Cosmetic Preservatives: Hazardous Micropollutants in Need of Greater Attention?
Abstract
:1. Introduction
2. Characteristics of Preservatives in Cosmetics
2.1. Organochloride Compounds
2.2. Isothiazolinones
2.3. Quaternary Ammonium Compounds
3. Occurrence and Ecotoxicity
3.1. Occurrence in Sewage and Sludge
Compound | Region | Location | Date/n a | Influent | Effluent | Sludge | Analytical Method | Reference |
---|---|---|---|---|---|---|---|---|
TCC | Asia | China | 2008/5 | 390 ng L−1 b | LC-MS/MS | [75] | ||
183 ng L−1 | ||||||||
China | Unknown/3 | 267 ng L−1 | 36.6 ng L−1 | 887 ng g−1 | UHPLC-MS/MS | [64] | ||
South Korea | 2011/40 | <LOQ c–1260 ng g−1 d (100%) e | HPLC-MS/MS | [61] | ||||
1630–5090 ng g−1 (100%) | ||||||||
362–6930 ng g−1 (100%) | ||||||||
India | 2012/unknown | 515 ng L−1 | 22.4 ng L−1 | 5620 ng g−1 | HPLC-ESI-MS/MS | [62] | ||
933 ng L−1 | 457 ng L−1 | 6740 ng g−1 | ||||||
8880 ng L−1 | 5860 ng L−1 | 8460 ng g−1 | ||||||
1150 ng L−1 | 48.4 ng L−1 | 5570 ng g−1 | ||||||
2100 ng L−1 | 375 ng L−1 | |||||||
China | 2014/12 | 4.7–76.2 ng L−1 (100%) | 27.6–109 ng L−1 (100%) | 1130–2180 ng L−1 (100%) | LC-QqQ MS | [73] | ||
Singapore | 2015/4 | 423.9–933.9 ng L−1 (100%) | 143.1–214.5 ng L−1 (100%) | UHPLC-MS/MS | [71] | |||
49.1–263.9 ng L−1 (100%) | ||||||||
India | 2013/7 | 1300–4300 ng L−1 (100%) | 300–860 ng L−1 (100%) | 13,000–28,000 ng L−1 (100%) | HPLC-MS/MS | [63] | ||
1200–10,000 ng L−1 (100%) | 215–358 ng L−1 (100%) | 10,000–23,000 ng L−1 (100%) | ||||||
China | 2009–2014/100 | 8450 ng g−1 c | LC-MS/MS | [74] | ||||
North America | USA | 2009–2010/unknown | 4566 ng L−1 (100%) | 617 ng L−1 (100%) | HPLC-MS/MS | [66] | ||
4644 ng L−1 (100%) | 311 ng L−1 (100%) | |||||||
USA | 2009/5 | 4920 ng L−1 | 20 ng L−1 | LC-MS | [67] | |||
Canada | Unknown/36 | 14–270 ng L−1 (86%) | 3.1–33 ng L−1 (92%) | 1200–8900 ng g−1 dw h | LC-MS/MS | [72] | ||
USA | 2013/6 | 0.19 µg L−1 | LC-MS/MS | [68] | ||||
2013/5 | 0.21 µg L−1 | 0.05 µg L−1 | ||||||
2013/8 | 0.37 µg L−1 | |||||||
2013/8 | 0.39 µg L−1 | 0.07 µg L−1 | ||||||
2013/8 | 0.21 µg L−1 | |||||||
Europe | France | 2010/2 | 97–140 ng L−1 | UPLC-MS/MS | [69] | |||
Ireland | 2015/16 | 0.08 µg g−1 | LC-MS/MS | [32] | ||||
PCMX | Asia | China | unknown | 404.09 µg L−1 (80%) | n.d. f | GC-MS | [53] | |
16.22 µg L−1 | n.d. | |||||||
3.68 µg L−1 | n.d. | |||||||
7.29 µg L−1 | ||||||||
Europe | United Kingdom | Unknown/9 | 19–140 ng L−1 | GC-MS | [54] | |||
MIT | Europe | Poland | 2018/3 | 1.21 µg L−1 | LC-MS/MS | [20] | ||
France | unknown | 860 ng L−1 | 110 ng L−1 | HPLC-MS/MS | [59] | |||
430 ng L−1 | 65 ng L−1 | |||||||
39 ng L−1 | <LOQ | |||||||
France | 2018–2019/6 | 35–860 ng L−1 (100%) | 39–350 ng L−1 (100%) | HPLC-MS/MS | [58] | |||
BAC | Asia | Korea | 2016/unknown | HPLC-MS/MS | [55] | |||
BAC12 | 18 µg L−1 | 0.479 µg L−1 | ||||||
43.5 µg L−1 | 0.014 µg L−1 | |||||||
China | 2016/unknown | UPLC-MS/MS | [60] | |||||
