Identification of NRAS Diagnostic Biomarkers and Drug Targets for Endometrial Cancer—An Integrated in Silico Approach
Abstract
:1. Introduction
2. Results
2.1. Prediction of High-Risk Pathogenic and Stability of nsSNPs
2.2. Identification of Post-Translational Modification (PTM) Sites
2.3. Protein–Protein Interaction (PPI) and Molecular Network Analysis
2.4. Prognosis of NRS in EC Malignancy
2.5. Prediction of Structural Alteration of NRAS nsSNPs
2.6. NRAS Protein Docking
3. Discussion
4. Materials and Methods
4.1. Retrieving SNPs
4.2. Identification of High-Risk nsSNPs
4.3. Prediction of Pathogenicity of Amino Acid Substitutions
4.4. Protein Stability Analysis
4.5. Post Translational Modification (PTM) Sites Identification
4.6. Prediction of Protein-Protein Interaction and Molecular Interaction Network
4.7. Prognosis Analysis
4.8. Molecular Docking Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Shang, X.; Yan, M.; Li, X.; Wang, W.; Wang, Q.; Zhang, C. Variations in incidence and mortality rates of endometrial cancer at the global, regional, and national levels, 1990–2019. Gynecol. Oncol. 2021, 161, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, E.J.; Kitson, S.J.; McAlpine, J.N.; Mukhopadhyay, A.; Powell, M.E.; Singh, N. Endometrial cancer. Lancet 2022, 399, 1412–1428. [Google Scholar] [CrossRef]
- Aksel, T.Z.; Çakir, A.T. Tumor Markers in Endometrial Cancer. Curr. Obstet. Gynecol. Rep. 2020, 9, 15–20. [Google Scholar] [CrossRef]
- OFFICE FOR NATIONAL STATISTICS. CANCER SURVIVAL IN ENGLAND: Adult, Stage at Diagnosis and Childhood-Patients Followed Up… to 2018. DANDY BOOKSELLERS Limited 2019. Available online: https://www.ons.gov.uk/ (accessed on 1 July 2022).
- Moore, A.R.; Rosenberg, S.C.; McCormick, F.; Malek, S. RAS-targeted therapies: Is the undruggable drugged? Nat. Rev. Drug Discov. 2020, 19, 533–552. [Google Scholar] [CrossRef]
- Urick, M.E.; Bell, D.W. Clinical Actionability of Molecular Targets in Endometrial Cancer. Nat. Rev. Cancer 2019, 19, 510–521. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, D.; Yang, X.; Song, Y. Estrogen receptor alpha activates MAPK signaling pathway to promote the development of endometrial cancer. J. Cell. Biochem. 2019, 120, 17593–17601. [Google Scholar] [CrossRef]
- Han, E.; Kwon, A.; Kim, Y.; Han, K.; Park, S.; Min, C.; Kim, M. Prevalence of ras/mapk pathway mutation (KRAS, NRAS, and BRAF) in plasma cell myeloma at a single institute in Korea. Cytotherapy 2019, 21, S25–S26. [Google Scholar] [CrossRef]
- Zhang, H.-H.; Wang, H.-S.; Qian, X.-W.; Fan, C.-Q.; Li, J.; Miao, H.; Zhu, X.-H.; Yu, Y.; Meng, J.-H.; Cao, P.; et al. Genetic variants and clinical significance of pediatric acute lymphoblastic leukemia. Ann. Transl. Med. 2019, 7. [Google Scholar] [CrossRef]
- Han, J.; Zhang, L.; Guo, H.; Wysham, W.Z.; Roque, D.R.; Willson, A.K.; Sheng, X.; Zhou, C.; Bae-Jump, V.L. Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol. Oncol. 2015, 138, 668–675. [Google Scholar] [CrossRef]
- Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis (Review). Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banys-Paluchowski, M.; Milde-Langosch, K.; Fehm, T.; Witzel, I.; Oliveira-Ferrer, L.; Schmalfeldt, B.; Müller, V. Clinical relevance of H-RAS, K-RAS, and N-RAS mRNA expression in primary breast cancer patients. Breast Cancer Res. Treat. 2020, 179, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Randic, T.; Kozar, I.; Margue, C.; Utikal, J.; Kreis, S. NRAS mutant melanoma: Towards better therapies. Cancer Treat. Rev. 2021, 99, 102238. [Google Scholar] [CrossRef] [PubMed]
