The Heart as a Target of Vasopressin and Other Cardiovascular Peptides in Health and Cardiovascular Diseases
Abstract
:1. Introduction
2. General Overview of the Vasopressin System
3. Role of Vasopressin in Cardiovascular Disturbances
3.1. Hypoxia and Vasopressin
3.2. Role of Vasopressin in Pain and Stress
4. Role of Vasopressin in Cardiovascular Diseases
4.1. Vasopressin in Myocardial Infarction
4.2. Vasopressin in Cardiovascular Shock and Cardiopulmonary Resuscitation
5. Cooperation of Vasopressin with Other Cardiovascular Peptides
5.1. Vasopressin and Angiotensins
5.2. Vasopressin and Oxytocin
5.3. Vasopressin and Cytokines
6. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, S.K.; Calaresu, F.R. Supramedullary inputs to cardiovascular neurons of rostral ventrolateral medulla in rats. Am. J. Physiol. 1993, 265, R111–R116. [Google Scholar] [CrossRef]
- Dampney, R.A.L.; Horiuchi, J.; Tagawa, T.; Fontes, M.A.P.; Potts, P.D.; Polson, J.W. Medullary and supramedullary mechanisms regulating sympathetic vasomotor tone. Acta Physiol. Scand. 2003, 177, 209–218. [Google Scholar] [CrossRef]
- Shen, M.J.; Zipes, D.P. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ. Res. 2014, 114, 1004–1021. [Google Scholar] [CrossRef] [Green Version]
- Cooper, C.M.; Farrand, A.Q.; Andresen, M.C.; Beaumont, E. Vagus nerve stimulation activates nucleus of solitary tract neurons via supramedullary pathways. J. Physiol. 2021, 599, 5261–5279. [Google Scholar] [CrossRef]
- Hiroyama, M.; Wang, S.; Aoyagi, T.; Oikawa, R.; Sanbe, A.; Takeo, S.; Tanoue, A. Vasopressin promotes cardiomyocyte hypertrophy via the vasopressin V1A receptor in neonatal mice. Eur. J. Pharmacol. 2007, 559, 89–97. [Google Scholar] [CrossRef]
- Jahng, J.W.; Song, E.; Sweeney, G. Crosstalk between the heart and peripheral organs in heart failure. Exp. Mol. Med. 2016, 48, e21. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.A.; Gordon, A.C.; Williams, M.D.; Boyd, J.H.; Walley, K.R.; Kissoon, N. Vasopressor therapy in the intensive care unit. Semin. Respir. Crit. Care Med. 2021, 42, 59–77. [Google Scholar] [CrossRef]
- Szczepanska-Sadowska, E.; Cudnoch-Jedrzejewska, A.; Ufnal, M.; Zera, T. Brain and cardiovascular diseases: Common neurogenic background of cardiovascular, metabolic and inflammatory diseases. J. Physiol. Pharmacol. 2010, 61, 509–521. [Google Scholar]
- Szczepanska-Sadowska, E.; Wsol, A.; Cudnoch-Jedrzejewska, A.; Żera, T. Complementary role of oxytocin and vasopressin in cardiovascular regulation. Int. J. Mol. Sci. 2021, 22, 11465. [Google Scholar] [CrossRef]
- Szczepanska-Sadowska, E.; Czarzasta, K.; Cudnoch-Jedrzejewska, A. Dysregulation of the renin-angiotensin system and the vasopressinergic system interactions in cardiovascular disorders. Curr. Hypertens. Rep. 2018, 20, 19. [Google Scholar] [CrossRef] [Green Version]
- Morgenthaler, N.G.; Struck, J.; Alonso, C.; Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 2006, 52, 112–119. [Google Scholar] [CrossRef]
- Nickel, C.H.; Bingisser, R.; Morgenthaler, N.G. The role of copeptin as a diagnostic and prognostic biomarker for risk stratification in the emergency department. BMC Med. 2012, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Roffi, M.; Patrono, C. CardioPulse: ‘Ten Commandments’ of 2015 European Society of Cardiology Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation (NSTE-ACS). Eur. Heart J. 2016, 37, 208. [Google Scholar] [CrossRef]
- Buijs, R.M.; De Vries, G.J.; Van Leeuwen, F.W.; Swaab, D.F. Vasopressin and oxytocin: Distribution and putative functions in the brain. Prog. Brain Res. 1983, 60, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Buijs, R.M.; Hurtado-Alvarado, G.; Soto-Tinoco, E. Vasopressin: An output signal from the suprachiasmatic nucleus to prepare physiology and behaviour for the resting phase. J. Neuroendocrinol. 2021, 33, e12998. [Google Scholar] [CrossRef]
- Fay, M.J.; Friedmann, A.S.; Yu, X.M.; North, W.G. Vasopressin and vasopressin-receptor immunoreactivity in small-cell lung carcinoma (SCCL) cell lines: Disruption in the activation cascade of V1a-receptors in variant SCCL. Cancer Lett. 1994, 82, 167–174. [Google Scholar] [CrossRef]
- Gutkowska, J.; Miszkurka, M.; Danalache, B.; Gassanov, N.; Wang, D.; Jankowski, M. Functional arginine vasopressin system in early heart maturation. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H2262–H2270. [Google Scholar] [CrossRef] [Green Version]
- Hallbeck, M.; Larhammar, D.; Blomqvist, A. Neuropeptide expression in rat paraventricular hypothalamic neurons that project to the spinal cord. J. Comp. Neurol. 2001, 433, 222–238. [Google Scholar] [CrossRef]
- Hupf, H.; Grimm, D.; Riegger, G.A.; Schunkert, H. Evidence for a vasopressin system in the rat heart. Circ. Res. 1999, 84, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Lu, G.; Tang, K.; Li, Q.; Gao, X. The secretion patterns and roles of cardiac and circulating arginine vasopressin during the development of heart failure. Neuropeptides 2015, 51, 63–73. [Google Scholar] [CrossRef]
- Koshimizu, T.A.; Nakamura, K.; Egashira, N.; Hiroyama, M.; Nonoguchi, H.; Tanoue, A. Vasopressin V1a and V1b receptors: From molecules to physiological systems. Physiol. Rev. 2012, 92, 1813–1864. [Google Scholar] [CrossRef]
- Szczepanska-Sadowska, E.; Zera, T.; Sosnowski, P.; Cudnoch-Jedrzejewska, A.; Puszko, A.; Misicka, A. Vasopressin and related peptides; potential value in diagnosis, prognosis and treatment of clinical disorders. Curr. Drug Metab. 2017, 18, 306–345. [Google Scholar] [CrossRef]