BAC12 | Autumn | 0.308 µg L−1 | <MDL g | |||||
Winter | 0.480 µg L−1 | <MDL | ||||||
Autumn | 0.622 µg L−1 | <MDL | ||||||
Winter | 0.650 µg L−1 | 0.010 µg L−1 | ||||||
BAC14 | Autumn | 0.121 µg L−1 | <MDL | |||||
Winter | 0.161 µg L−1 | <MDL | ||||||
Autumn | 0.141 µg L−1 | <MDL | ||||||
Winter | 0.220 µg L−1 | <MDL | ||||||
China | unknown | HPLC-MS/MS | [76] | |||||
BAC12 | 1800 ng L−1 | 3.7 ng L−1 | ||||||
1400 ng L−1 | 6.8 ng L−1 | |||||||
1300 ng L−1 | 4.8 ng L−1 | |||||||
BAC14 | 670 ng L−1 | 1.9 ng L−1 | ||||||
610 ng L−1 | 3.3 ng L−1 | |||||||
480 ng L−1 | 2.3 ng L−1 | |||||||
North America | USA | 2018/13 | LC-HRMS/MS | [77] | ||||
BAC12 | 23 ng L−1 | |||||||
BAC14 | 216 ng L−1 | |||||||
Europe | Sweden | unknown | LC-MS/MS | [56] | ||||
BAC10 | 2–64 ng L−1 (100%) | <LOQ-3 ng L−1 (12%) | 24–210 ng g−1 dw (100%) | |||||
BAC12 | 1725–29,655 ng L−1 (100%) | <LOQ-310 ng L−1 (67%) | 8800–89,000 ng g−1 dw (100%) | |||||
BAC14 | 454–8903 ng L−1 (100%) | <LOQ-84 ng L−1 (58%) | 3200–60,000 ng g−1 dw (100%) | |||||
BAC16 | <LOQ-1485 ng L−1 (88%) | <LOQ-13 ng L−1 (6%) | 990–4900 ng g−1 dw (100%) | |||||
Netherlands | 2014/15 | 15.5 µg L−1 | <LOQ | LC-MS/MS | [57] | |||
10 µg L−1 | 0.5 µg L−1 | |||||||
France | unknown | UPLC-MS/MS | [58] | |||||
BAC12 | 200 ng L−1 | 100 ng L−1 | ||||||
500 ng L−1 | 400 ng L−1 | |||||||
2000 ng L−1 | 300 ng L−1 | |||||||
BAC14 | <LOQ | <LOQ | ||||||
400 ng L−1 | 200 ng L−1 | |||||||
300 ng L−1 | 80 ng L−1 | |||||||
BAC16 | 200 ng L−1 | <LOQ |
3.2. Occurrence in Surface Waters
3.3. Occurrence in Surface Water Sediments
3.4. Occurrence in Soil
3.5. Aquatic Toxicity
3.5.1. Triclocarban
3.5.2. Chloroxylenol
3.5.3. Methylisothiazolinone
3.5.4. Benzalkonium Chloride
Compound | Species | Effect | Duration | Endpoint | Value | References |
---|---|---|---|---|---|---|
TCC | Daphnia magna | Immobility | 48 h | EC50 | 5.9 µg L−1 | [115] |
Daphnia magna | Mortality | 96 h | LC50 | 0.087 µM | [134] | |
Daphnia similis | Immobility | 48 h | EC50 | 0.044 µM | [135] | |
Pseudokirchneriella subcapitata | Growth inhibition | 72 h | IC50a | 1.01 µM | [135] | |
Chlorella vulgaris | Growth inhibition | 96 h | EC50 | 8.474 mg L−1 | [120] | |
Scenedesmus obliquus | Growth inhibition | 96 h | EC50 | 9.11 mg L−1 | [120] | |
Chlorella pyrenoidosa | Growth inhibition | 96 h | EC50 | 8.76 mg L−1 | [120] | |
Clarias gariepinus | Fingerlings mortality | 96 h | LC50 | 41.57 mg L−1 | [119] | |
Clarias gariepinus | Embryos mortality | 24 h | LC50 | 46.08 mg L−1 | [119] | |
Clarias gariepinus | Hatching | 26 h | EC50 | 41.93 mg L−1 | [119] | |
Caenorhabditis elegans | Reproduction | 96 h | EC50 | 0.38 µmol L−1 | [136] | |
Caenorhabditis elegans | Growth | 96 h | EC50 | 0.66 µmol L−1 | [136] | |
Caenorhabditis elegans | Mortality | 24 h | LC50 | 0.91 mg L−1 | [116] | |
Caenorhabditis elegans | Reproduction | 4–6 days | LOECb | 0.01 mg L−1 | [116] | |
