.; Gozzetti, A.; Tassi, M.; Cencini, E.; Raspadori, D.; et al. The Prognosis of Clinical Monoclonal B Cell Lymphocytosis Differs from Prognosis of Rai 0 Chronic Lymphocytic Leukaemia and Is Recapitulated by Biological Risk Factors. Br. J. Haematol. 2009, 146, 64–75. [Google Scholar] [CrossRef]
- Morabito, F.; Mosca, L.; Cutrona, G.; Agnelli, L.; Tuana, G.; Ferracin, M.; Zagatti, B.; Lionetti, M.; Fabris, S.; Maura, F.; et al. Clinical Monoclonal B Lymphocytosis versus Rai 0 Chronic Lymphocytic Leukemia: A Comparison of Cellular, Cytogenetic, Molecular, and Clinical Features. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 5890–5900. [Google Scholar] [CrossRef] [Green Version]
- Dagklis, A.; Fazi, C.; Sala, C.; Cantarelli, V.; Scielzo, C.; Massacane, R.; Toniolo, D.; Caligaris-Cappio, F.; Stamatopoulos, K.; Ghia, P. The Immunoglobulin Gene Repertoire of Low-Count Chronic Lymphocytic Leukemia (CLL)-like Monoclonal B Lymphocytosis Is Different from CLL: Diagnostic Implications for Clinical Monitoring. Blood 2009, 114, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Bagnara, D.; Reverberi, D.; Matis, S.; Cardillo, M.; Massara, R.; Mastracci, L.; Ravetti, J.L.; Agnelli, L.; Neri, A.; et al. Tracing CLL-Biased Stereotyped Immunoglobulin Gene Rearrangements in Normal B Cell Subsets Using a High-Throughput Immunogenetic Approach. Mol. Med. Camb. Mass 2020, 26, 25. [Google Scholar] [CrossRef]
- Bagnara, D.; Colombo, M.; Reverberi, D.; Matis, S.; Massara, R.; Cardente, N.; Ubezio, G.; Agostini, V.; Agnelli, L.; Neri, A.; et al. Characterizing Features of Human Circulating B Cells Carrying CLL-Like Stereotyped Immunoglobulin Rearrangements. Front. Oncol. 2022, 12, 894419. [Google Scholar] [CrossRef]
- Caligaris-Cappio, F.; Gobbi, M.; Bofill, M.; Janossy, G. Infrequent Normal B Lymphocytes Express Features of B-Chronic Lymphocytic Leukemia. J. Exp. Med. 1982, 155, 623–628. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Good, R.A.; Ammirati, P.; Dymbort, G.; Evans, R.L. Identification of a P69,71 Complex Expressed on Human T Cells Sharing Determinants with B-Type Chronic Lymphatic Leukemic Cells. J. Exp. Med. 1980, 151, 1539–1544. [Google Scholar] [CrossRef] [Green Version]
- Hardy, R.R.; Hayakawa, K. Perspectives on Fetal Derived CD5+ B1 B Cells. Eur. J. Immunol. 2015, 45, 2978–2984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiorazzi, N.; Ferrarini, M. Cellular Origin(s) of Chronic Lymphocytic Leukemia: Cautionary Notes and Additional Considerations and Possibilities. Blood 2011, 117, 1781–1791. [Google Scholar] [CrossRef]
- Seifert, M.; Sellmann, L.; Bloehdorn, J.; Wein, F.; Stilgenbauer, S.; Dürig, J.; Küppers, R. Cellular Origin and Pathophysiology of Chronic Lymphocytic Leukemia. J. Exp. Med. 2012, 209, 2183–2198. [Google Scholar] [CrossRef] [Green Version]
- Clarke, M.F. Clinical and Therapeutic Implications of Cancer Stem Cells. N. Engl. J. Med. 2019, 380, 2237–2245. [Google Scholar] [CrossRef]
- Isaacson, P.G.; Du, M.-Q. MALT Lymphoma: From Morphology to Molecules. Nat. Rev. Cancer 2004, 4, 644–653. [Google Scholar] [CrossRef]
- Kuo, S.-H.; Yeh, K.-H.; Wu, M.-S.; Lin, C.-W.; Hsu, P.-N.; Wang, H.-P.; Chen, L.-T.; Cheng, A.-L. Helicobacter pylori Eradication Therapy Is Effective in the Treatment of Early-Stage H pylori-Positive Gastric Diffuse Large B-Cell Lymphomas. Blood 2012, 119, 4838–4844, quiz 5057. [Google Scholar] [CrossRef] [Green Version]
- Quinn, E.R.; Chan, C.H.; Hadlock, K.G.; Foung, S.K.; Flint, M.; Levy, S. The B-Cell Receptor of a Hepatitis C Virus (HCV)-Associated Non-Hodgkin Lymphoma Binds the Viral E2 Envelope Protein, Implicating HCV in Lymphomagenesis. Blood 2001, 98, 3745–3749. [Google Scholar] [CrossRef] [PubMed]
- Hermine, O.; Lefrère, F.; Bronowicki, J.-P.; Mariette, X.; Jondeau, K.; Eclache-Saudreau, V.; Delmas, B.; Valensi, F.; Cacoub, P.; Brechot, C.; et al. Regression of Splenic Lymphoma with Villous Lymphocytes after Treatment of Hepatitis C Virus Infection. N. Engl. J. Med. 2002, 347, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Young, R.M.; Staudt, L.M. Targeting Pathological B Cell Receptor Signalling in Lymphoid Malignancies. Nat. Rev. Drug Discov. 2013, 12, 229–243. [Google Scholar] [CrossRef]
- Lam, K.P.; Kühn, R.; Rajewsky, K. In Vivo Ablation of Surface Immunoglobulin on Mature B Cells by Inducible Gene Targeting Results in Rapid Cell Death. Cell 1997, 90, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.; Alimzhanov, M.B.; Rajewsky, N.; Rajewsky, K. Survival of Resting Mature B Lymphocytes Depends on BCR Signaling via the Igalpha/Beta Heterodimer. Cell 2004, 117, 787–800. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Reth, M. Oligomeric Organization of the B-Cell Antigen Receptor on Resting Cells. Nature 2010, 467, 465–469. [Google Scholar] [CrossRef]
- Yang, J.; Reth, M. The Dissociation Activation Model of B Cell Antigen Receptor Triggering. FEBS Lett. 2010, 584, 4872–4877. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, L.; Sasaki, Y.; Calado, D.P.; Zhang, B.; Paik, J.H.; DePinho, R.A.; Kutok, J.L.; Kearney, J.F.; Otipoby, K.L.; Rajewsky, K. PI3 Kinase Signals BCR-Dependent Mature B Cell Survival. Cell 2009, 139, 573–586. [Google Scholar] [CrossRef] [Green Version]
- Fais, F.; Sellars, B.; Ghiotto, F.; Yan, X.J.; Dono, M.; Allen, S.L.; Budman, D.; Dittmar, K.; Kolitz, J.; Lichtman, S.M.; et al. Examples of in Vivo Isotype Class Switching in IgM+ Chronic Lymphocytic Leukemia B Cells. J. Clin. Investig. 1996, 98, 1659–1666. [Google Scholar] [CrossRef] [Green Version]
- Dono, M.; Hashimoto, S.; Fais, F.; Trejo, V.; Allen, S.L.; Lichtman, S.M.; Schulman, P.; Vinciguerra, V.P.; Sellars, B.; Gregersen, P.K.; et al. Evidence for Progenitors of Chronic Lymphocytic Leukemia B Cells That Undergo Intraclonal Differentiation and Diversification. Blood 1996, 87, 1586–1594. [Google Scholar] [CrossRef]
- Gomes de Castro, M.A.; Wildhagen, H.; Sograte-Idrissi, S.; Hitzing, C.; Binder, M.; Trepel, M.; Engels, N.; Opazo, F. Differential Organization of Tonic and Chronic B Cell Antigen Receptors in the Plasma Membrane. Nat. Commun. 2019, 10, 820. [Google Scholar] [CrossRef]
- Dameshek, W.; Schwartz, R.S. Leukemia and Auto-Immunization—Some Possible Relationships. Blood 1959, 14, 1151–1158. [Google Scholar] [CrossRef] [Green Version]
- Hervé, M.; Xu, K.; Ng, Y.-S.; Wardemann, H.; Albesiano, E.; Messmer, B.T.; Chiorazzi, N.; Meffre, E. Unmutated and Mutated Chronic Lymphocytic Leukemias Derive from Self-Reactive B Cell Precursors despite Expressing Different Antibody Reactivity. J. Clin. Investig. 2005, 115, 1636–1643. [Google Scholar] [CrossRef] [Green Version]
- Molica, S.; Polliack, A. Autoimmune Hemolytic Anemia (AIHA) Associated with Chronic Lymphocytic Leukemia in the Current Era of Targeted Therapy. Leuk. Res. 2016, 50, 31–36. [Google Scholar] [CrossRef]
- Stevenson, F.K.; Smith, G.J.; North, J.; Hamblin, T.J.; Glennie, M.J. Identification of Normal B-Cell Counterparts of Neoplastic Cells Which Secrete Cold Agglutinins of Anti-I and Anti-i Specificity. Br. J. Haematol. 1989, 72, 9–15. [Google Scholar] [CrossRef]