- Carmosino, M.; Brooks, H.L.; Cai, Q.; Davis, L.S.; Opalenik, S.; Hao, C.; Breyer, M.D. Axial heterogeneity of vasopressin-receptor subtypes along the human and mouse collecting duct. Am. J. Physiol. Renal Physiol. 2007, 292, F351–F360. [Google Scholar] [CrossRef]
- Milik, E.; Szczepanska-Sadowska, E.; Cudnoch-Jedrzejewska, A.; Dobruch, J. Down-regulation of V1a vasopressin receptors in the cerebellum after myocardial infarction. Neurosci. Lett. 2011, 499, 119–123. [Google Scholar] [CrossRef]
- Milik, E.; Szczepanska-Sadowska, E.; Dobruch, J.; Cudnoch-Jedrzejewska, A.; Maslinski, W. Altered expression of V1a receptors mRNA in the brain and kidney after myocardial infarction and chronic stress. Neuropeptides 2014, 48, 257–266. [Google Scholar] [CrossRef]
- Ostrowski, N.L.; Lolait, S.J.; Young, W.S., 3rd. Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology 1994, 135, 1511–1528. [Google Scholar] [CrossRef]
- Ostrowski, N.L.; Lolait, S.J.; Bradley, D.J.; O’Carroll, A.M.; Brownstein, M.J.; Young, W.S., 3rd. Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology 1992, 131, 533–535. [Google Scholar] [CrossRef]
- Song, Z.; Albers, H.E. Cross-talk among oxytocin and arginine-vasopressin receptors: Relevance for basic and clinical studies of the brain and periphery. Front. Neuroendocrinol. 2018, 51, 14–24. [Google Scholar] [CrossRef]
- Góźdź, A.; Szczepańska-Sadowska, E.; Maśliński, W.; Kumosa, M.; Szczepańska, K.; Dobruch, J. Differential expression of vasopressin V1a and V1b receptors mRNA in the brain of renin transgenic TGR(mRen2)27 and Sprague-Dawley rats. Brain Res. Bull. 2003, 59, 399–403. [Google Scholar] [CrossRef]
- Góźdź, A.; Szczepańska-Sadowska, E.; Szczepańska, K.; Maśliński, W.; Luszczyk, B. Vasopressin V1a, V1b and V2 receptors mRNA in the kidney and heart of the renin transgenic TGR(mRen2)27 and Sprague Dawley rats. J. Physiol. Pharmacol. 2002, 53, 349–357. [Google Scholar]
- Hirasawa, A.; Hashimoto, K.; Tsujimoto, G. Distribution and developmental change of vasopressin V1A and V2 receptor mRNA in rats. Eur. J. Pharmacol. 1994, 267, 71–75. [Google Scholar] [CrossRef]
- Young, L.J.; Toloczko, D.; Insel, T.R. Localization of vasopressin (V1a) receptor binding and mRNA in the rhesus monkey brain. J. Neuroendocrinol. 1999, 11, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Żera, T.; Przybylski, J.; Grygorowicz, T.; Kasarełło, K.; Podobińska, M.; Mirowska-Guzel, D.; Cudnoch-Jędrzejewska, A. Vasopressin V1a receptors are present in the carotid body and contribute to the control of breathing in male Sprague-Dawley rats. Peptides 2018, 102, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Corbani, M.; Marir, R.; Trueba, M.; Chafai, M.; Vincent, A.; Borie, A.M.; Desarménien, M.G.; Ueta, Y.; Tomboly, C.; Olma, A.; et al. Neuroanatomical distribution and function of the vasopressin V1B receptor in the rat brain deciphered using specific fluorescent ligands. Gen. Comp. Endocrinol. 2018, 258, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Folny, V.; Raufaste, D.; Lukovic, L.; Pouzet, B.; Rochard, P.; Pascal, M.; Serradeil-Le Gal, C. Pancreatic vasopressin V1b receptors: Characterization in In-R1-G9 cells and localization in human pancreas. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E566–E576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monstein, H.J.; Truedsson, M.; Ryberg, A.; Ohlsson, B. Vasopressin receptor mRNA expression in the human gastrointestinal tract. Eur. Surg. Res. 2008, 40, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Morel, A.; Lolait, S.J.; Brownstein, M.J. Molecular cloning and expression of rat V1a and V2 arginine vasopressin receptors. Regul. Pept. 1993, 45, 53–59. [Google Scholar] [CrossRef]
- Koźniewska, E.; Szczepańska-Sadowska, E. V2-like receptors mediate cerebral blood flow increase following vasopressin administration in rats. J. Cardiovasc. Pharmacol. 1990, 15, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Liard, J.F. Cardiovascular effects associated with antidiuretic activity of vasopressin after blockade of its vasoconstrictor action in dehydrated dogs. Circ. Res. 1986, 58, 631–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, J.B.; Foster, P.A.; Kaufman, R.J.; Vokac, E.A.; Moussalli, M.; Kroner, P.A.; Montgomery, R.R. Intracellular trafficking of factor VIII to von Willebrand factor storage granules. J. Clin. Investig. 1998, 101, 613–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowley, A.W., Jr.; Szczepanska-Sadowska, E.; Stepniakowski, K.; Mattson, D. Chronic intravenous administration of V1 arginine vasopressin agonist results in sustained hypertension. Am. J. Physiol. 1994, 267, H751–H756. [Google Scholar] [CrossRef] [PubMed]
- Cudnoch-Jedrzejewska, A.; Szczepanska-Sadowska, E.; Dobruch, J.; Puchalska, L.; Ufnal, M.; Kowalewski, S.; Wsół, A. Differential sensitisation to central cardiovascular effects of angiotensin II in rats with a myocardial infarct: Relevance to stress and interaction with vasopressin. Stress 2008, 11, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Cudnoch-Jedrzejewska, A.; Szczepanska-Sadowska, E.; Dobruch, J.; Gomolka, R.; Puchalska, L. Brain vasopressin V(1) receptors contribute to enhanced cardiovascular responses to acute stress in chronically stressed rats and rats with myocardial infarction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R672–R680. [Google Scholar] [CrossRef] [PubMed]