- Clausen, L.; Abildgaard, A.B.; Gersing, S.K.; Stein, A.; Lindorff-Larsen, K.; Hartmann-Petersen, R. Protein stability and degradation in health and disease. Adv. Protein Chem. Struct. Biol. 2019, 114, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Ramazi, S.; Zahiri, J. Post-translational modifications in proteins: Resources, tools and prediction methods. Database 2021, 2021, baab012. [Google Scholar] [CrossRef]
- Yin, C.; Zhu, B.; Zhang, T.; Liu, T.; Chen, S.; Liu, Y.; Li, X.; Miao, X.; Li, S.; Mi, X.; et al. Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell 2019, 176, 1113–1127.e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahearn, I.M.; Haigis, K.; Bar-Sagi, D.; Philips, M.R. Regulating the Regulator: Post-Translational Modification of Ras. Nat. Rev. Mol. Cell Biol. 2012, 13, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambetti, N.A.; Firestone, A.J.; Remsberg, J.R.; Huang, B.J.; Wong, J.C.; Long, A.M.; Predovic, M.; Suciu, R.M.; Inguva, A.; Kogan, S.C.; et al. Genetic disruption of N-RasG12D palmitoylation perturbs hematopoiesis and prevents myeloid transformation in mice. Blood 2020, 135, 1772–1782. [Google Scholar] [CrossRef]
- Dorard, C.; Estrada, C.; Barbotin, C.; Larcher, M.; Garancher, A.; Leloup, J.; Beermann, F.; Baccarini, M.; Pouponnot, C.; Larue, L.; et al. RAF proteins exert both specific and compensatory functions during tumour progression of NRAS-driven melanoma. Nat. Commun. 2017, 8, 15262. [Google Scholar] [CrossRef] [Green Version]
- Orouji, E.; Orouji, A.; Gaiser, T.; Larribère, L.; Gebhardt, C.; Utikal, J. MAP kinase pathway gene copy alterations in NRAS/BRAF wild-type advanced melanoma. Int. J. Cancer 2016, 138, 2257–2262. [Google Scholar] [CrossRef]
- Cai, D.; Choi, P.S.; Gelbard, M.; Meyerson, M. Identification and characterization of oncogenic SOS1 mutations in lung adenocarcinoma. Mol. Cancer Res. 2019, 17, 1002–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kourea, H.P.; Nikolaou, M.; Tzelepi, V.; Adonakis, G.; Kardamakis, D.; Tsapanos, V.; Scopa, C.D.; Kalofonos, C.; Decavalas, G. Expression of Phosphorylated Akt, mTOR and MAPK in Type I Endometrial Carcinoma: Clinical Significance. Anticancer Res. 2015, 35, 2321–2331. [Google Scholar] [PubMed]
- Gockley, A.A.; Kolin, D.L.; Awtrey, C.S.; Lindeman, N.I.; Matulonis, U.A.; Konstantinopoulos, P.A. Durable response in a woman with recurrent low-grade endometrioid endometrial cancer and a germline BRCA2 mutation treated with a PARP inhibitor. Gynecol. Oncol. 2018, 150, 219–226. [Google Scholar] [CrossRef] [PubMed]
- van der Putten, L.J.M.; van Hoof, R.; Tops, B.B.J.; Snijders, M.P.L.M.; van den Berg-van Erp, S.H.; van der Wurff, A.A.M.; Bulten, J.; Pijnenborg, J.M.A.; Massuger, L.F.A.G. Molecular profiles of benign and (pre)malignant endometrial lesions. Carcinogenesis 2017, 38, 329–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Growdon, W.B.; Roussel, B.N.; Scialabba, V.L.; Foster, R.; Dias-Santagata, D.; Iafrate, A.J.; Ellisen, L.W.; Tambouret, R.H.; Rueda, B.R.; Borger, D.R. Tissue-specific signatures of activating PIK3CA and RAS mutations in carcinosarcomas of gynecologic origin. Gynecol. Oncol. 2011, 121, 212–217. [Google Scholar] [CrossRef]
- Champer, M.; Miller, D.; Kuo, D.Y.S. Response to trametinib in recurrent low-grade serous ovarian cancer with NRAS mutation: A case report. Gynecol. Oncol. Rep. 2019, 28, 26–28. [Google Scholar] [CrossRef]
- Du, X.; Li, Y.; Xia, Y.L.; Ai, S.M.; Liang, J.; Sang, P.; Ji, X.L.; Liu, S.Q. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods. Int. J. Mol. Sci. 2016, 17, 144. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Petukh, M.; Alexov, E.; Panchenko, A.R. Predicting the impact of missense mutations on protein-protein binding affinity. J. Chem. Theory Comput. 2014, 10, 1770–1780. [Google Scholar] [CrossRef]