- Rubartelli, A.; Sitia, R.; Zicca, A.; Grossi, C.E.; Ferrarini, M. Differentiation of Chronic Lymphocytic Leukemia Cells: Correlation between the Synthesis and Secretion of Immunoglobulins and the Ultrastructure of the Malignant Cells. Blood 1983, 62, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Catera, R.; Silverman, G.J.; Hatzi, K.; Seiler, T.; Didier, S.; Zhang, L.; Hervé, M.; Meffre, E.; Oscier, D.G.; Vlassara, H.; et al. Chronic Lymphocytic Leukemia Cells Recognize Conserved Epitopes Associated with Apoptosis and Oxidation. Mol. Med. Camb. Mass 2008, 14, 665–674. [Google Scholar] [CrossRef]
- Chu, C.C.; Catera, R.; Zhang, L.; Didier, S.; Agagnina, B.M.; Damle, R.N.; Kaufman, M.S.; Kolitz, J.E.; Allen, S.L.; Rai, K.R.; et al. Many Chronic Lymphocytic Leukemia Antibodies Recognize Apoptotic Cells with Exposed Nonmuscle Myosin Heavy Chain IIA: Implications for Patient Outcome and Cell of Origin. Blood 2010, 115, 3907–3915. [Google Scholar] [CrossRef]
- Lanemo Myhrinder, A.; Hellqvist, E.; Sidorova, E.; Söderberg, A.; Baxendale, H.; Dahle, C.; Willander, K.; Tobin, G.; Bäckman, E.; Söderberg, O.; et al. A New Perspective: Molecular Motifs on Oxidized LDL, Apoptotic Cells, and Bacteria Are Targets for Chronic Lymphocytic Leukemia Antibodies. Blood 2008, 111, 3838–3848. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Kowalewski, R.; Kim, S.; Elkon, K.B. The Role of IgM Antibodies in the Recognition and Clearance of Apoptotic Cells. Mol. Immunol. 2005, 42, 781–787. [Google Scholar] [CrossRef]
- Dühren-von Minden, M.; Übelhart, R.; Schneider, D.; Wossning, T.; Bach, M.P.; Buchner, M.; Hofmann, D.; Surova, E.; Follo, M.; Köhler, F.; et al. Chronic Lymphocytic Leukaemia Is Driven by Antigen-Independent Cell-Autonomous Signalling. Nature 2012, 489, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Bichi, R.; Shinton, S.A.; Martin, E.S.; Koval, A.; Calin, G.A.; Cesari, R.; Russo, G.; Hardy, R.R.; Croce, C.M. Human Chronic Lymphocytic Leukemia Modeled in Mouse by Targeted TCL1 Expression. Proc. Natl. Acad. Sci. USA 2002, 99, 6955–6960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.-S.; Batliwalla, F.; Holodick, N.E.; Yan, X.-J.; Yancopoulos, S.; Croce, C.M.; Rothstein, T.L.; Chiorazzi, N. Autoantigen Can Promote Progression to a More Aggressive TCL1 Leukemia by Selecting Variants with Enhanced B-Cell Receptor Signaling. Proc. Natl. Acad. Sci. USA 2013, 110, E1500–E1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, C.R.; Jänne, P.A. The Quest to Overcome Resistance to EGFR-Targeted Therapies in Cancer. Nat. Med. 2013, 19, 1389–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, N.; Grose, R. Fibroblast Growth Factor Signalling: From Development to Cancer. Nat. Rev. Cancer 2010, 10, 116–129. [Google Scholar] [CrossRef]
- Binder, M.; Müller, F.; Frick, M.; Wehr, C.; Simon, F.; Leistler, B.; Veelken, H.; Mertelsmann, R.; Trepel, M. CLL B-Cell Receptors Can Recognize Themselves: Alternative Epitopes and Structural Clues for Autostimulatory Mechanisms in CLL. Blood 2013, 121, 239–241. [Google Scholar] [CrossRef]
- Maity, P.C.; Bilal, M.; Koning, M.T.; Young, M.; van Bergen, C.A.M.; Renna, V.; Nicolò, A.; Datta, M.; Gentner-Göbel, E.; Barendse, R.S.; et al. IGLV3-21*01 Is an Inherited Risk Factor for CLL through the Acquisition of a Single-Point Mutation Enabling Autonomous BCR Signaling. Proc. Natl. Acad. Sci. USA 2020, 117, 4320–4327. [Google Scholar] [CrossRef] [Green Version]
- Ponzoni, M.; Doglioni, C.; Caligaris-Cappio, F. Chronic Lymphocytic Leukemia: The Pathologist’s View of Lymph Node Microenvironment. Semin. Diagn. Pathol. 2011, 28, 161–166. [Google Scholar] [CrossRef]
- Morabito, F.; Shanafelt, T.D.; Gentile, M.; Reda, G.; Mauro, F.R.; Rossi, D.; Di Renzo, N.; Molica, S.; Angrilli, F.; Chiarenza, A.; et al. Immunoglobulin Heavy Chain Variable Region Gene and Prediction of Time to First Treatment in Patients with Chronic Lymphocytic Leukemia: Mutational Load or Mutational Status? Analysis of 1003 Cases. Am. J. Hematol. 2018, 93, E216–E219. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, M.; Yan, X.-J.; Li, W.; Ghia, E.M.; Langerak, A.W.; Rassenti, L.Z.; Belessi, C.; Kay, N.E.; Davi, F.; Byrd, J.C.; et al. Impact of the Types and Relative Quantities of IGHV Gene Mutations in Predicting Prognosis of Patients with Chronic Lymphocytic Leukemia. Front. Oncol. 2022, 12, 897280. [Google Scholar] [CrossRef]
- Minici, C.; Gounari, M.; Übelhart, R.; Scarfò, L.; Dühren-von Minden, M.; Schneider, D.; Tasdogan, A.; Alkhatib, A.; Agathangelidis, A.; Ntoufa, S.; et al. Distinct Homotypic B-Cell Receptor Interactions Shape the Outcome of Chronic Lymphocytic Leukaemia. Nat. Commun. 2017, 8, 15746. [Google Scholar] [CrossRef]
- Damle, R.N.; Ghiotto, F.; Valetto, A.; Albesiano, E.; Fais, F.; Yan, X.-J.; Sison, C.P.; Allen, S.L.; Kolitz, J.; Schulman, P.; et al. B-Cell Chronic Lymphocytic Leukemia Cells Express a Surface Membrane Phenotype of Activated, Antigen-Experienced B Lymphocytes. Blood 2002, 99, 4087–4093. [Google Scholar] [CrossRef] [Green Version]
- Burger, J.A.; Chiorazzi, N. B Cell Receptor Signaling in Chronic Lymphocytic Leukemia. Trends Immunol. 2013, 34, 592–601. [Google Scholar] [CrossRef] [Green Version]
- Zupo, S.; Isnardi, L.; Megna, M.; Massara, R.; Malavasi, F.; Dono, M.; Cosulich, E.; Ferrarini, M. CD38 Expression Distinguishes Two Groups of B-Cell Chronic Lymphocytic Leukemias with Different Responses to Anti-IgM Antibodies and Propensity to Apoptosis. Blood 1996, 88, 1365–1374. [Google Scholar] [CrossRef] [Green Version]
- Malavasi, F.; Deaglio, S.; Damle, R.; Cutrona, G.; Ferrarini, M.; Chiorazzi, N. CD38 and Chronic Lymphocytic Leukemia: A Decade Later. Blood 2011, 118, 3470–3478. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Widhopf, G.; Huynh, L.; Rassenti, L.; Rai, K.R.; Weiss, A.; Kipps, T.J. Expression of ZAP-70 Is Associated with Increased B-Cell Receptor Signaling in Chronic Lymphocytic Leukemia. Blood 2002, 100, 4609–4614. [Google Scholar] [CrossRef]
- Lanham, S.; Hamblin, T.; Oscier, D.; Ibbotson, R.; Stevenson, F.; Packham, G. Differential Signaling via Surface IgM Is Associated with VH Gene Mutational Status and CD38 Expression in Chronic Lymphocytic Leukemia. Blood 2003, 101, 1087–1093. [Google Scholar] [CrossRef]
- Cutrona, G.; Colombo, M.; Matis, S.; Fabbi, M.; Spriano, M.; Callea, V.; Vigna, E.; Gentile, M.; Zupo, S.; Chiorazzi, N.; et al. Clonal Heterogeneity in Chronic Lymphocytic Leukemia Cells: Superior Response to Surface IgM Cross-Linking in CD38, ZAP-70-Positive Cells. Haematologica 2008, 93, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Damle, R.N.; Temburni, S.; Calissano, C.; Yancopoulos, S.; Banapour, T.; Sison, C.; Allen, S.L.; Rai, K.R.; Chiorazzi, N. CD38 Expression Labels an Activated Subset within Chronic Lymphocytic Leukemia Clones Enriched in Proliferating B Cells. Blood 2007, 110, 3352–3359. [Google Scholar] [CrossRef] [Green Version]