Caenorhabditis elegans | Lifespan | 4–6 days | LOEC | 0.05 mg L−1 | [116] | |
Caenorhabditis elegans | Germline toxicity | 24 h | LOEC | 0.01 mg L−1 | [116] | |
PCMX | Brachionus koreanus | Mortality | 24 h | LC50 | 24.264 mg L−1 | [121] |
Brachionus koreanus | Mortality | 24 h | NOECc | 15 mg L−1 | [121] | |
Daphnia magna | Mortality | 48 h | LC50 | 8.78 mg L−1 | [124] | |
Caenorhabditis elegans | Mortality | 24 h | LC50 | 31.8 mg L−1 | [116] | |
Caenorhabditis elegans | Reproduction | 4–6 days | LOECb | 1 mg L−1 | [116] | |
Caenorhabditis elegans | Lifespan | 4–6 days | LOEC | 10 mg L−1 | [116] | |
Caenorhabditis elegans | Germline toxicity | 24 h | LOEC | 5 mg L−1 | [116] | |
Orectogyrus alluaudi | Mortality | 24 h | LC50 | 21.587 mg L−1 | [123] | |
Orectogyrus alluaudi | Mortality | 48 h | LC50 | 16.744 mg L−1 | [123] | |
Orectogyrus alluaudi | Mortality | 72 h | LC50 | 11.638 mg L−1 | [123] | |
Orectogyrus alluaudi | Mortality | 96 h | LC50 | 7.819 mg L−1 | [123] | |
Orectogyrus alluaudi | Mortality | 24 h | NOEC | 6.754 mg L−1 | [123] | |
Orectogyrus alluaudi | Mortality | 48 h | NOEC | 2.789 mg L−1 | [123] | |
Orectogyrus alluaudi | Mortality | 72 h | NOEC | 1.1535 mg L−1 | [123] | |
Orectogyrus alluaudi | Mortality | 96 h | NOEC | 0.5485 mg L−1 | [123] | |
MIT | Daphnid | Mortality | 48 h | LC50 | 4.7 mg L−1 | [137] |
Algae | - | 96 h | EC50 | 0.4 mg L−1 | [137] | |
Fish | Mortality | 96 h | LC50 | 3.8 mg L−1 | [137] | |
Daphnia magna | Immobility | 48 h | EC50 | 510 µg L−1 | [126] | |
Cell line RTL-W1 from Oncorhynchus mykiss | Vitality | 48 h | EC50 | 10400 µg L−1 | [126] | |
Daphnia similis | Mortality | 24 h | LC50 | 1.83 mg L−1 | [125] | |
Daphnia similis | Mortality | 48 h | LC50 | 0.81 mg L−1 | [125] | |
Dugesia japonica | Mortality | 24 h | LC50 | 2.36 mg L−1 | [125] | |
Dugesia japonica | Mortality | 48 h | LC50 | 2.06 mg L−1 | [125] | |
Dugesia japonica | Mortality | 72 h | LC50 | 1.58 mg L−1 | [125] | |
Dugesia japonica | Mortality | 96 h | LC50 | 1.54 mg L−1 | [125] | |
Neocaridina denticulata | Mortality | 24 h | LC50 | 198.34 mg L−1 | [125] | |
Neocaridina denticulata | Mortality | 48 h | LC50 | 84.48 mg L−1 | [125] | |
Neocaridina denticulata | Mortality | 24 h | LC50 | 43.82 mg L−1 | [125] | |
Neocaridina denticulata | Mortality | 48 h | LC50 | 35.36 mg L−1 | [125] | |
Scenedesmus sp. LX1 | Growth inhibition | 72 h | EC50 | 1 mg L−1 | [128] | |
BAC | Daphnia magna | Immobility | 48 h | EC50 | 41.1 µg L−1 | [55] |
Oryzias latipes | Mortality | 96 h | LC50 | 246 µg L−1 | [55] | |
Oryzias latipes | Mortality | 96 h | LC50 | 2.12 mg L−1 | [133] | |
Phaeodactylum tricornutum | Growth inhibition | 72 h | EC10 | 69 µg L−1 | [130] | |
Phaeodactylum tricornutum | Growth inhibition | 72 h | EC50 | 131.9 µg L−1 | [130] | |
Tisochrysis lutea | Growth inhibition | 72 h | EC10 | 57.1 µg L−1 | [130] | |