- Colombo, E.-E. ESTRO consensus conference on endometrial cancer: Diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, 16. [Google Scholar] [CrossRef]
- Coll-de la Rubia, E.; Martinez-Garcia, E.; Dittmar, G.; Nazarov, P.V.; Bebia, V.; Cabrera, S.; Gil-Moreno, A.; Colás, E. In silico Approach for Validating and Unveiling New Applications for Prognostic Biomarkers of Endometrial Cancer. Cancers 2021, 13, 5052. [Google Scholar] [CrossRef]
- Lim, E.C.; Lim, S.W.; Tan, K.J.; Sathiya, M.; Cheng, W.H.; Lai, K.S.; Loh, J.Y.; Yap, W.S. In-Silico Analysis of Deleterious SNPs of FGF4 Gene and Their Impacts on Protein Structure, Function and Bladder Cancer Prognosis. Life 2022, 12, 1018. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Chan, A.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015, 31, 2745–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, N.-L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendl, J.; Stourac, J.; Salanda, O.; Pavelka, A.; Wieben, E.D.; Zendulka, J.; Brezovsky, J.; Damborsky, J. PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput. Biol. 2014, 10, e1003440. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Calabrese, R.; Fariselli, P.; Martelli, P.L.; Altman, R.B.; Casadio, R. WS-SNPs&GO: A web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genom. 2013, 14, S6. [Google Scholar]
- Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.A.; Lin, G.N.; Nam, H.-J.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat. Commun. 2020, 11, 5918. [Google Scholar] [CrossRef]
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005, 33, W306–W310. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Blom, N.; Gammeltoft, S.; Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 1999, 294, 1351–1362. [Google Scholar] [CrossRef]
- Yang, Y.; He, Y.; Wang, X.; Liang, Z.; He, G.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. Protein SUMOylation modification and its associations with disease. Open Biol. 2017, 7, 170167. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Wang, X.; Ma, Y.; Zhang, D.; Yang, Y.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. MS-based strategies for identification of protein SUMOylation modification. Electrophoresis 2019, 40, 2877–2887. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Lánczky, A.; Győrffy, B. Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation. J. Med. Internet Res. 2021, 23, e27633. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminformatics 2011, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
SNP ID | Amino Acid Change | PROVEAN | SIFT | PolyPhen-2 | PredictSNP | SNPs&GO | PhD-SNP | PANTHER | MutPred2 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Score | Score | Score | Score | RI | Prob | RI | Prob | RI | Prob | Score | Pred | ||
rs121913248 | A18P | −4.32 | 0.001 | 1 | 1 (C > G), 0.1257 (C > T) | 9 | 0.972 | 8 | 0.915 | 2 | 0.603 | 0.93 | Pathogenic |
rs267606920 | G60E | −7.49 | 0 | 1 | 1.0000 | 9 | 0.933 | 7 | 0.826 | 8 | 0.881 | 0.95 | Pathogenic |
rs1465850103 | D57N | −4.52 | 0.996 | 1.0000 | 8 | 0.912 | 6 | 0.814 | 0 | 0.509 | 0.92 | Pathogenic | |
rs121913250 | G12C | −7.09 | 0.656 | 1.0000 | 9 | 0.937 | 8 | 0.881 | 3 | 0.644 | 0.92 | Pathogenic | |
rs121434595 | G13C | −7.72 | 0.999 | 1.0000 | 9 | 0.957 | 9 | 0.926 | 7 | 0.863 | 0.94 | Pathogenic | |
rs121434596 | G13V | −7.65 | 0.996 | 1.0000 | 9 | 0.963 | 8 | 0.924 | 6 | 0.78 | 0.93 | Pathogenic | |
