A Comparative Characterization and Expression Profiling Analysis of Fructokinase and Fructokinase-like Genes: Exploring Their Roles in Cucumber Development and Chlorophyll Biosynthesis
Abstract
:1. Introduction
2. Results
2.1. Identification of CsFRKs and CsFLNs at the Whole-Genome Level
2.2. Gene Distribution and Duplication Analyses of CsFRKs and CsFLNs
2.3. Phylogenetic Relationships of the FRKs and FLNs from Cucumber and Other Plants
2.4. Conserved Motif and Gene Structure Analyses of the FRKs and FLNs in Cucumber and Other Plants
2.5. Cis-elements in the Promoter Region of CsFRKs and CsFLNs
2.6. Expression Patterns of CsFRKs and CsFLNs in Different Tissues
2.7. Potential Roles of CsFRKs and CsFLNs in Chlorophyll Synthesis Pathway
3. Discussion
3.1. Basic Characteristics of Cucumber FRKs and FLNs
3.2. Functional Roles of CsFRKs and CsFLNs in Different Tissues
3.3. Two Plastid-Localized CsFRK1 and CsFLN2 Involved in the Biosynthesis of Chlorophyll
4. Materials and Methods
4.1. Characterization and Phylogenetic Analysis of CsFRK and CsFLN Family
4.2. Identification of Protein Subcellular Localization and Conserved Domains
4.3. Analyses of Gene Localization, Structure, Duplication and Synteny Analysis
4.4. Promoter Cis-Element Analysis
4.5. RNA-seq-Based Expression Profiling
4.6. Plant Materials and Sampling
4.7. Assay of Photosynthetic Pigment Content
4.8. RNA Isolation and RT-qPCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Liu, X.; Zhao, Y.; Nie, J.; Yao, X.; Lv, L.; Yang, J.; Ma, N.; Guo, Y.; Li, Y.; et al. Alkaline a-galactosidase 2 (CsAGA2) plays a pivotal role in mediating source-sink communication in cucumber. Plant Physiol. 2022, 189, 1501–1518. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sui, X.; Guo, J.; Wang, Z.; Cheng, J.; Ma, S.; Li, X.; Zhang, Z. Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Plant Cell Environ. 2014, 37, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Wang, H.; Li, X.; Sui, X.; Zhang, Z. Down-regulating cucumber Sucrose Synthase 4 (CsSUS4) suppresses the growth and development of flowers and fruits. Plant Cell Physiol. 2019, 60, 752–764. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Yao, X.; Wang, J.; Feng, S.; Sun, L.; Ma, S.; Xu, K.; Chen, L.Q.; Sui, X. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development. Plant Physiol. 2021, 186, 640–654. [Google Scholar] [CrossRef] [PubMed]
- Granot, D. Role of tomato hexose kinases. Funct. Plant Biol. 2007, 34, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhao, Y.; Chen, S.; Xie, J.; Zhang, D. Evolution and functional divergence of the fructokinase gene family in Populus. Front. Plant Sci. 2020, 11, 484. [Google Scholar] [CrossRef]
- Fennington, G.J.; Hughes, T.A. The fructokinase from Rhizobium leguminosarum biovar trifolii belongs to group I fructokinase enzymes and is encoded separately from other carbohydrate metabolism enzymes. Microbiology 1996, 142, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Gupta, R.S. Adenosine kinase and ribokinase-the RK family of proteins. Cell Mol. Life Sci. 2008, 65, 2875–2896. [Google Scholar] [CrossRef]
- Arsova, B.; Hoja, U.; Wimmelbacher, M.; Greiner, E.; Ustun, S.; Melzer, M.; Petersen, K.; Lein, W.; Börnke, F. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: Evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 2010, 22, 1498–1515. [Google Scholar] [CrossRef] [Green Version]
- Gilkerson, J.; Perez-Ruiz, J.M.; Chory, J.; Callis, J. The plastid-localized pfkB-type carbohydrate kinases FRUCTOKINASE-LIKE 1 and 2 are essential for growth and development of Arabidopsis thaliana. BMC Plant Biol. 2012, 12, 102. [Google Scholar] [CrossRef]
- Stein, O.; Granot, D. Plant fructokinases: Evolutionary, developmental, and metabolic aspects in sink tissues. Front. Plant Sci. 2018, 9, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riggs, J.W.; Cavale, P.C.; Chapiro, S.M.; Callis, J. Identification and biochemical characterization of the fructokinase gene family in Arabidopsis thaliana. BMC Plant Biol. 2017, 17, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odanaka, S.; Bennett, A.B.; Kanayama, Y. Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato. Plant Physiol. 2002, 129, 1119–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.; Kim, S.Y.; Ahn, J.H. Twin sister of FT (TSF) interacts with FRUCTOKINASE6 and inhibits its kinase activity in Arabidopsis. Front. Plant Sci. 2017, 8, 1807. [Google Scholar] [CrossRef] [Green Version]