- Calissano, C.; Damle, R.N.; Hayes, G.; Murphy, E.J.; Hellerstein, M.K.; Moreno, C.; Sison, C.; Kaufman, M.S.; Kolitz, J.E.; Allen, S.L.; et al. In Vivo Intraclonal and Interclonal Kinetic Heterogeneity in B-Cell Chronic Lymphocytic Leukemia. Blood 2009, 114, 4832–4842. [Google Scholar] [CrossRef] [Green Version]
- Herndon, T.M.; Chen, S.-S.; Saba, N.S.; Valdez, J.; Emson, C.; Gatmaitan, M.; Tian, X.; Hughes, T.E.; Sun, C.; Arthur, D.C.; et al. Direct in Vivo Evidence for Increased Proliferation of CLL Cells in Lymph Nodes Compared to Bone Marrow and Peripheral Blood. Leukemia 2017, 31, 1340–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herishanu, Y.; Pérez-Galán, P.; Liu, D.; Biancotto, A.; Pittaluga, S.; Vire, B.; Gibellini, F.; Njuguna, N.; Lee, E.; Stennett, L.; et al. The Lymph Node Microenvironment Promotes B-Cell Receptor Signaling, NF-KappaB Activation, and Tumor Proliferation in Chronic Lymphocytic Leukemia. Blood 2011, 117, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, G.; Jung, B.; Chiu, P.Y.; Aslam, R.; Palacios, F.; Mazzarello, A.N.; Vergani, S.; Bagnara, D.; Chen, S.-S.; Yancopoulos, S.; et al. Myeloid-Derived Suppressor Cell Subtypes Differentially Influence T-Cell Function, T-Helper Subset Differentiation, and Clinical Course in CLL. Leukemia 2021, 35, 3163–3175. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; Kipps, T.J. CXCR4: A Key Receptor in the Crosstalk between Tumor Cells and Their Microenvironment. Blood 2006, 107, 1761–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, J.A.; Quiroga, M.P.; Hartmann, E.; Bürkle, A.; Wierda, W.G.; Keating, M.J.; Rosenwald, A. High-Level Expression of the T-Cell Chemokines CCL3 and CCL4 by Chronic Lymphocytic Leukemia B Cells in Nurselike Cell Cocultures and after BCR Stimulation. Blood 2009, 113, 3050–3058. [Google Scholar] [CrossRef] [PubMed]
- Messmer, D.; Fecteau, J.-F.; O’Hayre, M.; Bharati, I.S.; Handel, T.M.; Kipps, T.J. Chronic Lymphocytic Leukemia Cells Receive RAF-Dependent Survival Signals in Response to CXCL12 That Are Sensitive to Inhibition by Sorafenib. Blood 2011, 117, 882–889. [Google Scholar] [CrossRef] [Green Version]
- Vlad, A.; Deglesne, P.-A.; Letestu, R.; Saint-Georges, S.; Chevallier, N.; Baran-Marszak, F.; Varin-Blank, N.; Ajchenbaum-Cymbalista, F.; Ledoux, D. Down-Regulation of CXCR4 and CD62L in Chronic Lymphocytic Leukemia Cells Is Triggered by B-Cell Receptor Ligation and Associated with Progressive Disease. Cancer Res. 2009, 69, 6387–6395. [Google Scholar] [CrossRef] [Green Version]
- Burgueño-Bucio, E.; Mier-Aguilar, C.A.; Soldevila, G. The Multiple Faces of CD5. J. Leukoc. Biol. 2019, 105, 891–904. [Google Scholar] [CrossRef]
- Calissano, C.; Damle, R.N.; Marsilio, S.; Yan, X.-J.; Yancopoulos, S.; Hayes, G.; Emson, C.; Murphy, E.J.; Hellerstein, M.K.; Sison, C.; et al. Intraclonal Complexity in Chronic Lymphocytic Leukemia: Fractions Enriched in Recently Born/Divided and Older/Quiescent Cells. Mol. Med. Camb. Mass 2011, 17, 1374–1382. [Google Scholar] [CrossRef]
- Bartholdy, B.A.; Wang, X.; Yan, X.-J.; Pascual, M.; Fan, M.; Barrientos, J.; Allen, S.L.; Martinez-Climent, J.A.; Rai, K.R.; Chiorazzi, N.; et al. CLL Intraclonal Fractions Exhibit Established and Recently Acquired Patterns of DNA Methylation. Blood Adv. 2020, 4, 893–905. [Google Scholar] [CrossRef]
- Cui, B.; Chen, L.; Zhang, S.; Mraz, M.; Fecteau, J.-F.; Yu, J.; Ghia, E.M.; Zhang, L.; Bao, L.; Rassenti, L.Z.; et al. MicroRNA-155 Influences B-Cell Receptor Signaling and Associates with Aggressive Disease in Chronic Lymphocytic Leukemia. Blood 2014, 124, 546–554. [Google Scholar] [CrossRef]
- D’Avola, A.; Drennan, S.; Tracy, I.; Henderson, I.; Chiecchio, L.; Larrayoz, M.; Rose-Zerilli, M.; Strefford, J.; Plass, C.; Johnson, P.W.; et al. Surface IgM Expression and Function Are Associated with Clinical Behavior, Genetic Abnormalities, and DNA Methylation in CLL. Blood 2016, 128, 816–826. [Google Scholar] [CrossRef] [Green Version]
- Efremov, D.G.; Gobessi, S.; Longo, P.G. Signaling Pathways Activated by Antigen-Receptor Engagement in Chronic Lymphocytic Leukemia B-Cells. Autoimmun. Rev. 2007, 7, 102–108. [Google Scholar] [CrossRef]
- Guarini, A.; Chiaretti, S.; Tavolaro, S.; Maggio, R.; Peragine, N.; Citarella, F.; Ricciardi, M.R.; Santangelo, S.; Marinelli, M.; De Propris, M.S.; et al. BCR Ligation Induced by IgM Stimulation Results in Gene Expression and Functional Changes Only in IgV H Unmutated Chronic Lymphocytic Leukemia (CLL) Cells. Blood 2008, 112, 782–792. [Google Scholar] [CrossRef] [Green Version]
- Lagneaux, L.; Delforge, A.; Bron, D.; De Bruyn, C.; Stryckmans, P. Chronic Lymphocytic Leukemic B Cells but Not Normal B Cells Are Rescued from Apoptosis by Contact with Normal Bone Marrow Stromal Cells. Blood 1998, 91, 2387–2396. [Google Scholar] [CrossRef]
- Burger, J.A.; Tsukada, N.; Burger, M.; Zvaifler, N.J.; Dell’Aquila, M.; Kipps, T.J. Blood-Derived Nurse-like Cells Protect Chronic Lymphocytic Leukemia B Cells from Spontaneous Apoptosis through Stromal Cell-Derived Factor-1. Blood 2000, 96, 2655–2663. [Google Scholar] [CrossRef]
- Pedersen, I.M.; Kitada, S.; Leoni, L.M.; Zapata, J.M.; Karras, J.G.; Tsukada, N.; Kipps, T.J.; Choi, Y.S.; Bennett, F.; Reed, J.C. Protection of CLL B Cells by a Follicular Dendritic Cell Line Is Dependent on Induction of Mcl-1. Blood 2002, 100, 1795–1801. [Google Scholar] [CrossRef]
- Zucchetto, A.; Benedetti, D.; Tripodo, C.; Bomben, R.; Dal Bo, M.; Marconi, D.; Bossi, F.; Lorenzon, D.; Degan, M.; Rossi, F.M.; et al. CD38/CD31, the CCL3 and CCL4 Chemokines, and CD49d/Vascular Cell Adhesion Molecule-1 Are Interchained by Sequential Events Sustaining Chronic Lymphocytic Leukemia Cell Survival. Cancer Res. 2009, 69, 4001–4009. [Google Scholar] [CrossRef] [Green Version]
- Arruga, F.; Gyau, B.B.; Iannello, A.; Vitale, N.; Vaisitti, T.; Deaglio, S. Immune Response Dysfunction in Chronic Lymphocytic Leukemia: Dissecting Molecular Mechanisms and Microenvironmental Conditions. Int. J. Mol. Sci. 2020, 21, 1825. [Google Scholar] [CrossRef] [Green Version]
- Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; et al. Frequent Deletions and Down-Regulation of Micro- RNA Genes MiR15 and MiR16 at 13q14 in Chronic Lymphocytic Leukemia. Proc. Natl. Acad. Sci. USA 2002, 99, 15524–15529. [Google Scholar] [CrossRef] [Green Version]
- Klein, U.; Lia, M.; Crespo, M.; Siegel, R.; Shen, Q.; Mo, T.; Ambesi-Impiombato, A.; Califano, A.; Migliazza, A.; Bhagat, G.; et al. The DLEU2/MiR-15a/16-1 Cluster Controls B Cell Proliferation and Its Deletion Leads to Chronic Lymphocytic Leukemia. Cancer Cell 2010, 17, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, A.; Calin, G.A.; Fabbri, M.; Iorio, M.V.; Ferracin, M.; Shimizu, M.; Wojcik, S.E.; Aqeilan, R.I.; Zupo, S.; Dono, M.; et al. MiR-15 and MiR-16 Induce Apoptosis by Targeting BCL2. Proc. Natl. Acad. Sci. USA 2005, 102, 13944–13949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutrona, G.; Matis, S.; Colombo, M.; Massucco, C.; Baio, G.; Valdora, F.; Emionite, L.; Fabris, S.; Recchia, A.G.; Gentile, M.; et al. Effects of MiRNA-15 and MiRNA-16 Expression Replacement in Chronic Lymphocytic Leukemia: Implication for Therapy. Leukemia 2017, 31, 1894–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, A.W. Therapeutic Development and Current Uses of BCL-2 Inhibition. Hematol. Am. Soc. Hematol. Educ. Program 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Al-Sawaf, O.; Bahlo, J.; Fink, A.-M.; Tandon, M.; Dixon, M.; Robrecht, S.; Warburton, S.; Humphrey, K.; Samoylova, O.; et al. Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions. N. Engl. J. Med. 2019, 380, 2225–2236. [Google Scholar] [CrossRef] [PubMed]