- Cudnoch-Jedrzejewska, A.; Puchalska, L.; Szczepanska-Sadowska, E.; Wsol, A.; Kowalewski, S.; Czarzasta, K. The effect of blockade of the central V1 vasopressin receptors on anhedonia in chronically stressed infarcted and non-infarcted rats. Physiol. Behav. 2014, 135, 208–214. [Google Scholar] [CrossRef]
- Dobruch, J.; Cudnoch-Jedrzejewska, A.; Szczepanska-Sadowska, E. Enhanced involvement of brain vasopressin V1 receptors in cardiovascular responses to stress in rats with myocardial infarction. Stress 2005, 8, 273–284. [Google Scholar] [CrossRef]
- Lozić, M.; Šarenac, O.; Murphy, D.; Japundžić-Žigon, N. Vasopressin, Central Autonomic Control and Blood Pressure Regulation. Curr. Hypertens. Rep. 2018, 26, 11. [Google Scholar] [CrossRef]
- Szczepanska-Sadowska, E.; Wsol, A.; Cudnoch-Jedrzejewska, A.; Czarzasta, K.; Żera, T. Multiple aspects of inappropriate action of renin-angiotensin, vasopressin, and oxytocin systems in neuropsychiatric and neurodegenerative diseases. J. Clin. Med. 2022, 11, 908. [Google Scholar] [CrossRef]
- Li, X.; Chan, T.O.; Myers, V.; Chowdhury, I.; Zhang, X.Q.; Song, J.; Zhang, J.; Andrel, J.; Funakoshi, H.; Robbins, J.; et al. Controlled and cardiac-restricted overexpression of the arginine vasopressin V1A receptor causes reversible left ventricular dysfunction through Gαq-mediated cell signaling. Circulation 2011, 124, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Szczepanska-Sadowska, E.; Stepniakowski, K.; Skelton, M.M.; Cowley, A.W., Jr. Prolonged stimulation of intrarenal V1 vasopressin receptors results in sustained hypertension. Am. J. Physiol. 1994, 267, R1217–R1225. [Google Scholar] [CrossRef]
- Wsół, A.; Cudnoch-Jedrzejewska, A.; Szczepanska-Sadowska, E.; Kowalewski, S.; Dobruch, J. Central oxytocin modulation of acute stress-induced cardiovascular responses after myocardial infarction in the rat. Stress 2009, 12, 517–525. [Google Scholar] [CrossRef]
- Wsol, A.; Szczepanska-Sadowska, E.; Kowalewski, S.; Puchalska, L.; Cudnoch-Jedrzejewska, A. Oxytocin differently regulates pressor responses to stress in WKY and SHR rats: The role of central oxytocin and V1a receptors. Stress 2014, 17, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Wsol, A.; Wojno, O.; Puchalska, L.; Wrzesien, R.; Szczepanska-Sadowska, E.; Cudnoch-Jedrzejewska, A. Impaired hypotensive effects of centrally acting oxytocin in SHR and WKY rats exposed to chronic mild stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R160–R172. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.F.; Brackett, D.J.; Archer, L.T.; Hinshaw, L.B. Mechanisms of impaired cardiac function by vasopressin. Ann. Surg. 1980, 191, 494–500. [Google Scholar] [CrossRef]
- Mayr, V.D.; Wenzel, V.; Wagner-Berger, H.G.; Stadlbauer, K.H.; Cavus, E.; Raab, H.; Müller, T.H.; Jochberger, S.; Dünser, M.W.; Krismer, A.C.; et al. Arginine vasopressin during sinus rhythm: Effects on haemodynamic variables, left anterior descending coronary artery cross sectional area and cardiac index, before and after inhibition of NO-synthase, in pigs. Resuscitation 2007, 74, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, V.; Kern, K.B.; Hilwig, R.W.; Berg, R.A.; Schwarzacher, S.; Butman, S.M.; Lindner, K.H.; Ewy, G.A. Effects of intravenous arginine vasopressin on epicardial coronary artery cross sectional area in a swine resuscitation model. Resuscitation 2005, 64, 219–226. [Google Scholar] [CrossRef]
- Chandrashekhar, Y.; Prahash, A.J.; Sen, S.; Gupta, S.; Roy, S.; Anand, I.S. The role of arginine vasopressin and its receptors in the normal and failing rat heart. J. Mol. Cell. Cardiol. 2003, 35, 495–504. [Google Scholar] [CrossRef]
- Forsling, M.L.; Aziz, L.A. Release of vasopressin in response to hypoxia and the effect of aminergic and opioid antagonists. J. Endocrinol. 1983, 99, 77–86. [Google Scholar] [CrossRef]
- Proczka, M.; Przybylski, J.; Cudnoch-Jędrzejewska, A.; Szczepańska-Sadowska, E.; Żera, T. Vasopressin and breathing: Review of evidence for respiratory effects of the antidiuretic hormone. Front. Physiol. 2021, 12, 744177. [Google Scholar] [CrossRef]
- Rose, C.E., Jr.; Anderson, R.J.; Carey, R.M. Antidiuresis and vasopressin release with hypoxemia and hypercapnia in conscious dogs. Am. J. Physiol. 1984, 247, R127–R134. [Google Scholar] [CrossRef]
- Rose, C.E., Jr.; Godine, R.L., Jr.; Rose, K.Y.; Anderson, R.J.; Carey, R.M. Role of arginine vasopressin and angiotensin II in cardiovascular responses to combined acute hypoxemia and hypercapnic acidosis in conscious dogs. J. Clin. Investig. 1984, 74, 321–331. [Google Scholar] [CrossRef]
- Stark, R.I.; Daniel, S.S.; Husain, M.K.; Zubrow, A.B.; James, L.S. Effects of hypoxia on vasopressin concentrations in cerebrospinal fluid and plasma of sheep. Neuroendocrinology 1984, 38, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.C.; Sundet, W.D.; Goetz, K.L. Vasopressin in plasma and cerebrospinal fluid of dogs during hypoxia or acidosis. Am. J. Physiol. 1984, 247, E449–E455. [Google Scholar] [CrossRef] [PubMed]
- Kc, P.; Dick, T.E. Modulation of cardiorespiratory function mediated by the paraventricular nucleus. Respir. Physiol. Neurobiol. 2010, 174, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruyama, N.O.; Mitchell, N.C.; Truong, T.T.; Toney, G.M. Activation of the hypothalamic paraventricular nucleus by acute intermittent hypoxia: Implications for sympathetic long-term facilitation neuroplasticity. Exp. Neurol. 2019, 314, 1–8. [Google Scholar] [CrossRef]