Tisochrysis lutea | Growth inhibition | 72 h | EC50 | 86 µg L−1 | [130] | |
Pseudokirchneriella subcapitata | Growth inhibition | 72 h | EC10 | 0.092 mg L−1 | [131] | |
Pseudokirchneriella subcapitata | Growth inhibition | 72 h | EC50 | 0.255 mg L−1 | [131] | |
Pseudokirchneriella subcapitata | Growth inhibition | 72 h | NOEC | 0.023 mg L−1 | [131] | |
Microcystis aeruginosa | Growth inhibition | 96 h | EC50 | 3.61 mg L- | [132] | |
Brachionus koreanus | Mortality | 24 h | LC50 | 0.483 mg L−1 | [121] | |
Brachionus koreanus | Mortality | 24 h | NOECc | 0.3 mg L−1 | [121] | |
Cell line RTgill-W1 from Oncorhynchus mykiss | Metabolic activity | 24 h | EC50 | 1098 µg L−1 | [138] | |
Cell line RTgill-W1 from Oncorhynchus mykiss | Membrane integrity | 24 h | EC50 | 1628 µg L−1 | [138] | |
Cell line RTgill-W1 from Oncorhynchus mykiss | Rybosomal integrity | 24 h | EC50 | 690 µg L−1 | [138] |
3.6. Soil Toxicity
4. Microbial Degradation of Preservatives
4.1. Triclocarban
4.2. Chloroxylenol
4.3. Methylisothiazolinone
4.4. Benzalkonium Chloride
Compound | Micro-organism Used | Initial Concentration of Preservative | Removal [%] | Time Taken | Metabolites | References |
---|---|---|---|---|---|---|
TCC | Microbial consortium | 975.4 µg kg−1 | 83.1 | 16 d | not analyzed | [143] |
Pseudomonas fluorescens MC46 (immobilized cells) | 10 mg L−1 | 70.14–79.18 | 24 h | 3,4-dichloroaniline; 4-chloroaniline; aniline; catechol | [144] | |
Pseudomonas fluorescens MC46 (free cells) | 10 mg L−1 | 42.12 | 24 h | 3,4-dichloroaniline; 4-chloroaniline; aniline; catechol | [144] | |
Pseudomonas fluorescens MC46 (immobilized cells) | 5 mg L−1 10 mg L−1 20 mg L−1 30 mg L−1 40 mg L−1 50 mg L−1 | 73.97 ± 0.03 78.26 ± 0.14 50.98 ± 0.27 27.05 ± 0.71 10.54 ± 0.10 7.88 ± 0.66 | 8 h 8 h 8 h 8 h 8 h 8 h | Not analyzed 3,4-dichloroaniline; 4-chloroaniline; aniline; Not analyzed Not analyzed Not analyzed Not analyzed | [145] | |
Pseudomonas fluorescens MC46 (free cells) | 5 mg L−1 10 mg L−1 20 mg L−1 30 mg L−1 40 mg L−1 50 mg L−1 | 54.52 ± 0.06 44.73 ± 0.20 22.45 ± 0.27 16.98 ± 0.13 6.74 ± 0.01 4.30 ± 0.02 | 8 h 8 h 8 h 8 h 8 h 8 h | Not analyzed 3,4-dichloroaniline; 4-chloroaniline; aniline; Not analyzed Not analyzed Not analyzed Not analyzed | [145] | |
Pseudomonas fluorescens MC46 | 9. 5 mg L−1 | 67 ± 2 | 6 h | Not analyzed | [146] | |
Sphingomonas sp. YL-JM2C | 4 mg L−1 | 35 | 5 d | 3,4-dichloroaniline; 4-chloroaniline; 4-chlorocatechol; | [147] | |
Ochrobactrum sp. TCC-2 | 5 mg L−1 | 56.70 ± 1.50 | 48 h | Not analyzed | [151] | |
Ochrobactrum sp. MC22 (aerobic conditions) | 9.40 mg L−1 | 78 ± 4.9 | 6 d | 3,4-dichloroaniline; 4-chloroaniline; | [148] | |
Ochrobactrum sp. MC22 (anaerobic conditions) | 9.40 mg L−1 | 50% | 14 d | 3,4-dichloroaniline; 4-chloroaniline; aniline; | [148] | |
Ochrobactrum sp. TCC-2 (aerobic conditions) | 31.7 μM | 96.88 ± 0.05 | 24 h | 4-chloroaniline; 3,4-Dichloroaniline; | [149] | |