- Bruno, S.; Ghiotto, F.; Tenca, C.; Mazzarello, A.N.; Bono, M.; Luzzi, P.; Casciaro, S.; Recchia, A.; DeCensi, A.; Morabito, F.; et al. N-(4-Hydroxyphenyl)Retinamide Promotes Apoptosis of Resting and Proliferating B-Cell Chronic Lymphocytic Leukemia Cells and Potentiates Fludarabine and ABT-737 Cytotoxicity. Leukemia 2012, 26, 2260–2268. [Google Scholar] [CrossRef] [Green Version]
- Ghiotto, F.; Fais, F.; Bruno, S. BH3-Only Proteins: The Death-Puppeteer’s Wires. Cytom. Part J. Int. Soc. Anal. Cytol. 2010, 77, 11–21. [Google Scholar] [CrossRef]
- Yeomans, A.; Thirdborough, S.M.; Valle-Argos, B.; Linley, A.; Krysov, S.; Hidalgo, M.S.; Leonard, E.; Ishfaq, M.; Wagner, S.D.; Willis, A.E.; et al. Engagement of the B-Cell Receptor of Chronic Lymphocytic Leukemia Cells Drives Global and MYC-Specific MRNA Translation. Blood 2016, 127, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Öztürk, S.; Paul, Y.; Afzal, S.; Gil-Farina, I.; Jauch, A.; Bruch, P.-M.; Kalter, V.; Hanna, B.; Arseni, L.; Roessner, P.M.; et al. Longitudinal Analyses of CLL in Mice Identify Leukemia-Related Clonal Changes Including a Myc Gain Predicting Poor Outcome in Patients. Leukemia 2022, 36, 464–475. [Google Scholar] [CrossRef]
- Biran, A.; Yin, S.; Kretzmer, H.; Ten Hacken, E.; Parvin, S.; Lucas, F.; Uduman, M.; Gutierrez, C.; Dangle, N.; Billington, L.; et al. Activation of Notch and Myc Signaling via B-Cell-Restricted Depletion of Dnmt3a Generates a Consistent Murine Model of Chronic Lymphocytic Leukemia. Cancer Res. 2021, 81, 6117–6130. [Google Scholar] [CrossRef]
- Hayakawa, K.; Formica, A.M.; Brill-Dashoff, J.; Shinton, S.A.; Ichikawa, D.; Zhou, Y.; Morse, H.C.; Hardy, R.R. Early Generated B1 B Cells with Restricted BCRs Become Chronic Lymphocytic Leukemia with Continued C-Myc and Low Bmf Expression. J. Exp. Med. 2016, 213, 3007–3024. [Google Scholar] [CrossRef]
- Evan, G.I.; Wyllie, A.H.; Gilbert, C.S.; Littlewood, T.D.; Land, H.; Brooks, M.; Waters, C.M.; Penn, L.Z.; Hancock, D.C. Induction of Apoptosis in Fibroblasts by C-Myc Protein. Cell 1992, 69, 119–128. [Google Scholar] [CrossRef]
- Cutrona, G.; Ulivi, M.; Fais, F.; Roncella, S.; Ferrarini, M. Transfection of the C-Myc Oncogene into Normal Epstein-Barr Virus-Harboring B Cells Results in New Phenotypic and Functional Features Resembling Those of Burkitt Lymphoma Cells and Normal Centroblasts. J. Exp. Med. 1995, 181, 699–711. [Google Scholar] [CrossRef]
- Cutrona, G.; Dono, M.; Pastorino, S.; Ulivi, M.; Burgio, V.L.; Zupo, S.; Roncella, S.; Ferrarini, M. The Propensity to Apoptosis of Centrocytes and Centroblasts Correlates with Elevated Levels of Intracellular Myc Protein. Eur. J. Immunol. 1997, 27, 234–238. [Google Scholar] [CrossRef]
- Calado, D.P.; Sasaki, Y.; Godinho, S.A.; Pellerin, A.; Köchert, K.; Sleckman, B.P.; de Alborán, I.M.; Janz, M.; Rodig, S.; Rajewsky, K. The Cell-Cycle Regulator c-Myc Is Essential for the Formation and Maintenance of Germinal Centers. Nat. Immunol. 2012, 13, 1092–1100. [Google Scholar] [CrossRef] [Green Version]
- Dominguez-Sola, D.; Victora, G.D.; Ying, C.Y.; Phan, R.T.; Saito, M.; Nussenzweig, M.C.; Dalla-Favera, R. The Proto-Oncogene MYC Is Required for Selection in the Germinal Center and Cyclic Reentry. Nat. Immunol. 2012, 13, 1083–1091. [Google Scholar] [CrossRef] [Green Version]
- Kluckova, K.; Clear, A.J.; D’Avola, A.; Rassenti, L.Z.; Kipps, T.J.; Gribben, J.G.; Riches, J.C. B-Cell Receptor Signaling Induced Metabolic Alterations in Chronic Lymphocytic Leukemia Can Be Partially Bypassed by TP53 Abnormalities. HemaSphere 2022, 6, e722. [Google Scholar] [CrossRef]
- Linley, A.; Valle-Argos, B.; Steele, A.J.; Stevenson, F.K.; Forconi, F.; Packham, G. Higher Levels of Reactive Oxygen Species Are Associated with Anergy in Chronic Lymphocytic Leukemia. Haematologica 2015, 100, e265–e268. [Google Scholar] [CrossRef] [Green Version]
- Hondares, E.; Brown, M.A.; Musset, B.; Morgan, D.; Cherny, V.V.; Taubert, C.; Bhamrah, M.K.; Coe, D.; Marelli-Berg, F.; Gribben, J.G.; et al. Enhanced Activation of an Amino-Terminally Truncated Isoform of the Voltage-Gated Proton Channel HVCN1 Enriched in Malignant B Cells. Proc. Natl. Acad. Sci. USA 2014, 111, 18078–18083. [Google Scholar] [CrossRef] [Green Version]
- Muzio, M.; Apollonio, B.; Scielzo, C.; Frenquelli, M.; Vandoni, I.; Boussiotis, V.; Caligaris-Cappio, F.; Ghia, P. Constitutive Activation of Distinct BCR-Signaling Pathways in a Subset of CLL Patients: A Molecular Signature of Anergy. Blood 2008, 112, 188–195. [Google Scholar] [CrossRef]
- Mockridge, C.I.; Potter, K.N.; Wheatley, I.; Neville, L.A.; Packham, G.; Stevenson, F.K. Reversible Anergy of SIgM-Mediated Signaling in the Two Subsets of CLL Defined by VH-Gene Mutational Status. Blood 2007, 109, 4424–4431. [Google Scholar] [CrossRef] [PubMed]
- Apollonio, B.; Scielzo, C.; Bertilaccio, M.T.S.; Ten Hacken, E.; Scarfò, L.; Ranghetti, P.; Stevenson, F.; Packham, G.; Ghia, P.; Muzio, M.; et al. Targeting B-Cell Anergy in Chronic Lymphocytic Leukemia. Blood 2013, 121, 3879–3888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibaldi, E.; Brunati, A.M.; Zonta, F.; Frezzato, F.; Gattazzo, C.; Zambello, R.; Gringeri, E.; Semenzato, G.; Pagano, M.A.; Trentin, L. Lyn-Mediated SHP-1 Recruitment to CD5 Contributes to Resistance to Apoptosis of B-Cell Chronic Lymphocytic Leukemia Cells. Leukemia 2011, 25, 1768–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodnow, C.C.; Sprent, J.; Fazekas de St Groth, B.; Vinuesa, C.G. Cellular and Genetic Mechanisms of Self Tolerance and Autoimmunity. Nature 2005, 435, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.S.; Jenks, S.A.; Woodruff, M.C.; Tomar, D.; Tipton, C.M.; Scharer, C.D.; Eun-Hyung Lee, F.; Boss, J.M.; Sanz, I. Understanding and Measuring Human B-Cell Tolerance and Its Breakdown in Autoimmune Disease. Immunol. Rev. 2019, 292, 76–89. [Google Scholar] [CrossRef]
- Duty, J.A.; Szodoray, P.; Zheng, N.-Y.; Koelsch, K.A.; Zhang, Q.; Swiatkowski, M.; Mathias, M.; Garman, L.; Helms, C.; Nakken, B.; et al. Functional Anergy in a Subpopulation of Naive B Cells from Healthy Humans That Express Autoreactive Immunoglobulin Receptors. J. Exp. Med. 2009, 206, 139–151. [Google Scholar] [CrossRef]
- Wan, Z.; Zhao, Y.; Sun, Y. Immunoglobulin D and Its Encoding Genes: An Updated Review. Dev. Comp. Immunol. 2021, 124, 104198. [Google Scholar] [CrossRef]