rs1557982817 | G60R | −7.49 | 1 | 1.0000 | 8 | 0.923 | 7 | 0.844 | 8 | 0.91 | 0.96 | Pathogenic | |
rs869025573 | I24N | −5.32 | 1 | 1.0000 | 9 | 0.954 | 4 | 0.699 | 3 | 0.648 | 0.94 | Pathogenic | |
rs397514553 | P34L | −8.56 | 1 | 1.0000 | 8 | 0.916 | 3 | 0.641 | 8 | 0.917 | 0.85 | Pathogenic | |
rs1308441238 | V14G | −5.86 | 1 | 1.0000 | 8 | 0.915 | 7 | 0.84 | 4 | 0.686 | 0.93 | Pathogenic | |
rs752508313 | Y64D | −8.84 | 1 | 0.1578 | 10 | 0.975 | 8 | 0.91 | 1 | 0.527 | 0.96 | Pathogenic |
SNP ID | Amino Acid Change | Stability | RI |
---|---|---|---|
rs267606920 | G60E | Decrease | 1 |
rs121913250 | G12C | Decrease | 5 |
rs121434595 | G13C | Decrease | 5 |
rs1557982817 | G60R | Decrease | 7 |
rs869025573 | I24N | Decrease | 7 |
rs397514553 | P34L | Decrease | 2 |
rs1308441238 | V14G | Decrease | 10 |
rs752508313 | Y64D | Decrease | 4 |
rs121913248 | A18P | Increase | 1 |
rs1465850103 | D57N | Increase | 1 |
rs121434596 | G13V | Increase | 2 |
Protein–Ligand Complex | Amino Acid Residues Involved in NRAS–GTP Complex Stabilization | Binding Affinity (kcal/mol) |
---|---|---|
Wild-Type NRAS–GTP | Gly-13, Val-14, Gly-15, Lys-16, Ser-17, Ala-18, Phe-28, Tyr-32, Pro-34, Thr-35, Thr-58, Gly-60, Asn-116, Lys-117, Asp-119, Ala-146, Lys-147 | −10.8 |
NRAS G13C–GTP | Cys-13, Lys-16, Ser-17, Ala-18, Phe-28, Tyr-32, Thr-35, Gly-60, Asn-116, Lys-117, Ala-146, Lys-147 | −10.6 |
NRAS V14G–GTP | Gly-12, Gly-14, Gly-15, Lys-16, Ser-17, Ala-18, Phe-28, Val-29, Tyr-32, Asp-33, Thr-35, Gly-60, Asn-116, Lys-117, Asp-119, Ala-146, Lys-147 | −10.5 |
NRAS I24N–GTP | Gly-13, Val-14, Gly-15, Lys-16, Ser-17, Ala-18, Phe-28, Val-29, Asp-30, Tyr-32, Thr-35, Thr-58, Gly-60, Asn-116, Lys-117, Asp-119, Ala-146, Lys-147 | −10.4 |
NRAS G60R–GTP | Gly-13, Val-14, Lys-16, Ser-17, Ala-18, Phe-28, Val-29, Asp-30, Tyr-32, Asp-33, Arg-60, Asn-116, Lys-117, Asp-119, Ala-146, Lys-147 | −10.3 |
NRAS G60E–GTP | Gly-13, Val-14, Lys-16, Ser-17, Ala-18, Phe-28, Asp-30, Tyr-32, Thr-35, Asp-57, Thr-58, Glu-60, Lys-117, Leu-120 | −9 |
NRAS P34L–GTP | Gln-25, Asn-26, His-27 | −2.9 |
NRAS G12C–GTP | Gln-25, His-27 | −2.8 |
NRAS Y64D–GTP | Gln-25, His-27 | −2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alessandro, L.; Low, K.-J.E.; Abushelaibi, A.; Lim, S.-H.E.; Cheng, W.-H.; Chang, S.-k.; Lai, K.-S.; Sum, Y.W.; Maran, S. Identification of NRAS Diagnostic Biomarkers and Drug Targets for Endometrial Cancer—An Integrated in Silico Approach. Int. J. Mol. Sci. 2022, 23, 14285. https://doi.org/10.3390/ijms232214285
Alessandro L, Low K-JE, Abushelaibi A, Lim S-HE, Cheng W-H, Chang S-k, Lai K-S, Sum YW, Maran S. Identification of NRAS Diagnostic Biomarkers and Drug Targets for Endometrial Cancer—An Integrated in Silico Approach. International Journal of Molecular Sciences. 2022; 23(22):14285. https://doi.org/10.3390/ijms232214285
Chicago/Turabian StyleAlessandro, Larsen, Kat-Jun Eric Low, Aisha Abushelaibi, Swee-Hua Erin Lim, Wan-Hee Cheng, Sook-keng Chang, Kok-Song Lai, Yap Wai Sum, and Sathiya Maran. 2022. "Identification of NRAS Diagnostic Biomarkers and Drug Targets for Endometrial Cancer—An Integrated in Silico Approach" International Journal of Molecular Sciences 23, no. 22: 14285. https://doi.org/10.3390/ijms232214285
APA StyleAlessandro, L., Low, K. -J. E., Abushelaibi, A., Lim, S. -H. E., Cheng, W. -H., Chang, S. -k., Lai, K. -S., Sum, Y. W., & Maran, S. (2022). Identification of NRAS Diagnostic Biomarkers and Drug Targets for Endometrial Cancer—An Integrated in Silico Approach. International Journal of Molecular Sciences, 23(22), 14285. https://doi.org/10.3390/ijms232214285