Ochrobactrum sp. TCC-2 (anaerobic conditions) | 31.7 μM | 72.70 ± 2.90 | 24 h | 4-chloroaniline; 3,4-Dichloroaniline; | [149] | |
PCMX | Cunninghamella elegans IM 1785/21GP | 25 mg L−1 | 70 | 120 h | 2,6-dimethylbenzene-1,4-diol, di-TMS; 2,5-dihydroxy-3-methylbenzaldehyde, di-TMS; | [124] |
Trametes versicolor IM 373 | 25 mg L−1 | 79 | 120 h | 4,6-dioxohex-2-enoic acid, TMS; 5-methyl-6-oxohexa-2,4-dienoic acid, TMS; 3-chloro-2,4-dimethylhexa-2,4-dienedioic acid, di-TMS; | [124] | |
Aspergillus niger | 2 mg L−1 | 99 | 7 d | Not analyzed | [152] | |
Klebsiella pneumoniae D2 (free cells) | 8 mg L−1 | 55.7 | 24 h | Not analyzed | [164] | |
Klebsiella pneumoniae D2 (immobilized cells) | 8 mg L−1 | 88.3 | 24 h | Not analyzed | [164] | |
Activated sludge | 0.5 mg L−1 | 39.4 ± 17.3 | 72 h | Not analyzed | [153] | |
Activated sludge | 5 mg L−1 | 49.4 ± 15 | 72 h | Not analyzed | [153] | |
MIT | Pchanerochaete chrysosporium | 50 µg L−1 and 30 mg L−1 | 100 | 12 h | monohydroxylated MIT; dihydroxylated MIT; N-methylmalonamic acid; | [20] |
Trichoderma longibrachiatum FB01 | 10 g L−1 | 100 | 16 h | tartaric acid; 2-oxobutanoic acid; acetic acid; | [154] | |
Aspergillus niger FB14 | 10 g L−1 | 100 | 16 h | malonic acid; 2-oxobutanoic acid; lactic acid; metoxiacetic acid; acetic acid; | [154] | |
Fusarium solani FB07 | 10 g L−1 | 100 | 16 h | malonic acid; 2-oxobutanoic acid; propanoic acid; acetic acid; | [154] | |
BAC | 20 strains of Burkholderia cepacia | 34–64 mg L−1 | 4.7 ± 2.4–42.6 ± 12.3 | 7 d | benzyldimethylamine; benzylmethylamine | [156] |
Pseudomonas sp. BIOMIG1 | 200 µM | 62.5 | 3 d | mineralization | [157] | |
Aeromonas hydrophila MFB03 (immobilized cells) | 25–210 mg L−1 | 90 | 48 h | Not analyzed | [158] | |
Aeromonas hydrophila MFB03 (free cells) | 50 mg L−1 | 74.2 ± 2.3–80.4 ± 0.6 | 48 h | Not analyzed | [158] | |
Pseudomonas putida ATCC 12633 (immobilized cells) | 50 mg L−1 | 74 ± 4.70 | 48 h | Not analyzed | [158] | |
Pseudomonas putida ATCC 12633 (immobilized cells) | 105–315 mg L−1 | 90 | 24 h | Not analyzed | [159] | |
Bacillus niabensis | 2 mg mL−1 | Up to 90 | 7 d | N,N-dimethylbenzylamine | [160] | |
Thalassospira sp | 4 mg mL−1 | Up to 90 | 7 d | N,N-dimethylbenzylamine | [160] | |
Microbial community | 50 mg L−1 | 80 | 12 h | Not detected | [161] | |
Microbial community | 50 mg L−1 | 100 | 24 h | benzyldimethylamine | [162] | |
Tetrasemis suecica | 5 mg L−1 | 100 | 3–6 d | OH-BAC-C12; 2OH-BAC-C14 | [163] |
5. Conclusions
- Because of the market development, extensive use, and continuous discharge of personal care products, there is a need for more detailed data on the environmental occurrence, mainly for chloroxylenol and methylisothiazolinone.
- Toxicological studies on the chronic effects of the environmental concentrations of single preservatives and their metabolites should be considered, as well as the effects of a mixture of pollutants on aquatic and soil organisms.