- Wu, Y.; Du, J.Z. Effects of angiotensin II on release of CRH and AVP from hypothalamus during acute hypoxia. Acta Pharmacol. Sin. 2000, 21, 1035–1038. [Google Scholar]
- Walker, B.R. Role of vasopressin in the cardiovascular response to hypoxia in the conscious rat. Am. J. Physiol. 1986, 251, H1316–H1323. [Google Scholar] [CrossRef]
- Russ, R.D.; Walker, B.R. Role of nitric oxide in vasopressinergic pulmonary vasodilatation. Am. J. Physiol. 1992, 262, H743–H747. [Google Scholar] [CrossRef]
- Walker, B.R.; Haynes, J., Jr.; Wang, H.L.; Voelkel, N.F. Vasopressin-induced pulmonary vasodilation in rats. Am. J. Physiol. 1989, 257, H415–H422. [Google Scholar] [CrossRef]
- Kc, P.; Balan, K.V.; Tjoe, S.S.; Martin, R.J.; Lamanna, J.C.; Haxhiu, M.A.; Dick, T.E. Increased vasopressin transmission from the paraventricular nucleus to the rostral medulla augments cardiorespiratory outflow in chronic intermittent hypoxia-conditioned rats. J. Physiol. 2010, 588, 725–740. [Google Scholar] [CrossRef]
- Montero, S.; Mendoza, H.; Valles, V.; Lemus, M.; Alvarez-Buylla, R.; de Alvarez-Buylla, E.R. Arginine-vasopressin mediates central and peripheral glucose regulation in response to carotid body receptor stimulation with Na-cyanide. J. Appl. Physiol. 2006, 100, 1902–1909. [Google Scholar] [CrossRef]
- Jin, H.K.; Yang, R.H.; Chen, Y.F.; Thornton, R.M.; Jackson, R.M.; Oparil, S. Hemodynamic effects of arginine vasopressin in rats adapted to chronic hypoxia. J. Appl. Physiol. 1989, 66, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Hisata, Y.; Zeredo, J.L.; Eishi, K.; Toda, K. Cardiac nociceptors innervated by vagal afferents in rats. Auton. Neurosci. 2006, 126–127, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Rosen, S.D. From heart to brain: The genesis and processing of cardiac pain. Can. J. Cardiol. 2012, 28, S7–S19. [Google Scholar] [CrossRef] [PubMed]
- Kendler, K.S.; Weitzman, R.E.; Fisher, D.A. The effect of pain on plasma arginine vasopressin concentrations in man. Clin. Endocrinol. 1978, 8, 89–94. [Google Scholar] [CrossRef]
- Szczepanska-Sadowska, E.; Cudnoch-Jedrzejewska, A.; Sadowski, B. Differential role of specific cardiovascular neuropeptides in pain regulation: Relevance to cardiovascular diseases. Neuropeptides 2020, 81, 102046. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Chen, J.M.; Xu, H.T.; Liu, W.Y.; Wang, C.H.; Lin, B.C. Arginine vasopressin is an important regulator in antinociceptive modulation of hypothalamic paraventricular nucleus in the rat. Neuropeptides 2007, 41, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, Y.; Xu, H.T.; Chen, J.M.; Liu, W.Y.; Lin, B.C. Arginine vasopressin induces periaqueductal gray release of enkephalin and endorphin relating to pain modulation in the rat. Regul. Pept. 2007, 142, 29–36. [Google Scholar] [CrossRef]
- Yang, J.; Yuan, H.; Chu, J.; Yang, Y.; Xu, H.; Wang, G.; Liu, W.Y.; Lin, B.C. Arginine vasopressin antinociception in the rat nucleus raphe magnus is involved in the endogenous opiate peptide and serotonin system. Peptides 2009, 30, 1355–1361. [Google Scholar] [CrossRef]
- Yang, J.; Yuan, H.; Liu, W.; Song, C.; Xu, H.; Wang, G.; Song Cai Ni, N.; Yang, D.; Lin, B. Arginine vasopressin in hypothalamic paraventricular nucleus is transferred to the nucleus raphe magnus to participate in pain modulation. Peptides 2009, 30, 1679–1682. [Google Scholar] [CrossRef]
- Colloca, L.; Pine, D.S.; Ernst, M.; Miller, F.G.; Grillon, C. Vasopressin boosts placebo analgesic effects in women: A randomized trial. Biol. Psychiatry 2016, 79, 794–802. [Google Scholar] [CrossRef]
- Juif, P.E.; Poisbeau, P. Neurohormonal effects of oxytocin and vasopressin receptor agonists on spinal pain processing in male rats. Pain 2013, 154, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Kordower, J.H.; Bodnar, R.J. Vasopressin analgesia: Specificity of action and non-opioid effects. Peptides 1984, 5, 747–756. [Google Scholar] [CrossRef]
- Yang, J.; Lu, L.; Wang, H.C.; Zhan, H.Q.; Hai, G.F.; Pan, Y.J.; Lv, Q.Q.; Wang, D.X.; Wu, Y.Q.; Li, R.R.; et al. Effect of intranasal arginine vasopressin on human headache. Peptides 2012, 38, 100–104. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Zhang, Q.S.; Yang, J.; Sun, F.J.; Wang, D.X.; Wang, C.H.; He, W.Y. The role of arginine vasopressin in electroacupuncture treatment of primary sciatica in human. Neuropeptides 2015, 52, 61–65. [Google Scholar] [CrossRef]
- Ahn, D.K.; Kim, K.H.; Ju, J.S.; Kwon, S.; Park, J.S. Microinjection of arginine vasopressin into the central nucleus of amygdala suppressed nociceptive jaw opening reflex in freely moving rats. Brain Res. Bull. 2001, 55, 117–121. [Google Scholar] [CrossRef]
- Kordower, J.H.; Bodnar, R.J. Differential effects of dPTyr(Me)AVP, a vasopressin antagonist, upon foot shock analgesia. Int. J. Neurosci. 1985, 28, 269–278. [Google Scholar] [CrossRef]
- Peng, F.; Qu, Z.W.; Qiu, C.Y.; Liao, M.; Hu, W.P. Spinal vasopressin alleviates formalin-induced nociception by enhancing GABAA receptor function in mice. Neurosci. Lett. 2015, 593, 61–65. [Google Scholar] [CrossRef]
- Qiu, F.; Qiu, C.Y.; Cai, H.; Liu, T.T.; Qu, Z.W.; Yang, Z.; Li, J.D.; Zhou, Q.Y.; Hu, W.P. Oxytocin inhibits the activity of acid-sensing ion channels through the vasopressin, V1A receptor in primary sensory neurons. Br. J. Pharmacol. 2014, 171, 3065–3076. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, H.K.; Aulino, E.A.; Rodriguez, K.M.; Witchey, S.K.; Yaw, A.M. Social context, stress, neuropsychiatric disorders, and the vasopressin 1b receptor. Front. Neurosci. 2017, 11, 567. [Google Scholar] [CrossRef]