- Übelhart, R.; Hug, E.; Bach, M.P.; Wossning, T.; Dühren-von Minden, M.; Horn, A.H.C.; Tsiantoulas, D.; Kometani, K.; Kurosaki, T.; Binder, C.J.; et al. Responsiveness of B Cells Is Regulated by the Hinge Region of IgD. Nat. Immunol. 2015, 16, 534–543. [Google Scholar] [CrossRef]
- Mazzarello, A.N.; Gentner-Göbel, E.; Dühren-von Minden, M.; Tarasenko, T.N.; Nicolò, A.; Ferrer, G.; Vergani, S.; Liu, Y.; Bagnara, D.; Rai, K.R.; et al. B Cell Receptor Isotypes Differentially Associate with Cell Signaling, Kinetics, and Outcome in Chronic Lymphocytic Leukemia. J. Clin. Investig. 2022, 132, e149308. [Google Scholar] [CrossRef]
- Maity, P.C.; Blount, A.; Jumaa, H.; Ronneberger, O.; Lillemeier, B.F.; Reth, M. B Cell Antigen Receptors of the IgM and IgD Classes Are Clustered in Different Protein Islands That Are Altered during B Cell Activation. Sci. Signal. 2015, 8, ra93. [Google Scholar] [CrossRef]
- Kläsener, K.; Maity, P.C.; Hobeika, E.; Yang, J.; Reth, M. B Cell Activation Involves Nanoscale Receptor Reorganizations and Inside-out Signaling by Syk. eLife 2014, 3, e02069. [Google Scholar] [CrossRef]
- Ten Hacken, E.; Sivina, M.; Kim, E.; O’Brien, S.; Wierda, W.G.; Ferrajoli, A.; Estrov, Z.; Keating, M.J.; Oellerich, T.; Scielzo, C.; et al. Functional Differences between IgM and IgD Signaling in Chronic Lymphocytic Leukemia. J. Immunol. Baltim. 2016, 197, 2522–2531. [Google Scholar] [CrossRef] [Green Version]
- Haerzschel, A.; Catusse, J.; Hutterer, E.; Paunovic, M.; Zirlik, K.; Eibel, H.; Krenn, P.W.; Hartmann, T.N.; Burger, M. BCR and Chemokine Responses upon Anti-IgM and Anti-IgD Stimulation in Chronic Lymphocytic Leukaemia. Ann. Hematol. 2016, 95, 1979–1988. [Google Scholar] [CrossRef] [Green Version]
- Zupo, S.; Massara, R.; Dono, M.; Rossi, E.; Malavasi, F.; Cosulich, M.E.; Ferrarini, M. Apoptosis or Plasma Cell Differentiation of CD38-Positive B-Chronic Lymphocytic Leukemia Cells Induced by Cross-Linking of Surface IgM or IgD. Blood 2000, 95, 1199–1206. [Google Scholar] [CrossRef]
- Sabouri, Z.; Perotti, S.; Spierings, E.; Humburg, P.; Yabas, M.; Bergmann, H.; Horikawa, K.; Roots, C.; Lambe, S.; Young, C.; et al. IgD Attenuates the IgM-Induced Anergy Response in Transitional and Mature B Cells. Nat. Commun. 2016, 7, 13381. [Google Scholar] [CrossRef] [Green Version]
- Vire, B.; David, A.; Wiestner, A. TOSO, the Fcmicro Receptor, Is Highly Expressed on Chronic Lymphocytic Leukemia B Cells, Internalizes upon IgM Binding, Shuttles to the Lysosome, and Is Downregulated in Response to TLR Activation. J. Immunol. Baltim. 2011, 187, 4040–4050. [Google Scholar] [CrossRef] [Green Version]
- Kubagawa, H.; Oka, S.; Kubagawa, Y.; Torii, I.; Takayama, E.; Kang, D.-W.; Gartland, G.L.; Bertoli, L.F.; Mori, H.; Takatsu, H.; et al. Identity of the Elusive IgM Fc Receptor (FcmuR) in Humans. J. Exp. Med. 2009, 206, 2779–2793. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Cutrona, G.; Reverberi, D.; Fabris, S.; Neri, A.; Fabbi, M.; Quintana, G.; Quarta, G.; Ghiotto, F.; Fais, F.; et al. Intraclonal Cell Expansion and Selection Driven by B Cell Receptor in Chronic Lymphocytic Leukemia. Mol. Med. Camb. Mass 2011, 17, 834–839. [Google Scholar] [CrossRef]
- Hallek, M.; Shanafelt, T.D.; Eichhorst, B. Chronic Lymphocytic Leukaemia. Lancet Lond. Engl. 2018, 391, 1524–1537. [Google Scholar] [CrossRef]
- Stephens, D.M.; Byrd, J.C. How I Manage Ibrutinib Intolerance and Complications in Patients with Chronic Lymphocytic Leukemia. Blood 2019, 133, 1298–1307. [Google Scholar] [CrossRef]
- Sharma, S.; Rai, K.R. Chronic Lymphocytic Leukemia (CLL) Treatment: So Many Choices, Such Great Options. Cancer 2019, 125, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Furman, R.R.; Coutre, S.E.; Flinn, I.W.; Burger, J.A.; Blum, K.A.; Grant, B.; Sharman, J.P.; Coleman, M.; Wierda, W.G.; et al. Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2013, 369, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A.; Smucker, K.; Smith, L.L.; Lozanski, A.; Zhong, Y.; Ruppert, A.S.; Lucas, D.; Williams, K.; Zhao, W.; Rassenti, L.; et al. Prolonged Lymphocytosis during Ibrutinib Therapy Is Associated with Distinct Molecular Characteristics and Does Not Indicate a Suboptimal Response to Therapy. Blood 2014, 123, 1810–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, S.; Furman, R.R.; Coutre, S.; Flinn, I.W.; Burger, J.A.; Blum, K.; Sharman, J.; Wierda, W.; Jones, J.; Zhao, W.; et al. Single-Agent Ibrutinib in Treatment-Naïve and Relapsed/Refractory Chronic Lymphocytic Leukemia: A 5-Year Experience. Blood 2018, 131, 1910–1919. [Google Scholar] [CrossRef] [PubMed]
- Ghia, P.; Pluta, A.; Wach, M.; Lysak, D.; Kozak, T.; Simkovic, M.; Kaplan, P.; Kraychok, I.; Illes, A.; de la Serna, J.; et al. ASCEND: Phase III, Randomized Trial of Acalabrutinib Versus Idelalisib Plus Rituximab or Bendamustine Plus Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 2849–2861. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, L.; Berg, V.; Dickhut, C.; Sun, C.; Merkel, O.; Bloehdorn, J.; Robrecht, S.; Seifert, M.; da Palma Guerreiro, A.; Claasen, J.; et al. MARCKS Affects Cell Motility and Response to BTK Inhibitors in CLL. Blood 2021, 138, 544–556. [Google Scholar] [CrossRef]
- Drennan, S.; Chiodin, G.; D’Avola, A.; Tracy, I.; Johnson, P.W.; Trentin, L.; Steele, A.J.; Packham, G.; Stevenson, F.K.; Forconi, F. Ibrutinib Therapy Releases Leukemic Surface IgM from Antigen Drive in Chronic Lymphocytic Leukemia Patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 2503–2512. [Google Scholar] [CrossRef] [Green Version]
- Burger, J.A. CLL Cells Are Moved by the MARCKS Brothers. Blood 2021, 138, 503–504. [Google Scholar] [CrossRef]
- Pavlasova, G.; Borsky, M.; Seda, V.; Cerna, K.; Osickova, J.; Doubek, M.; Mayer, J.; Calogero, R.; Trbusek, M.; Pospisilova, S.; et al. Ibrutinib Inhibits CD20 Upregulation on CLL B Cells Mediated by the CXCR4/SDF-1 Axis. Blood 2016, 128, 1609–1613. [Google Scholar] [CrossRef] [Green Version]
- Burger, J.A.; Landau, D.A.; Taylor-Weiner, A.; Bozic, I.; Zhang, H.; Sarosiek, K.; Wang, L.; Stewart, C.; Fan, J.; Hoellenriegel, J.; et al. Clonal Evolution in Patients with Chronic Lymphocytic Leukaemia Developing Resistance to BTK Inhibition. Nat. Commun. 2016, 7, 11589. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.-M.; Woyach, J.A.; Zhong, Y.; Lozanski, A.; Lozanski, G.; Dong, S.; Strattan, E.; Lehman, A.; Zhang, X.; Jones, J.A.; et al. Hypermorphic Mutation of Phospholipase C, Γ2 Acquired in Ibrutinib-Resistant CLL Confers BTK Independency upon B-Cell Receptor Activation. Blood 2015, 126, 61–68. [Google Scholar] [CrossRef]
- Plander, M.; Seegers, S.; Ugocsai, P.; Diermeier-Daucher, S.; Iványi, J.; Schmitz, G.; Hofstädter, F.; Schwarz, S.; Orsó, E.; Knüchel, R.; et al. Different Proliferative and Survival Capacity of CLL-Cells in a Newly Established in Vitro Model for Pseudofollicles. Leukemia 2009, 23, 2118–2128. [Google Scholar] [CrossRef] [Green Version]
- de Totero, D.; Meazza, R.; Capaia, M.; Fabbi, M.; Azzarone, B.; Balleari, E.; Gobbi, M.; Cutrona, G.; Ferrarini, M.; Ferrini, S. The Opposite Effects of IL-15 and IL-21 on CLL B Cells Correlate with Differential Activation of the JAK/STAT and ERK1/2 Pathways. Blood 2008, 111, 517–524. [Google Scholar] [CrossRef]