- Mechanisms of the microbial biodegradation of preservatives and their metabolites should also be better understood, which will make it possible to design a treatment technology that is both effective and affordable for limiting the release of pollutants.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999, 107 (Suppl. 6), 907–938. [Google Scholar] [CrossRef]
- Sumner, N.R.; Guitart, C.; Fuentes, G.; Readman, J.W. Inputs and distributions of synthetic musk fragrances in an estuarine and coastal environment; a case study. Environ. Pollut. 2010, 158, 215–222. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Sullivan, D.A.; Sullivan, A.G.; Kam, W.R.; Liu, Y. Toxicity of cosmetic preservatives on human ocular surface and adnexal cells. Exp. Eye Res. 2018, 170, 188–197. [Google Scholar] [CrossRef]
- Karr, S.; Houtman, A.; Interlandl, J. Toxic bottles? On the trail of chemicals in our everyday lives. In Environmental Science for a Changing World; Karr, S., Houtman, A., Interlandl, J., Eds.; Freeman: New York, NY, USA, 2013; p. 54. [Google Scholar]
- O’Dell, L.M.; Sullivan, A.G.; Periman, L.M. Beauty does not have to hurt. Adv. Ocul. Care 2016, 42–47. [Google Scholar]
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. [Google Scholar] [CrossRef]
- Blair, B.D.; Crago, J.P.; Hedman, C.J.; Klaper, R.D. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 2013, 93, 2116–2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.L.; Wong, M.H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef]
- Martínez-Carballo, E.; Sitka, A.; González-Barreiro, C.; Kreuzinger, N.; Fürhacker, M.; Scharf, S.; Gans, O. Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. Part I. Application to surface, waste and indirect discharge water samples in Austria. Environ. Pollut. 2007, 145, 489–496. [Google Scholar] [CrossRef]
- Zhang, C.; Tezel, U.; Li, K.; Liu, D.; Ren, R.; Du, J.; Pavlostathis, S.G. Evaluation and modeling of benzalkonium chloride inhibition and biodegradation in activated sludge. Water Res. 2011, 45, 1238–1246. [Google Scholar] [CrossRef]
- Baranowska, I.; Wojciechowska, I. The determination of preservatives in cosmetics and environmental waters by HPLC. Polish J. Environ. Stud. 2013, 22, 1609–1625. [Google Scholar]
- Baranowska, I.; Wojciechowska, I.; Solarz, N.; Krutysza, E. Determination of preservatives in cosmetics, cleaning agents and pharmaceuticals using fast liquid chromatography. J. Chromatogr. Sci. 2014, 52, 88–94. [Google Scholar] [CrossRef]
- Blair, B.; Nikolaus, A.; Hedman, C.; Klaper, R.; Grundl, T. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 2015, 134, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Lv, M.; Li, M.; Yu, C.-P. Personal Care Products in the Aquatic Environment in China; Springer: Cham, Switzerland, 2014; Volume 36, pp. 73–94. [Google Scholar] [CrossRef]
- Meador, J.P.; Yeh, A.; Young, G.; Gallagher, E.P. Contaminants of emerging concern in a large temperate estuary. Environ. Pollut. 2016, 213, 254–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.; Kumar, A.; Du, J.; Hepplewhite, C.; Ellis, D.J.; Christy, A.G.; Beavis, S.G. Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Sci. Total Environ. 2016, 541, 1625–1637. [Google Scholar] [CrossRef]
- Dambal, V.Y.; Selvan, K.P.; Lite, C.; Barathi, S.; Santosh, W. Developmental toxicity and induction of vitellogenin in embryo-larval stages of zebrafish (Danio rerio) exposed to methyl Paraben. Ecotoxicol. Environ. Saf. 2017, 141, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cheng, G.; Chen, K.; Lu, J.; Lei, J.; Pu, S. Adsorptive removal of bisphenol A, chloroxylenol, and carbamazepine from water using a novel β-cyclodextrin polymer. Ecotoxicol. Environ. Saf. 2019, 170, 278–285. [Google Scholar] [CrossRef]
- Nowak, M.; Zawadzka, K.; Lisowska, K. Occurrence of methylisothiazolinone in water and soil samples in Poland and its biodegradation by Phanerochaete chrysosporium. Chemosphere 2020, 254, 126723. [Google Scholar] [CrossRef] [PubMed]
- Puerta, Y.T.; Guimarães, P.S.; Martins, S.E.; Martins, C.D.M.G. Toxicity of methylparaben to green microalgae species and derivation of a predicted no effect concentration (PNEC) in freshwater ecosystems. Ecotoxicol. Environ. Saf. 2020, 188, 109916. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res. 2008, 42, 3498–3518. [Google Scholar] [CrossRef] [PubMed]
- Andersen, K.E.; Mose, K.F. Preservatives. In Quick Guide to Contact Dermatitis; Johansen, J.D., Lepoittevin, J.-P., Thyssen, J.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 147–157. [Google Scholar]
- Benson, H.A.E.; Roberts, M.S.; Leite-Silva, V.R.; Walters, K. Cosmetic Formulation Principles and Practice; CRS Press: Boca Raton, FL, USA; Taylor & Francais Group: Abingdon, UK, 2019; ISBN 9781032093079. [Google Scholar]