- Siegenthaler, J.; Walti, C.; Urwyler, S.A.; Schuetz, P.; Christ-Crain, M. Copeptin concentrations during psychological stress: The PsyCo study. Eur. J. Endocrinol. 2014, 171, 737–742. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.H. Magnocellular neurons and posterior pituitary function. Compr. Physiol. 2016, 6, 1701–1741. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.H.; Ludwig, M.; Tasker, J.G.; Stern, J.E. Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. J. Neuroendocrinol. 2020, 32, e12856. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.K.; Augustine, R.A.; Brown, C.H.; Schwenke, D.O. Acute myocardial infarction activates magnocellular vasopressin and oxytocin neurones. J. Neuroendocrinol. 2019, 31, e12808. [Google Scholar] [CrossRef] [PubMed]
- Boeckel, J.N.; Oppermann, J.; Anadol, R.; Fichtlscherer, S.; Zeiher, A.M.; Keller, T. Analyzing the release of copeptin from the heart in acute myocardial infarction using a transcoronary gradient model. Sci. Rep. 2016, 6, 20812. [Google Scholar] [CrossRef] [PubMed]
- Donald, R.A.; Crozier, I.G.; Foy, S.G.; Richards, A.M.; Livesey, J.H.; Ellis, M.J.; Mattioli, L.; Ikram, H. Plasma corticotrophin releasing hormone, vasopressin, ACTH and cortisol responses to acute myocardial infarction. Clin. Endocrinol. 1994, 40, 499–504. [Google Scholar] [CrossRef]
- McAlpine, H.M.; Cobbe, S.M. Neuroendocrine changes in acute myocardial infarction. Am. J. Med. 1988, 84, 61–66. [Google Scholar] [CrossRef]
- Möckel, M.; Searle, J. Copeptin-marker of acute myocardial infarction. Curr. Atheroscler. Rep. 2014, 16, 421. [Google Scholar] [CrossRef] [Green Version]
- Schill, F.; Timpka, S.; Nilsson, P.M.; Melander, O.; Enhörning, S. Copeptin as a predictive marker of incident heart failure. ESC Heart Fail. 2021, 8, 3180–3188. [Google Scholar] [CrossRef]
- Nazari, A.; Sadr, S.S.; Faghihi, M.; Imani, A.; Moghimian, M. The cardioprotective effect of different doses of vasopressin (AVP) against ischemia-reperfusion injuries in the anesthetized rat heart. Peptides 2011, 32, 2459–2466. [Google Scholar] [CrossRef]
- Youngquist, S.T.; Shah, A.; McClung, C.; Thomas, J.L.; Rosborough, J.P.; Niemann, J.T. Does prearrest adrenergic integrity affect pressor response? A comparison of epinephrine and vasopressin in a spontaneous ventricular fibrillation swine model. Resuscitation 2011, 82, 228–231. [Google Scholar] [CrossRef] [Green Version]
- Sellke, F.; Quillen, J. Altered effects of vasopressin on the coronary circulation after ischemia. J. Thorac. Cardiovasc. Surg. 1992, 104, 357–363. [Google Scholar] [CrossRef]
- Sellke, N.; Kuczmarski, A.; Lawandy, I.; Cole, V.L.; Ehsan, A.; Singh, A.K.; Liu, Y.; Sellke, F.W.; Feng, J. Enhanced coronary arteriolar contraction to vasopressin in patients with diabetes after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2018, 156, 2098–2107. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, K.A.; McKnite, S.H.; Lindner, K.H.; Lindstrom, P.J.; Detloff, B.; Lurie, K.G. Synergistic effects of vasopressin plus epinephrine during cardiopulmonary resuscitation. Resuscitation 1997, 35, 265–271. [Google Scholar] [CrossRef]
- Stadlbauer, K.H.; Wagner-Berger, H.G.; Wenzel, V.; Voelckel, W.G.; Krismer, A.C.; Klima, G.; Rheinberger, K.; Pechlaner, S.; Mayr, V.D.; Lindner, K.H. Survival with full neurologic recovery after prolonged cardiopulmonary resuscitation with a combination of vasopressin and epinephrine in pigs. Anesth. Analg. 2003, 96, 1743–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voelckel, W.G.; Lurie, K.G.; Lindner, K.H.; Zielinski, T.; McKnite, S.; Krismer, A.C.; Wenzel, V. Vasopressin improves survival after cardiac arrest in hypovolemic shock. Anesth. Analg. 2000, 91, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Lurie, K.G.; Voelckel, W.G.; Iskos, D.N.; McKnite, S.H.; Zielinski, T.M.; Sugiyama, A.; Wenzel, V.; Benditt, D.; Lindner, K.H. Combination drug therapy with vasopressin, adrenaline (epinephrine) and nitroglycerin improves vital organ blood flow in a porcine model of ventricular fibrillation. Resuscitation 2002, 54, 187–194. [Google Scholar] [CrossRef]
- Wira, C.R.; Becker, J.U.; Martin, G.; Donnino, M.W. Anti-arrhythmic and vasopressor medications for the treatment of ventricular fibrillation in severe hypothermia: A systematic review of the literature. Resuscitation 2008, 78, 21–29. [Google Scholar] [CrossRef]
- Lindner, K.H.; Haak, T.; Keller, A.; Bothner, U.; Lurie, K.G. Release of endogenous vasopressors during and after cardiopulmonary resuscitation. Heart 1996, 75, 145–150. [Google Scholar] [CrossRef]
- Lindner, K.H.; Strohmenger, H.U.; Ensinger, H.; Hetzel, W.D.; Ahnefeld, F.W.; Georgieff, M. Stress hormone response during and after cardiopulmonary resuscitation. Anesthesiology 1992, 77, 662–668. [Google Scholar] [CrossRef]
- Krismer, A.C.; Wenzel, V.; Mayr, V.D.; Voelckel, W.G.; Strohmenger, H.U.; Lurie, K.; Lindner, K.H. Arginine vasopressin during cardiopulmonary resuscitation and vasodilatory shock: Current experience and future perspectives. Curr. Opin. Crit. Care 2001, 7, 157–169. [Google Scholar] [CrossRef]
- Lindner, K.H.; Dirks, B.; Strohmenger, H.U.; Prengel, A.W.; Lindner, I.M.; Lurie, K.G. Randomised comparison of epinephrine and vasopressin in patients with out-of-hospital ventricular fibrillation. Lancet 1997, 349, 535–537. [Google Scholar] [CrossRef]