- Stein, O.; Avin-Wittenberg, T.; Krahnert, I.; Zemach, H.; Bogol, V.; Daron, O.; Aloni, R.; Fernie, A.R.; Granot, D. Arabidopsis fructokinases are important for seed oil accumulation and vascular development. Front. Plant Sci. 2017, 7, 2047. [Google Scholar] [CrossRef] [Green Version]
- Stein, O.; Damari-Weissler, H.; Secchi, F.; Rachamilevitch, S.; German, M.A.; Yeselson, Y.; Amir, R.; Schaffer, A.; Holbrook, N.M.; Aloni, R.; et al. The tomato plastidic fructokinase SlFRK3 plays a role in xylem development. New Phytol. 2016, 209, 1484–1495. [Google Scholar] [CrossRef]
- David-Schwartz, R.; Weintraub, L.; Vidavski, R.; Zemach, H.; Murakhovsky, L.; Swartzberg, D.; Granot, D. The SlFRK4 promoter is active only during late stages of pollen and anther development. Plant Sci. 2013, 199, 61–70. [Google Scholar] [CrossRef]
- Lv, Y.; Shao, G.; Qiu, J.; Jiao, G.; Sheng, Z.; Xie, L.; Wu, Y.; Tang, S.; Wei, X.; Hu, P. White leaf and Panicle 2, encoding a PEP-associated protein, is required for chloroplast biogenesis under heat stress in rice. J. Exp. Bot. 2017, 68, 5147–5160. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Ze, M.; Yin, J.; Chern, M.; Wang, M.; Zhang, X.; Deng, R.; Li, Y.; Liao, H.; Wang, L.; et al. A phosphofructokinase B-type carbohydrate kinase family protein, PFKB1, is essential for chloroplast development at early seedling stage in rice. Plant Sci. 2019, 290, 110295. [Google Scholar] [CrossRef]
- Ogawa, T.; Nishimura, K.; Aoki, T.; Takase, H.; Tomizawa, K.I.; Ashida, H.; Yokota, A. A phosphofructokinase B-type carbohydrate kinase family protein, NARA5, for massive expressions of plastid-encoded photosynthetic genes in Arabidopsis. Plant Physiol. 2009, 151, 114–128. [Google Scholar] [CrossRef]
- Wimmelbacher, M.; Börnke, F. Redox activity of thioredoxin z and fructokinase-like protein 1 is dispensable for autotrophic growth of Arabidopsis thaliana. J. Exp. Bot. 2014, 65, 2405–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damari-Weissler, H.; Kandel-Kfir, M.; Gidoni, D.; Mett, A.; Belausov, E.; Granot, D. Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants. Planta 2006, 224, 1495–1502. [Google Scholar] [CrossRef]
- Qiu, Z.; Kang, S.; He, L.; Zhao, J.; Zhang, S.; Hu, J.; Zeng, D.; Zhang, G.; Dong, G.; Gao, Z. The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Sci. 2018, 267, 168–179. [Google Scholar] [CrossRef]
- He, L.; Zhang, S.; Qiu, Z.; Zhao, J.; Nie, W.; Lin, H.; Zhu, Z.; Zeng, D.; Qian, Q.; Zhu, L. Fructokinase-Like Protein 1 interacts with TRXz to regulate chloroplast development in rice. J. Integr. Plant Biol. 2018, 60, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Geng, M.T.; Wu, X.H.; Sun, C.; Wang, Y.L.; Chen, X.; Shang, L.; Lu, X.H.; Li, Z.; Li, R.M.; et al. Identification, expression, and functional analysis of the fructokinase gene family in cassava. Int. J. Mol. Sci. 2017, 18, 2398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thumuluri, V.; Armenteros, J.J.A.; Johansen, A.R.; Nielsen, H.; Winther, O. DeepLoc 2.0: Multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022, 50, W228–W234. [Google Scholar] [CrossRef]
- Li, N.; Qian, W.; Wang, L.; Cao, H.; Hao, X.; Yang, Y.; Wang, X. Isolation and expression features of hexose kinase genes under various abiotic stresses in the tea plant (Camellia sinensis). J. Plant Physiol. 2017, 209, 95–104. [Google Scholar] [CrossRef]
- Qin, Q.P.; Cui, Y.Y.; Zhang, L.L.; Lin, F.F.; Lai, Q.X. Isolation and induced expression of a fructokinase gene from loquat. Russ. J. Plant Physiol. 2014, 61, 289–297. [Google Scholar] [CrossRef]
- German, M.A.; Asher, I.; Petreikov, M.; Dai, N.; Schaffer, A.A.; Granot, D. Cloning, expression and characterization of LeFRK3, the fourth tomato (Lycopersicon esculentum Mill.) gene encoding fructokinase. Plant Sci. 2004, 166, 285–291. [Google Scholar] [CrossRef]