- Burger, J.A. Nurture versus Nature: The Microenvironment in Chronic Lymphocytic Leukemia. Hematol. Am. Soc. Hematol. Educ. Program 2011, 2011, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Lapalombella, R. Interleukin-6 in CLL: Accelerator or Brake? Blood 2015, 126, 697–698. [Google Scholar] [CrossRef] [Green Version]
- Spaner, D.E.; Masellis, A. Toll-like Receptor Agonists in the Treatment of Chronic Lymphocytic Leukemia. Leukemia 2007, 21, 53–60. [Google Scholar] [CrossRef]
- Nishio, M.; Endo, T.; Tsukada, N.; Ohata, J.; Kitada, S.; Reed, J.C.; Zvaifler, N.J.; Kipps, T.J. Nurselike Cells Express BAFF and APRIL, Which Can Promote Survival of Chronic Lymphocytic Leukemia Cells via a Paracrine Pathway Distinct from That of SDF-1alpha. Blood 2005, 106, 1012–1020. [Google Scholar] [CrossRef] [Green Version]
- Brunner, C.; Avots, A.; Kreth, H.W.; Serfling, E.; Schuster, V. Bruton’s Tyrosine Kinase Is Activated upon CD40 Stimulation in Human B Lymphocytes. Immunobiology 2002, 206, 432–440. [Google Scholar] [CrossRef]
- Kielbassa, K.; Haselager, M.; Bax, D.; Dubois, J.; Levin, M.-D.; Westerweel, P.E.; Svanberg, R.; Niemann, C.U.; Kater, A.P.; Eldering, E. Ibrutinib Treatment in CLL Interrupts CD40 Signaling Capacity and Sensitizes CLL Cells to Venetoclax. Blood 2021, 138, 1545. [Google Scholar] [CrossRef]
- Lougaris, V.; Baronio, M.; Vitali, M.; Tampella, G.; Cattalini, M.; Tassone, L.; Soresina, A.; Badolato, R.; Plebani, A. Bruton Tyrosine Kinase Mediates TLR9-Dependent Human Dendritic Cell Activation. J. Allergy Clin. Immunol. 2014, 133, 1644–1650.e4. [Google Scholar] [CrossRef]
- Rip, J.; de Bruijn, M.J.W.; Appelman, M.K.; Pal Singh, S.; Hendriks, R.W.; Corneth, O.B.J. Toll-Like Receptor Signaling Drives Btk-Mediated Autoimmune Disease. Front. Immunol. 2019, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Mongini, P.K.A.; Gupta, R.; Boyle, E.; Nieto, J.; Lee, H.; Stein, J.; Bandovic, J.; Stankovic, T.; Barrientos, J.; Kolitz, J.E.; et al. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. J. Immunol. Baltim. 2015, 195, 901–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, E.; Coulter, E.; Halliwell, E.; Profitos-Peleja, N.; Walsby, E.; Clark, B.; Phillips, E.H.; Burley, T.A.; Mitchell, S.; Devereux, S.; et al. TLR9 Expression in Chronic Lymphocytic Leukemia Identifies a Promigratory Subpopulation and Novel Therapeutic Target. Blood 2021, 137, 3064–3078. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Moseman, E.A.; Farrar, M.A.; Bachanova, V.; Weisdorf, D.J.; Blazar, B.R.; Chen, W. Toll-like Receptor 9 Signaling by CpG-B Oligodeoxynucleotides Induces an Apoptotic Pathway in Human Chronic Lymphocytic Leukemia B Cells. Blood 2010, 115, 5041–5052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, L.A.; Hallaert, D.Y.H.; Spijker, R.; de Goeij, B.; Jaspers, A.; Kater, A.P.; van Oers, M.H.J.; van Noesel, C.J.M.; Eldering, E. Differential Noxa/Mcl-1 Balance in Peripheral versus Lymph Node Chronic Lymphocytic Leukemia Cells Correlates with Survival Capacity. Blood 2007, 109, 1660–1668. [Google Scholar] [CrossRef] [PubMed]
- Kater, A.P.; Evers, L.M.; Remmerswaal, E.B.M.; Jaspers, A.; Oosterwijk, M.F.; van Lier, R.A.W.; van Oers, M.H.J.; Eldering, E. CD40 Stimulation of B-Cell Chronic Lymphocytic Leukaemia Cells Enhances the Anti-Apoptotic Profile, but Also Bid Expression and Cells Remain Susceptible to Autologous Cytotoxic T-Lymphocyte Attack. Br. J. Haematol. 2004, 127, 404–415. [Google Scholar] [CrossRef]
- Pascutti, M.F.; Jak, M.; Tromp, J.M.; Derks, I.A.M.; Remmerswaal, E.B.M.; Thijssen, R.; van Attekum, M.H.A.; van Bochove, G.G.; Luijks, D.M.; Pals, S.T.; et al. IL-21 and CD40L Signals from Autologous T Cells Can Induce Antigen-Independent Proliferation of CLL Cells. Blood 2013, 122, 3010–3019. [Google Scholar] [CrossRef] [Green Version]
- de Totero, D.; Meazza, R.; Zupo, S.; Cutrona, G.; Matis, S.; Colombo, M.; Balleari, E.; Pierri, I.; Fabbi, M.; Capaia, M.; et al. Interleukin-21 Receptor (IL-21R) Is up-Regulated by CD40 Triggering and Mediates Proapoptotic Signals in Chronic Lymphocytic Leukemia B Cells. Blood 2006, 107, 3708–3715. [Google Scholar] [CrossRef] [Green Version]
- Cutrona, G.; Tripodo, C.; Matis, S.; Recchia, A.G.; Massucco, C.; Fabbi, M.; Colombo, M.; Emionite, L.; Sangaletti, S.; Gulino, A.; et al. Microenvironmental Regulation of the IL-23R/IL-23 Axis Overrides Chronic Lymphocytic Leukemia Indolence. Sci. Transl. Med. 2018, 10, eaal1571. [Google Scholar] [CrossRef] [Green Version]
- Matis, S.; Recchia, A.G.; Colombo, M.; Cardillo, M.; Fabbi, M.; Todoerti, K.; Bossio, S.; Fabris, S.; Cancila, V.; Massara, R.; et al. MiR-146b-5p Regulates Il-23 Receptor Complex Expression in Chronic Lymphocytic Leukemia Cells. Blood Adv. 2022, 6, 5593–5612. [Google Scholar] [CrossRef]
- Rossi, D.; Spina, V.; Gaidano, G. Biology and Treatment of Richter Syndrome. Blood 2018, 131, 2761–2772. [Google Scholar] [CrossRef]
- Condoluci, A.; Rossi, D. Richter Syndrome. Curr. Oncol. Rep. 2021, 23, 26. [Google Scholar] [CrossRef]
- Mao, Z.; Quintanilla-Martinez, L.; Raffeld, M.; Richter, M.; Krugmann, J.; Burek, C.; Hartmann, E.; Rudiger, T.; Jaffe, E.S.; Müller-Hermelink, H.K.; et al. IgVH Mutational Status and Clonality Analysis of Richter’s Transformation: Diffuse Large B-Cell Lymphoma and Hodgkin Lymphoma in Association with B-Cell Chronic Lymphocytic Leukemia (B-CLL) Represent 2 Different Pathways of Disease Evolution. Am. J. Surg. Pathol. 2007, 31, 1605–1614. [Google Scholar] [CrossRef]
- Rossi, D.; Spina, V.; Deambrogi, C.; Rasi, S.; Laurenti, L.; Stamatopoulos, K.; Arcaini, L.; Lucioni, M.; Rocque, G.B.; Xu-Monette, Z.Y.; et al. The Genetics of Richter Syndrome Reveals Disease Heterogeneity and Predicts Survival after Transformation. Blood 2011, 117, 3391–3401. [Google Scholar] [CrossRef] [Green Version]
- Chigrinova, E.; Rinaldi, A.; Kwee, I.; Rossi, D.; Rancoita, P.M.V.; Strefford, J.C.; Oscier, D.; Stamatopoulos, K.; Papadaki, T.; Berger, F.; et al. Two Main Genetic Pathways Lead to the Transformation of Chronic Lymphocytic Leukemia to Richter Syndrome. Blood 2013, 122, 2673–2682. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, G.; Khiabanian, H.; Holmes, A.B.; Wang, J.; Messina, M.; Mullighan, C.G.; Pasqualucci, L.; Rabadan, R.; Dalla-Favera, R. Genetic Lesions Associated with Chronic Lymphocytic Leukemia Transformation to Richter Syndrome. J. Exp. Med. 2013, 210, 2273–2288. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Martines, C.; Porro, F.; Fortunati, I.; Bonato, A.; Dimishkovska, M.; Piazza, S.; Yadav, B.S.; Innocenti, I.; Fazio, R.; et al. B-Cell Receptor Signaling and Genetic Lesions in TP53 and CDKN2A/CDKN2B Cooperate in Richter Transformation. Blood 2021, 138, 1053–1066. [Google Scholar] [CrossRef]