- Lindner, K.H.; Prengel, A.W.; Brinkmann, A.; Strohmenger, H.U.; Lindner, I.M.; Lurie, K.G. Vasopressin administration in refractory cardiac arrest. Ann. Inter. Med. 1996, 124, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A. Vasopressin in vasodilatory and septic shock. Curr. Opin. Crit. Care 2007, 13, 383–391. [Google Scholar] [CrossRef]
- Faigel, D.O.; Metz, D.C.; Kochman, M.L. Torsade de pointes complicating the treatment of bleeding esophageal varices: Association with neuroleptics, vasopressin, and electrolyte imbalance. Am. J. Gastroenterol. 1995, 90, 822–824. [Google Scholar] [PubMed]
- Urge, J.; Sincl, F.; Procházka, V.; Urbánek, K. Terlipressin-induced ventricular arrhythmia. Scand. J. Gastroenterol. 2008, 43, 1145–1148. [Google Scholar] [CrossRef] [PubMed]
- Reardon, D.P.; DeGrado, J.R.; Anger, K.E.; Szumita, P.M. Early vasopressin reduces incidence of new onset arrhythmias. J. Crit. Care 2014, 29, 482–485. [Google Scholar] [CrossRef]
- Stiell., I.G.; Hébert, P.C.; Wells, G.A.; Vandemheen, K.L.; Tang, A.S.; Higginson, L.A.; Dreyer, J.F.; Clement, C.; Battram, E.; Watpool, I.; et al. Vasopressin versus epinephrine for in hospital cardiac arrest: A randomised controlled trial. Lancet 2001, 358, 105–109. [Google Scholar] [CrossRef]
- Aung, K.; Htay, T. Vasopressin for cardiac arrest: A systematic review and meta-analysis. Arch. Intern. Med. 2005, 165, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Acosta, E.; Mendoza, V.; Castro, E.; Cruzblanca, H. Modulation of a delayed-rectifier K+ current by angiotensin II in rat sympathetic neurons. J. Neurophysiol. 2007, 98, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Dendorfer, A.; Thornagel, A.; Raasch, W.; Grisk, O.; Tempel, K.; Dominiak, P. Angiotensin II induces catecholamine release by direct ganglionic excitation. Hypertension 2002, 40, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Luft, F.C. Cardiac angiotensin is upregulated in the hearts of unstable angina patients. Circ. Res. 2004, 94, 1530–1532. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Lazartigues, E. Angiotensin-converting enzyme 2: Central regulator for cardiovascular function. Curr. Hypertens. Rep. 2010, 12, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Szczepanska-Sadowska, E.K.; Zera, T.; Cudnoch-jedrzejewska, A. The contribution of angiotensin peptides to cardiovascular regulation in health and disease. In Angiotensin: From the Kidney to Coronavirus; Pilowsky, P.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 10:0323996183. [Google Scholar]
- Kawada, T.; Yamazaki, T.; Akiyama, T.; Li, M.; Zheng, C.; Shishido, T.; Mori, H.; Sugimachi, M. Angiotensin II attenuates myocardial interstitial acetylcholine release in response to vagal stimulation. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H2516–H2522. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Huang, B.S.; Wang, H.W.; Ahmad, M.; Leenen, F.H. Knockdown of mineralocorticoid or angiotensin II type 1 receptor gene expression in the paraventricular nucleus prevents angiotensin II hypertension in rats. J. Physiol. 2014, 592, 3523–3536. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R.; Dechend, R.; Gapelyuk, A.; Shagdarsuren, E.; Gruner, K.; Gruner, A.; Gratze, P.; Qadri, F.; Wellner, M.; Fiebeler, A.; et al. Angiotensin II-induced sudden arrhythmic death and electrical remodeling. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H1242–H1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iravanian, S.; Dudley, S.C., Jr. The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm 2008, 5, S12–S17. [Google Scholar] [CrossRef] [Green Version]
- Li, X.C.; Zhang, J.; Zhuo, J.L. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol. Res. 2017, 125, 21–38. [Google Scholar] [CrossRef]
- Mackins, C.J.; Kano, S.; Seyedi, N.; Schäfer, U.; Reid, A.C.; Machida, T.; Silver, R.B.; Levi, R. Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion. J. Clin. Investig. 2006, 116, 1063–1070. [Google Scholar] [CrossRef]
- Dobruch, J.; Paczwa, P.; Łoń, S.; Khosla, M.C.; Szczepańska-Sadowska, E. Hypotensive function of the brain angiotensin-(1-7) in Sprague Dawley and renin transgenic rats. J. Physiol. Pharmacol. 2003, 54, 371–381. [Google Scholar]
- Neri Serneri, G.G.; Boddi, M.; Modesti, P.A.; Coppo, M.; Cecioni, I.; Toscano, T.; Papa, M.L.; Bandinelli, M.; Lisi, G.F.; Chiavarelli, M. Cardiac angiotensin II participates in coronary microvessel inflammation of unstable angina and strengthens the immunomediated component. Circ. Res. 2004, 94, 1630–1637. [Google Scholar] [CrossRef] [Green Version]
- Rosenkranz, S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc. Res. 2004, 63, 423–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasuno, S.; Kuwahara, K.; Kinoshita, H.; Yamada, C.; Nakagawa, Y.; Usami, S.; Kuwabara, Y.; Ueshima, K.; Harada, M.; Nishikimi, T.; et al. Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy. Br. J. Pharmacol. 2013, 170, 1384–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Wei, S.G.; Weiss, R.M.; Felder, R.B. Angiotensin II type 1a receptors in the subfornical organ modulate neuroinflammation in the hypothalamic paraventricular nucleus in heart failure rats. Neuroscience 2018, 381, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Katz, R.L. Antiarrhythmic and cardiovascular effects of synthetic oxytocin. Anesthesiology 1964, 25, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, M.; Bissonauth, V.; Gao, L.; Gangal, M.; Wang, D.; Danalache, B.; Wang, Y.; Stoyanova, E.; Cloutier, G.; Blaise, G.; et al. Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic Res. Cardiol. 2010, 105, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, M.; Broderick, T.L.; Gutkowska, J. The role of oxytocin in cardiovascular protection. Front. Psychol. 2020, 11, 2139. [Google Scholar] [CrossRef]