- Damari-Weissler, H.; Rachamilevitch, S.; Aloni, R.; German, M.A.; Cohen, S.; Zwieniecki, M.A.; Holbrook, N.M.; Granot, D. LeFRK2 is required for phloem and xylem differentiation and the transport of both sugar and water. Planta 2009, 230, 795–805. [Google Scholar] [CrossRef]
- Shinozaki, Y.; Beauvoitd, B.P.; Takahara, M.; Hao, S.; Ezura, K.; Andrieu, M.H.; Nishida, K.; Mori, K.; Suzuki, Y.; Kuhara, S.; et al. Fruit setting rewires central metabolism via gibberellin cascades. Proc. Natl. Acad. Sci. USA 2020, 117, 23970–23981. [Google Scholar] [CrossRef] [PubMed]
- German, M.A.; Dai, N.; Chmelnitsky, I.; Sobolev, I.; Salts, Y.; Barg, R.; Schaffer, A.A.; Granot, D. LeFRK4, a novel tomato (Lycopersicon esculentum Mill.) fructokinase specifically expressed in stamens. Plant Sci. 2002, 163, 607–613. [Google Scholar] [CrossRef]
- Zhao, M.H.; Li, X.; Zhang, X.X.; Zhang, H.; Zhao, X.Y. Mutation mechanism of leaf color in plants: A review. Forests 2020, 11, 851. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.E.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana: Totowa, NJ, USA, 2005; Volume 52, pp. 571–607. [Google Scholar]
- Chen, Y.; Zhang, Q.; Hu, W.; Zhang, X.; Wang, L.; Hua, X.; Yu, Q.; Ming, R.; Zhang, J. Evolution and expression of the fructokinase gene family in Saccharum. BMC Genom. 2017, 18, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Procter, J.B.; Carstairs, G.M.; Soares, B.; Mourão, T.K.; Ofoegbu, C.; Barton, D.; Lui, L.; Menard, A.; Sherstnev, N.; Roldan-Martinez, D.; et al. Alignment of Biological Sequences with Jalview. In Methods in Molecular Biology; Katoh, K., Ed.; Humana: New York, NY, USA, 2021; Volume 2231, pp. 203–224. [Google Scholar]
- Nguyen, G.T.T.; Sutinen, A.; Raasakka, A.; Muruganandam, G.; Loris, R.; Kursula, P. Structure of the complete dimeric human GDAP1 core domain provides insights into ligand binding and clustering of disease mutations. Front. Mol. Biosci. 2021, 7, 631232. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Li, Y.; Ding, L.; Yan, S.; Liu, M.; Jiang, L.; Zhao, W.; Wang, Q.; Yan, L.; Liu, R.; et al. Phloem transcriptome signatures underpin the physiological differentiation of the pedicel, stalk and fruit of cucumber (Cucumis sativus L.). Plant Cell Physiol. 2016, 57, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Han, Y.; Hao, J.; Qin, X.; Liu, C.; Fan, S. Exogenous spermidine enhances the photosynthesis and ultrastructure of lettuce seedlings under high-temperature stress. Sci. Hortic. 2022, 291, 110570. [Google Scholar] [CrossRef]
- Liu, X.; Dong, Z.; Liu, C.; Dong, J.; Li, H. Rape chlorophyll extract method research. Bull. Chin. Agron. 2004, 62–63. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Zhang, W.; Xu, Z.; Li, S.; Liu, D.; Wang, L.; Zhou, X. A Comparative Characterization and Expression Profiling Analysis of Fructokinase and Fructokinase-like Genes: Exploring Their Roles in Cucumber Development and Chlorophyll Biosynthesis. Int. J. Mol. Sci. 2022, 23, 14260. https://doi.org/10.3390/ijms232214260
Fan L, Zhang W, Xu Z, Li S, Liu D, Wang L, Zhou X. A Comparative Characterization and Expression Profiling Analysis of Fructokinase and Fructokinase-like Genes: Exploring Their Roles in Cucumber Development and Chlorophyll Biosynthesis. International Journal of Molecular Sciences. 2022; 23(22):14260. https://doi.org/10.3390/ijms232214260
Chicago/Turabian StyleFan, Lianxue, Wenshuo Zhang, Zhuo Xu, Shengnan Li, Dong Liu, Lili Wang, and Xiuyan Zhou. 2022. "A Comparative Characterization and Expression Profiling Analysis of Fructokinase and Fructokinase-like Genes: Exploring Their Roles in Cucumber Development and Chlorophyll Biosynthesis" International Journal of Molecular Sciences 23, no. 22: 14260. https://doi.org/10.3390/ijms232214260
APA StyleFan, L., Zhang, W., Xu, Z., Li, S., Liu, D., Wang, L., & Zhou, X. (2022). A Comparative Characterization and Expression Profiling Analysis of Fructokinase and Fructokinase-like Genes: Exploring Their Roles in Cucumber Development and Chlorophyll Biosynthesis. International Journal of Molecular Sciences, 23(22), 14260. https://doi.org/10.3390/ijms232214260