- Rossi, D.; Spina, V.; Cerri, M.; Rasi, S.; Deambrogi, C.; De Paoli, L.; Laurenti, L.; Maffei, R.; Forconi, F.; Bertoni, F.; et al. Stereotyped B-Cell Receptor Is an Independent Risk Factor of Chronic Lymphocytic Leukemia Transformation to Richter Syndrome. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 4415–4422. [Google Scholar] [CrossRef] [Green Version]
- Tsang, M.; Shanafelt, T.D.; Call, T.G.; Ding, W.; Chanan-Khan, A.; Leis, J.F.; Nowakowski, G.S.; Bowen, D.; Conte, M.; Schwager, S.M.; et al. The Efficacy of Ibrutinib in the Treatment of Richter Syndrome. Blood 2015, 125, 1676–1678. [Google Scholar] [CrossRef] [Green Version]
- Giri, S.; Hahn, A.; Yaghmour, G.; Martin, M.G. Ibrutinib Has Some Activity in Richter’s Syndrome. Blood Cancer J. 2015, 5, e277. [Google Scholar] [CrossRef] [Green Version]
- Eyre, T.A.; Schuh, A.; Wierda, W.G.; Brown, J.R.; Ghia, P.; Pagel, J.M.; Furman, R.R.; Cheung, J.; Hamdy, A.; Izumi, R.; et al. Acalabrutinib Monotherapy for Treatment of Chronic Lymphocytic Leukaemia (ACE-CL-001): Analysis of the Richter Transformation Cohort of an Open-Label, Single-Arm, Phase 1-2 Study. Lancet Haematol. 2021, 8, e912–e921. [Google Scholar] [CrossRef]
- Gurrieri, C.; McGuire, P.; Zan, H.; Yan, X.-J.; Cerutti, A.; Albesiano, E.; Allen, S.L.; Vinciguerra, V.; Rai, K.R.; Ferrarini, M.; et al. Chronic Lymphocytic Leukemia B Cells Can Undergo Somatic Hypermutation and Intraclonal Immunoglobulin V(H)DJ(H) Gene Diversification. J. Exp. Med. 2002, 196, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Volkheimer, A.D.; Weinberg, J.B.; Beasley, B.E.; Whitesides, J.F.; Gockerman, J.P.; Moore, J.O.; Kelsoe, G.; Goodman, B.K.; Levesque, M.C. Progressive Immunoglobulin Gene Mutations in Chronic Lymphocytic Leukemia: Evidence for Antigen-Driven Intraclonal Diversification. Blood 2007, 109, 1559–1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagnara, D.; Callea, V.; Stelitano, C.; Morabito, F.; Fabris, S.; Neri, A.; Zanardi, S.; Ghiotto, F.; Ciccone, E.; Grossi, C.E.; et al. IgV Gene Intraclonal Diversification and Clonal Evolution in B-Cell Chronic Lymphocytic Leukaemia. Br. J. Haematol. 2006, 133, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Sutton, L.-A.; Kostareli, E.; Hadzidimitriou, A.; Darzentas, N.; Tsaftaris, A.; Anagnostopoulos, A.; Rosenquist, R.; Stamatopoulos, K. Extensive Intraclonal Diversification in a Subgroup of Chronic Lymphocytic Leukemia Patients with Stereotyped IGHV4-34 Receptors: Implications for Ongoing Interactions with Antigen. Blood 2009, 114, 4460–4468. [Google Scholar] [CrossRef]
- Campbell, P.J.; Pleasance, E.D.; Stephens, P.J.; Dicks, E.; Rance, R.; Goodhead, I.; Follows, G.A.; Green, A.R.; Futreal, P.A.; Stratton, M.R. Subclonal Phylogenetic Structures in Cancer Revealed by Ultra-Deep Sequencing. Proc. Natl. Acad. Sci. USA 2008, 105, 13081–13086. [Google Scholar] [CrossRef] [Green Version]
- Bagnara, D.; Tang, C.; Brown, J.R.; Kasar, S.; Fernandes, S.; Colombo, M.; Vergani, S.; Mazzarello, A.N.; Ghiotto, F.; Bruno, S.; et al. Post-Transformation IGHV-IGHD-IGHJ Mutations in Chronic Lymphocytic Leukemia B Cells: Implications for Mutational Mechanisms and Impact on Clinical Course. Front. Oncol. 2021, 11, 640731. [Google Scholar] [CrossRef]
- Victora, G.D.; Nussenzweig, M.C. Germinal Centers. Annu. Rev. Immunol. 2022, 40, 413–442. [Google Scholar] [CrossRef]
- Oppezzo, P.; Navarrete, M.; Chiorazzi, N. AID in Chronic Lymphocytic Leukemia: Induction and Action during Disease Progression. Front. Oncol. 2021, 11, 634383. [Google Scholar] [CrossRef]
- Blakemore, S.J.; Clifford, R.; Parker, H.; Antoniou, P.; Stec-Dziedzic, E.; Larrayoz, M.; Davis, Z.; Kadalyayil, L.; Colins, A.; Robbe, P.; et al. Clinical Significance of TP53, BIRC3, ATM and MAPK-ERK Genes in Chronic Lymphocytic Leukaemia: Data from the Randomised UK LRF CLL4 Trial. Leukemia 2020, 34, 1760–1774. [Google Scholar] [CrossRef] [Green Version]
- Brieghel, C.; Kinalis, S.; Yde, C.W.; Schmidt, A.Y.; Jønson, L.; Andersen, M.A.; da Cunha-Bang, C.; Pedersen, L.B.; Geisler, C.H.; Nielsen, F.C.; et al. Deep Targeted Sequencing of TP53 in Chronic Lymphocytic Leukemia: Clinical Impact at Diagnosis and at Time of Treatment. Haematologica 2019, 104, 789–796. [Google Scholar] [CrossRef]
- Bomben, R.; Rossi, F.M.; Vit, F.; Bittolo, T.; D’Agaro, T.; Zucchetto, A.; Tissino, E.; Pozzo, F.; Vendramini, E.; Degan, M.; et al. TP53 Mutations with Low Variant Allele Frequency Predict Short Survival in Chronic Lymphocytic Leukemia. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 5566–5575. [Google Scholar] [CrossRef]
- Malcikova, J.; Pavlova, S.; Kunt Vonkova, B.; Radova, L.; Plevova, K.; Kotaskova, J.; Pal, K.; Dvorackova, B.; Zenatova, M.; Hynst, J.; et al. Low-Burden TP53 Mutations in CLL: Clinical Impact and Clonal Evolution within the Context of Different Treatment Options. Blood 2021, 138, 2670–2685. [Google Scholar] [CrossRef]
- Förster, I.; Gu, H.; Rajewsky, K. Germline Antibody V Regions as Determinants of Clonal Persistence and Malignant Growth in the B Cell Compartment. EMBO J. 1988, 7, 3693–3703. [Google Scholar] [CrossRef]
- Förster, I.; Rajewsky, K. Expansion and Functional Activity of Ly-1+ B Cells upon Transfer of Peritoneal Cells into Allotype-Congenic, Newborn Mice. Eur. J. Immunol. 1987, 17, 521–528. [Google Scholar] [CrossRef]
- Hayakawa, K.; Formica, A.M.; Colombo, M.J.; Shinton, S.A.; Brill-Dashoff, J.; Morse, H.C., III; Li, Y.-S.; Hardy, R.R. Loss of a Chromosomal Region with Synteny to Human 13q14 Occurs in Mouse Chronic Lymphocytic Leukemia That Originates from Early-Generated B-1 B Cells. Leukemia 2016, 30, 1510–1519. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Albesiano, E.; Zanesi, N.; Yancopoulos, S.; Sawyer, A.; Romano, E.; Petlickovski, A.; Efremov, D.G.; Croce, C.M.; Chiorazzi, N. B Cell Receptors in TCL1 Transgenic Mice Resemble Those of Aggressive, Treatment-Resistant Human Chronic Lymphocytic Leukemia. Proc. Natl. Acad. Sci. USA 2006, 103, 11713–11718. [Google Scholar] [CrossRef] [Green Version]
- Woyach, J.A.; Bojnik, E.; Ruppert, A.S.; Stefanovski, M.R.; Goettl, V.M.; Smucker, K.A.; Smith, L.L.; Dubovsky, J.A.; Towns, W.H.; MacMurray, J.; et al. Bruton’s Tyrosine Kinase (BTK) Function Is Important to the Development and Expansion of Chronic Lymphocytic Leukemia (CLL). Blood 2014, 123, 1207–1213. [Google Scholar] [CrossRef]
- Schmid, V.K.; Khadour, A.; Ahmed, N.; Brandl, C.; Nitschke, L.; Rajewsky, K.; Jumaa, H.; Hobeika, E. B-Cell Antigen Receptor Expression and Phosphatidylinositol 3-Kinase Signaling Regulate Genesis and Maintenance of Mouse Chronic Lymphocytic Leukemia. Haematologica 2022, 107, 1796–1814. [Google Scholar] [CrossRef]
- Rosenwald, A.; Alizadeh, A.A.; Widhopf, G.; Simon, R.; Davis, R.E.; Yu, X.; Yang, L.; Pickeral, O.K.; Rassenti, L.Z.; Powell, J.; et al. Relation of Gene Expression Phenotype to Immunoglobulin Mutation Genotype in B Cell Chronic Lymphocytic Leukemia. J. Exp. Med. 2001, 194, 1639–1647. [Google Scholar] [CrossRef]
- Klein, U.; Tu, Y.; Stolovitzky, G.A.; Mattioli, M.; Cattoretti, G.; Husson, H.; Freedman, A.; Inghirami, G.; Cro, L.; Baldini, L.; et al. Gene Expression Profiling of B Cell Chronic Lymphocytic Leukemia Reveals a Homogeneous Phenotype Related to Memory B Cells. J. Exp. Med. 2001, 194, 1625–1638. [Google Scholar] [CrossRef] [PubMed]