- Gutkowska, J.; Jankowski, M.; Lambert, C.; Mukaddam-Daher, S.; Zingg, H.H.; McCann, S.M. Oxytocin releases atrial natriuretic peptide by combining with oxytocin receptors in the heart. Proc. Natl. Acad. Sci. USA 1997, 94, 11704–11709. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, M.; Danalache, B.; Wang, D.; Bhat, P.; Hajjar, F.; Marcinkiewicz, M.; Paquin, J.; McCann, S.M.; Gutkowska, J. Oxytocin in cardiac ontogeny. Proc. Natl. Acad. Sci. USA 2004, 101, 13074–13079. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, M.; Hajjar, F.; Kawas, S.A.; Mukaddam-Daher, S.; Hoffman, G.; McCann, S.M.; Gutkowska, J. Rat heart: A site of oxytocin production and action. Proc. Natl. Acad. Sci. USA 1998, 95, 14558–14563. [Google Scholar] [CrossRef] [Green Version]
- Quagliotto, E.; Casali, K.R.; Dal Lago, P.; Rasia-Filho, A.A. Neuropeptides in the posterodorsal medial amygdala modulate central cardiovascular reflex responses in awake male rats. Braz. J. Med. Biol. Res. 2015, 48, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Gutkowska, J.; Marcinkiewicz, M.; Rachelska, G.; Jankowski, M. Genistein supplementation stimulates the oxytocin system in the aorta of ovariectomized rats. Cardiovasc. Res. 2003, 57, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Larkin, T.E.; Malley, M.O.; Albers, H.E. Oxytocin (OT) and arginine-vasopressin (AVP) act on OT receptors and not AVP V1a receptors to enhance social recognition in adult Syrian hamsters (Mesocricetus auratus). Horm. Behav. 2016, 81, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; McCann, K.E.; McNeill, J.K., 4th; Larkin, T.E., 2nd; Huhman, K.L.; Albers, H.E. Oxytocin induces social communication by activating arginine-vasopressin V1a receptors and not oxytocin receptors. Psychoneuroendocrinology 2014, 50, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roozendaal, B.; Schoorlemmer, G.H.; Koolhaas, J.M.; Bohus, B. Cardiac, neuroendocrine, and behavioral effects of central amygdaloid vasopressinergic and oxytocinergic mechanisms under stress-free conditions in rats. Brain Res. Bull. 1993, 32, 573–579. [Google Scholar] [CrossRef]
- Faghihi, M.; Alizadeh, A.M.; Khori, V.; Latifpour, M.; Khodayari, S. The role of nitric oxide, reactive oxygen species, and protein kinase C in oxytocin-induced cardioprotection in ischemic rat heart. Peptides 2012, 37, 314–319. [Google Scholar] [CrossRef]
- Wsol, A.; Gondek, A.; Podobinska, M.; Chmielewski, M.; Sajdel-Sułkowska, E.; Cudnoch-Jędrzejewska, A. Increased oxytocinergic system activity in the cardiac muscle in spontaneously hypertensive SHR rats. Arch. Med. Sci. 2019, 18, 1088–1094. [Google Scholar] [CrossRef]
- Bartekova, M.; Radosinska, J.; Jelemensky, M.; Dhalla, N.S. Role of cytokines and inflammation in heart function during health and disease. Heart Fail. Rev. 2018, 23, 733–758. [Google Scholar] [CrossRef] [PubMed]
- Lambertsen, K.L.; Biber, K.; Finsen, B. Inflammatory cytokines in experimental and human stroke. J. Cereb. Blood Flow Metab. 2012, 32, 1677–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maida, C.D.; Norrito, R.L.; Daidone, M.; Tuttolomondo, A.; Pinto, A. Neuroinflammatory Mechanisms in Ischemic Stroke: Focus on Cardioembolic Stroke, Background, and Therapeutic Approaches. Int. J. Mol. Sci. 2020, 21, 6454. [Google Scholar] [CrossRef]
- Zhu, H.; Hu, S.; Li, Y.; Sun, Y.; Xiong, X.; Hu, X.; Chen, J.; Qiu, S. Interleukins and Ischemic Stroke. Front. Immunol. 2022, 13, 828447. [Google Scholar] [CrossRef]
- Baci, D.; Bosi, A.; Parisi, L.; Buono, G.; Mortara, L.; Ambrosio, G.; Bruno, A. Innate Immunity Effector Cells as Inflammatory Drivers of Cardiac Fibrosis. Int. J. Mol. Sci. 2020, 21, 7165. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Prabhu, S.D.; Bansal, S.S. CD4+ T-lymphocytes exhibit biphasic kinetics post-myocardial infarction. Front. Cardiovasc. Med. 2022, 9, 992653. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Rosenzweig, R.; Asalla, S.; Nehra, S.; Prabhu, S.D.; Bansa, S.S. TNFR1 Contributes to Activation-Induced Cell Death of Pathological CD4+ T Lymphocytes During Ischemic Heart Failure. J. Am. Coll. Cardiol. Basic to Trans Science 2022, 7, 1038–1049. [Google Scholar]
- Meyer, I.S.; Li, X.; Meyer, C.; Voloshanenko, O.; Pohl, S.; Boutros, M.; Katus, H.A.; Frey, N.; Leuschner, F. Blockade of Wnt Secretion Attenuates Myocardial Ischemia-Reperfusion Injury by Modulating the Inflammatory Response. Int. J. Mol. Sci. 2022, 23, 12252. [Google Scholar] [CrossRef] [PubMed]
- Besse, S.; Nadaud, S.; Balse, E.; Pavoine, C. Early protective role of inflammation in cardiac remodeling and heart failure: Focus on TNFα and resident macrophages. Cells 2022, 11, 1249. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Ye, D.; Wang, Z.; Pan, H.; Lu, X.; Wang, M.; Xu, Y.; Yu, J.; Zhang, J.; Zhao, M.; et al. The role of interleukin-6 family members in cardiovascular diseases. Front. Cardiovasc. Med. 2022, 9, 818890. [Google Scholar] [CrossRef] [PubMed]
- Hanna, A.; Frangogiannis, N.G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc. Drugs Ther. 2020, 34, 849–863. [Google Scholar] [CrossRef]