- Alvarez-Rivera, G.; Llompart, M.; Lores, M.; Garcia-Jares, C. Preservatives in Cosmetics: Regulatory Aspects and Analytical Methods. In Analysis of Cosmetic Products: Second Edition; Elsevier: Amsterdam, The Netherlands, 2018; pp. 175–224. ISBN 9780444635167. [Google Scholar]
- European Comission. List of Preservatives Alloved in Cosmetic Products; European Comission: Luxembourg, 2020. [Google Scholar]
- Cebulski, S.P. Preservation of Topical Formulations: An Historical and Practical Overview. In Handbook of Formulating Dermal Applications; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2016; pp. 463–484. ISBN 9781119364221. [Google Scholar]
- Lundov, M.D.; Moesby, L.; Zachariae, C.; Johansen, J.D. Contamination versus preservation of cosmetics: A review on legislation, usage, infections, and contact allergy. Contact Dermat. 2009, 60, 70–78. [Google Scholar] [CrossRef]
- Vimalkumar, K.; Seethappan, S.; Pugazhendhi, A. Fate of Triclocarban (TCC) in aquatic and terrestrial systems and human exposure. Chemosphere 2019, 230, 201–209. [Google Scholar] [CrossRef]
- Halden, R.U.; Paull, D.H. Co-Occurrence of Triclocarban and Triclosan in U.S. Water Resources. Environ. Sci. Technol. 2005, 39, 1420–1426. [Google Scholar] [CrossRef]
- Yang, H.; Sanidad, K.Z.; Wang, W.; Xie, M.; Gu, M.; Cao, X.; Xiao, H.; Zhang, G. Triclocarban exposure exaggerates colitis and colon tumorigenesis: Roles of gut microbiota involved. Gut Microbes 2020, 12, 1690364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Healy, M.G.; Fenton, O.; Cormican, M.; Peyton, D.P.; Ordsmith, N.; Kimber, K.; Morrison, L. Antimicrobial compounds (triclosan and triclocarban) in sewage sludges, and their presence in runoff following land application. Ecotoxicol. Environ. Saf. 2017, 142, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.A.; Rhee, M.S. Microbicidal effects of plain soap vs triclocarban-based antibacterial soap. J. Hosp. Infect. 2016, 94, 276–280. [Google Scholar] [CrossRef]
- Russell, A.D. Whither triclosan? J. Antimicrob. Chemother. 2004, 53, 693–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMurry, L.M.; Oethinger, M.; Levy, S.B. Triclosan targets lipid synthesis. Nature 1998, 394, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Levy, C.W.; Roujeinikova, A.; Sedelnikova, S.; Baker, P.J.; Stuitje, A.R.; Slabas, A.R.; Rice, D.W.; Rafferty, J.B. Molecular basis of triclosan activity. Nature 1999, 398, 383–384. [Google Scholar] [CrossRef]
- Bruch, M.K. Chloroxylenol: An old–new antimicrobial. In Handbook of Disinfectants and Antiseptics; Ascenzi, J.M., Ed.; Marcel Dekker: New York, NY, USA, 1996; pp. 265–294. [Google Scholar]
- Tan, J.; Kuang, H.; Wang, C.; Liu, J.; Pang, Q.; Xie, Q.; Fan, R. Human exposure and health risk assessment of an increasingly used antibacterial alternative in personal care products: Chloroxylenol. Sci. Total Environ. 2021, 786, 147524. [Google Scholar] [CrossRef] [PubMed]
- Poger, D.; Mark, A.E. Effect of Triclosan and Chloroxylenol on Bacterial Membranes. J. Phys. Chem. B 2019, 123, 5291–5301. [Google Scholar] [CrossRef] [PubMed]
- NEA Interim List of Household Products and Active Ingredients for Surface Disinfection of the COVID-19 Virus. Available online: https://www.nea.gov.sg/our-services/public-cleanliness/environmental-cleaning-guidelines/guidelines/interim-list-of-household-products-and-active-ingredients-for-disinfection-of-covid-19 (accessed on 15 January 2021).
- Castanedo-Tardana, M.P.; Zug, K.A. Methylisothiazolinone. Dermatitis 2013, 24, 2–6. [Google Scholar] [CrossRef]
- Bruze, M.; Uter, W.; Goncalo, M.; Lepoittevan, J.-P.; Diepgen, T.; Orton, D. Incompetence and failure to regulate methylisothiazolinone. Contact Dermat. 2015, 72, 353–354. [Google Scholar] [CrossRef]
- Garcia-Hidalgo, E.; Sottas, V.; von Goetz, N.; Hauri, U.; Bogdal, C.; Hungerbühler, K. Occurrence and concentrations of isothiazolinones in detergents and cosmetics in Switzerland. Contact Dermat. 2017, 76, 96–106. [Google Scholar] [CrossRef]
- Berthet, A.; Spring, P.; Vernez, D.; Plateel, G.; Hopf, N.B. Ex vivo human skin permeation of methylchloroisothiazolinone (MCI) and methylisothiazolinone (MI). Arch. Toxicol. 2017, 91, 3529–3542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef] [Green Version]
- Tomás, M.; Agonia, A.S.; Borges, L.; Palmeira de Oliveira, A.; Palmeira de Oliveira, R. Isothiazolinones Quantification in Shampoo Matrices: A Matter of Method Optimization or Stability Driven by Interactions? Cosmetics 2020, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Hora, P.I.; Pati, S.G.; McNamara, P.J.; Arnold, W.A. Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. Environ. Sci. Technol. Lett. 2020, 7, 622–631. [Google Scholar] [CrossRef]
- EPA List N: Disinfectants for Use Against SARS-CoV-2 (COVID-19); United States Environmental Protection Agency: Washington, DC, USA, 2020.