- Negrini, M.; Cutrona, G.; Bassi, C.; Fabris, S.; Zagatti, B.; Colombo, M.; Ferracin, M.; D’Abundo, L.; Saccenti, E.; Matis, S.; et al. MicroRNAome Expression in Chronic Lymphocytic Leukemia: Comparison with Normal B-Cell Subsets and Correlations with Prognostic and Clinical Parameters. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 4141–4153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oakes, C.C.; Claus, R.; Gu, L.; Assenov, Y.; Hüllein, J.; Zucknick, M.; Bieg, M.; Brocks, D.; Bogatyrova, O.; Schmidt, C.R.; et al. Evolution of DNA Methylation Is Linked to Genetic Aberrations in Chronic Lymphocytic Leukemia. Cancer Discov. 2014, 4, 348–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, S.M.; Williams, A.; Eisenbarth, S.C. Structure and Function of the Immune System in the Spleen. Sci. Immunol. 2019, 4, eaau6085. [Google Scholar] [CrossRef] [PubMed]
- Darwiche, W.; Gubler, B.; Marolleau, J.-P.; Ghamlouch, H. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective. Front. Immunol. 2018, 9, 683. [Google Scholar] [CrossRef]
- Alizadeh, A.A.; Majeti, R. Surprise! HSC Are Aberrant in Chronic Lymphocytic Leukemia. Cancer Cell 2011, 20, 135–136. [Google Scholar] [CrossRef] [Green Version]
- Condoluci, A.; Rossi, D. Age-Related Clonal Hematopoiesis and Monoclonal B-Cell Lymphocytosis/Chronic Lymphocytic Leukemia: A New Association? Haematologica 2018, 103, 751–752. [Google Scholar] [CrossRef] [Green Version]
- Kikushige, Y.; Ishikawa, F.; Miyamoto, T.; Shima, T.; Urata, S.; Yoshimoto, G.; Mori, Y.; Iino, T.; Yamauchi, T.; Eto, T.; et al. Self-Renewing Hematopoietic Stem Cell Is the Primary Target in Pathogenesis of Human Chronic Lymphocytic Leukemia. Cancer Cell 2011, 20, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Bagnara, D.; Kaufman, M.S.; Calissano, C.; Marsilio, S.; Patten, P.E.M.; Simone, R.; Chum, P.; Yan, X.-J.; Allen, S.L.; Kolitz, J.E.; et al. A Novel Adoptive Transfer Model of Chronic Lymphocytic Leukemia Suggests a Key Role for T Lymphocytes in the Disease. Blood 2011, 117, 5463–5472. [Google Scholar] [CrossRef]
- Spivak, J.L. Myeloproliferative Neoplasms. N. Engl. J. Med. 2017, 376, 2168–2181. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, S.; Ebert, B.L. Clonal Hematopoiesis in Human Aging and Disease. Science 2019, 366, eaan4673. [Google Scholar] [CrossRef]
- Plevova, K.; Francova, H.S.; Burckova, K.; Brychtova, Y.; Doubek, M.; Pavlova, S.; Malcikova, J.; Mayer, J.; Tichy, B.; Pospisilova, S. Multiple Productive Immunoglobulin Heavy Chain Gene Rearrangements in Chronic Lymphocytic Leukemia Are Mostly Derived from Independent Clones. Haematologica 2014, 99, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Klinger, M.; Zheng, J.; Elenitoba-Johnson, K.S.J.; Perkins, S.L.; Faham, M.; Bahler, D.W. Next-Generation IgVH Sequencing CLL-like Monoclonal B-Cell Lymphocytosis Reveals Frequent Oligoclonality and Ongoing Hypermutation. Leukemia 2016, 30, 1055–1061. [Google Scholar] [CrossRef]
- Brazdilova, K.; Plevova, K.; Skuhrova Francova, H.; Kockova, H.; Borsky, M.; Bikos, V.; Malcikova, J.; Oltova, A.; Kotaskova, J.; Tichy, B.; et al. Multiple Productive IGH Rearrangements Denote Oligoclonality Even in Immunophenotypically Monoclonal CLL. Leukemia 2018, 32, 234–236. [Google Scholar] [CrossRef]
- Berndt, S.I.; Skibola, C.F.; Joseph, V.; Camp, N.J.; Nieters, A.; Wang, Z.; Cozen, W.; Monnereau, A.; Wang, S.S.; Kelly, R.S.; et al. Genome-Wide Association Study Identifies Multiple Risk Loci for Chronic Lymphocytic Leukemia. Nat. Genet. 2013, 45, 868–876. [Google Scholar] [CrossRef] [Green Version]
- Speedy, H.E.; Di Bernardo, M.C.; Sava, G.P.; Dyer, M.J.S.; Holroyd, A.; Wang, Y.; Sunter, N.J.; Mansouri, L.; Juliusson, G.; Smedby, K.E.; et al. A Genome-Wide Association Study Identifies Multiple Susceptibility Loci for Chronic Lymphocytic Leukemia. Nat. Genet. 2014, 46, 56–60. [Google Scholar] [CrossRef]
- Damm, F.; Mylonas, E.; Cosson, A.; Yoshida, K.; Della Valle, V.; Mouly, E.; Diop, M.; Scourzic, L.; Shiraishi, Y.; Chiba, K.; et al. Acquired Initiating Mutations in Early Hematopoietic Cells of CLL Patients. Cancer Discov. 2014, 4, 1088–1101. [Google Scholar] [CrossRef] [Green Version]
- Marsilio, S.; Khiabanian, H.; Fabbri, G.; Vergani, S.; Scuoppo, C.; Montserrat, E.; Shpall, E.J.; Hadigol, M.; Marin, P.; Rai, K.R.; et al. Somatic CLL Mutations Occur at Multiple Distinct Hematopoietic Maturation Stages: Documentation and Cautionary Note Regarding Cell Fraction Purity. Leukemia 2018, 32, 1041–1044. [Google Scholar] [CrossRef] [Green Version]
- Quijada-Álamo, M.; Hernández-Sánchez, M.; Robledo, C.; Hernández-Sánchez, J.-M.; Benito, R.; Montaño, A.; Rodríguez-Vicente, A.E.; Quwaider, D.; Martín, A.-Á.; García-Álvarez, M.; et al. Next-Generation Sequencing and FISH Studies Reveal the Appearance of Gene Mutations and Chromosomal Abnormalities in Hematopoietic Progenitors in Chronic Lymphocytic Leukemia. J. Hematol. Oncol. 2017, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Agathangelidis, A.; Ljungström, V.; Scarfò, L.; Fazi, C.; Gounari, M.; Pandzic, T.; Sutton, L.-A.; Stamatopoulos, K.; Tonon, G.; Rosenquist, R.; et al. Highly Similar Genomic Landscapes in Monoclonal B-Cell Lymphocytosis and Ultra-Stable Chronic Lymphocytic Leukemia with Low Frequency of Driver Mutations. Haematologica 2018, 103, 865–873. [Google Scholar] [CrossRef]
Feature | Requirement |
---|---|
HCDR3 aa Identity | ≥50% |
HCDR3 aa similarity | ≥70% |
HCDR3 aa composition * | shared subset specific motifs |
HCDR3 aa length * | shared |
IGHV | shared clan or, in some cases, gene |
IGHV mutational status | shared |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagnara, D.; Mazzarello, A.N.; Ghiotto, F.; Colombo, M.; Cutrona, G.; Fais, F.; Ferrarini, M. Old and New Facts and Speculations on the Role of the B Cell Receptor in the Origin of Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2022, 23, 14249. https://doi.org/10.3390/ijms232214249
Bagnara D, Mazzarello AN, Ghiotto F, Colombo M, Cutrona G, Fais F, Ferrarini M. Old and New Facts and Speculations on the Role of the B Cell Receptor in the Origin of Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences. 2022; 23(22):14249. https://doi.org/10.3390/ijms232214249
Chicago/Turabian StyleBagnara, Davide, Andrea Nicola Mazzarello, Fabio Ghiotto, Monica Colombo, Giovanna Cutrona, Franco Fais, and Manlio Ferrarini. 2022. "Old and New Facts and Speculations on the Role of the B Cell Receptor in the Origin of Chronic Lymphocytic Leukemia" International Journal of Molecular Sciences 23, no. 22: 14249. https://doi.org/10.3390/ijms232214249
APA StyleBagnara, D., Mazzarello, A. N., Ghiotto, F., Colombo, M., Cutrona, G., Fais, F., & Ferrarini, M. (2022). Old and New Facts and Speculations on the Role of the B Cell Receptor in the Origin of Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 23(22), 14249. https://doi.org/10.3390/ijms232214249