- Sun, K.; Li, Y.Y.; Jin, J. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal. Transduct. Target Ther. 2021, 6, 79. [Google Scholar] [CrossRef]
- Szabo, T.M.; Frigy, A.; Nagy, E.E. Targeting mediators of inflammation in heart failure: A short synthesis of experimental and clinical results. Int. J. Mol. Sci. 2021, 22, 13053. [Google Scholar] [CrossRef]
- Hirota, H.; Yoshida, K.; Kishimoto, T.; Taga, T. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc. Natl. Acad. Sci. USA 1995, 92, 4862–4866. [Google Scholar] [CrossRef] [Green Version]
- Ufnal, M.; Dudek, M.; Zera, T.; Szczepańska-Sadowska, E. Centrally administered interleukin-1 beta sensitizes to the central pressor action of angiotensin II. Brain Res. 2006, 1100, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Ufnal, M.; Dudek, M.; Szczepańska-Sadowska, E. Inhibition of brain nitric oxide synthesis enhances and prolongs the hypertensive effect of centrally administered interleukin-1beta in rats. Cytokine 2006, 33, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Ufnal, M.; Zera, T.; Szczepańska-Sadowska, E. Blockade of angiotensin II AT1 receptors inhibits pressor action of centrally administered interleukin-1beta in Sprague Dawley rats. Neuropeptides 39, 581–585. [CrossRef] [PubMed]
- Żera, T.; Ufnal, M.; Szczepańska-Sadowska, E. TNF and angiotensin type 1 receptors interact in the brain control of blood pressure in heart failure. Cytokine 2015, 71, 272–277. [Google Scholar] [CrossRef]
- Yao, L.; Shao, W.; Chen, Y.; Wang, S.; Huang, D. Suppression of ADAM8 attenuates angiotensin II-induced cardiac fibrosis and endothelial-mesenchymal transition via inhibiting TGF-β1/Smad2/Smad3 pathways. Exp. Anim. 2022, 71, 90–99. [Google Scholar] [CrossRef]
- Kimura, T.; Yamamoto, T.; Ota, K.; Shoji, M.; Inoue, M.; Sato, K.; Ohta, M.; Funyu, T.; Yoshinaga, K. Central effects of interleukin-1 on blood pressure, thermogenesis, and the release of vasopressin, ACTH, and atrial natriuretic peptide. Ann. N. Y. Acad. Sci. 1993, 689, 330–345. [Google Scholar] [CrossRef]
- Takahashi, H.; Nishimura, M.; Sakamoto, M.; Ikegaki, I.; Nakanishi, T.; Yoshimura, M. Effects of interleukin-1 beta on blood pressure, sympathetic nerve activity, and pituitary endocrine functions in anesthetized rats. Am. J. Hypertens. 1992, 5, 224–229. [Google Scholar] [CrossRef]
- Xu, F.; Sun, S.; Wang, X.; Ni, E.; Zhao, L.; Zhu, W. GRK2 mediates arginine vasopressin-induced interleukin-6 production via nuclear factor-κB signaling neonatal rat cardiac fibroblast. Mol. Pharmacol. 2017, 92, 278–284. [Google Scholar] [CrossRef]
- Yan-Hong, F.; Hui, D.; Qing, P.; Lei, S.; Hai-Chang, W.; Wei, Z.; Yan-Jie, C. Effects of arginine vasopressin on differentiation of cardiac fibroblasts into myofibroblasts. J. Cardiovasc. Pharmacol. 2010, 55, 489–495. [Google Scholar] [CrossRef]
- Finkel, M.S.; Oddis, C.V.; Jacob, T.D.; Watkins, S.C.; Hattler, B.G.; Simmons, R.L. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 1992, 257, 387–389. [Google Scholar] [CrossRef]
- Yamamoto, K.; Ikeda, U.; Okada, K.; Saito, T.; Kawahara, Y.; Okuda, M.; Yokoyama, M.; Shimad, K. Arginine vasopressin increases nitric oxide synthesis in cytokine-stimulated rat cardiac myocytes. Hypertension 1997, 30, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Hems, D.A.; Whitton, P.D.; Ma, G.Y. Metabolic actions of vasopressin, glucagon and adrenalin in the intact rat. Biochim. Biophys. Acta 1975, 411, 155–164. [Google Scholar] [CrossRef]
- Lee, B.; Yang, C.; Chen, T.H.; al-Azawi, N.; Hsu, W.H. Effect of AVP and oxytocin on insulin release: Involvement of V1b receptors. Am. J. Physiol. 1995, 269, E1095–E1100. [Google Scholar] [CrossRef] [PubMed]
- Sztechman, D.; Czarzasta, K.; Cudnoch-Jedrzejewska, A.; Szczepanska-Sadowska, E.; Zera, T. Aldosterone and mineralocorticoid receptors in regulation of the cardiovascular system and pathological remodelling of the heart and arteries. J. Physiol. Pharmacol. 2018, 69, 829–845. [Google Scholar] [CrossRef]
- Taveau, C.; Chollet, C.; Bichet, D.G.; Velho, G.; Guillon, G.; Corbani, M.; Roussel, R.; Bankir, L.; Melander, O.; Bouby, N. Acute and chronic hyperglycemic effects of vasopressin in normal rats: Involvement of V1A receptors. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E127–E135. [Google Scholar] [CrossRef]
- Yibchok-anun, S.; Hsu, W.H. Effects of arginine vasopressin and oxytocin on glucagon release from clonal alpha-cell line In-R1-G9: Involvement of V1b receptors. Life Sci. 1998, 63, 1871–1878. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepanska-Sadowska, E. The Heart as a Target of Vasopressin and Other Cardiovascular Peptides in Health and Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 14414. https://doi.org/10.3390/ijms232214414
Szczepanska-Sadowska E. The Heart as a Target of Vasopressin and Other Cardiovascular Peptides in Health and Cardiovascular Diseases. International Journal of Molecular Sciences. 2022; 23(22):14414. https://doi.org/10.3390/ijms232214414
Chicago/Turabian StyleSzczepanska-Sadowska, Ewa. 2022. "The Heart as a Target of Vasopressin and Other Cardiovascular Peptides in Health and Cardiovascular Diseases" International Journal of Molecular Sciences 23, no. 22: 14414. https://doi.org/10.3390/ijms232214414
APA StyleSzczepanska-Sadowska, E. (2022). The Heart as a Target of Vasopressin and Other Cardiovascular Peptides in Health and Cardiovascular Diseases. International Journal of Molecular Sciences, 23(22), 14414. https://doi.org/10.3390/ijms232214414