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, P.; Moore, L.E. Cationic antiseptics: Diversity of action under a common epithet. J. Appl. Microbiol. 2005, 99, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: The role of quaternary ammonium compounds—A critical review. Int. J. Antimicrob. Agents 2012, 39, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Al-Adham, I.; Haddadin, R.; Collier, P. Types of Microbicidal and Microbistatic Agents. In Russell, Hugo & Ayliffe’s: Principles and Practice of Disinfection, Preservation and Sterilization; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 5–70. ISBN 9781444333251. [Google Scholar]
- Zhong, W.; Wang, D.; Xu, X. Phenol removal efficiencies of sewage treatment processes and ecological risks associated with phenols in effluents. J. Hazard. Mater. 2012, 217–218, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Rostkowski, P.; Horwood, J.; Shears, J.A.; Lange, A.; Oladapo, F.O.; Besselink, H.T.; Tyler, C.R.; Hill, E.M. Bioassay-Directed Identification of Novel Antiandrogenic Compounds in Bile of Fish Exposed to Wastewater Effluents. Environ. Sci. Technol. 2011, 45, 10660–10667. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Ji, K.; Shin, H.; Park, S.; Kho, Y.; Park, K.; Kim, K.; Choi, K. Occurrences of benzalkonium chloride in streams near a pharmaceutical manufacturing complex in Korea and associated ecological risk. Chemosphere 2020, 256, 127084. [Google Scholar] [CrossRef]
- Östman, M.; Lindberg, R.H.; Fick, J.; Björn, E.; Tysklind, M. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res. 2017, 115, 318–328. [Google Scholar] [CrossRef]
- Butkovskyi, A.; Leal, L.H.; Zeeman, G.; Rijnaarts, H.H.M. Micropollutants in source separated wastewater streams and recovered resources of source separated sanitation. Environ. Res. 2017, 156, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Paijens, C.; Bressy, A.; Frère, B.; Tedoldi, D.; Mailler, R.; Rocher, V.; Neveu, P.; Moilleron, R. Urban pathways of biocides towards surface waters during dry and wet weathers: Assessment at the Paris conurbation scale. J. Hazard. Mater. 2021, 402, 123765. [Google Scholar] [CrossRef] [PubMed]
- Paijens, C.; Frère, B.; Caupos, E.; Moilleron, R.; Bressy, A. Determination of 18 Biocides in Both the Dissolved and Particulate Fractions of Urban and Surface Waters by HPLC-MS/MS. Water Air Soil Pollut. 2020, 231, 210. [Google Scholar] [CrossRef]
- Zhu, F.J.; Ma, W.L.; Xu, T.F.; Ding, Y.; Zhao, X.; Li, W.L.; Liu, L.Y.; Song, W.W.; Li, Y.F.; Zhang, Z.F. Removal characteristic of surfactants in typical industrial and domestic wastewater treatment plants in Northeast China. Ecotoxicol. Environ. Saf. 2018, 153, 84–90. [Google Scholar] [CrossRef]
- Subedi, B.; Lee, S.; Moon, H.B.; Kannan, K. Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea. Environ. Int. 2014, 68, 33–40. [Google Scholar] [CrossRef]
- Subedi, B.; Balakrishna, K.; Sinha, R.K.; Yamashita, N.; Balasubramanian, V.G.; Kannan, K. Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India. J. Environ. Chem. Eng. 2015, 3, 2882–2891. [Google Scholar] [CrossRef]
- Subedi, B.; Balakrishna, K.; Joshua, D.I.; Kannan, K. Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere 2017, 167, 429–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.-F.; Ying, G.-G.; Lai, H.-J.; Chen, F.; Su, H.-C.; Liu, Y.-S.; Peng, F.-Q.; Zhao, J.-L. Determination of biocides in different environmental matrices by use of ultra-high-performance liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 404, 3175–3188. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Lv, M.; Li, M.; Yu, C.-P. Personal Care Products in the Aquatic Environment. In China BT—Personal Care Products in the Aquatic Environment; Díaz-Cruz, M.S., Barceló, D., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 73–94. ISBN 978-3-319-18809-6. [Google Scholar]
- Hedgespeth, M.L.; Sapozhnikova, Y.; Pennington, P.; Clum, A.; Fairey, A.; Wirth, E. Pharmaceuticals and personal care products (PPCPs) in treated wastewater discharges into Charleston Harbor, South Carolina. Sci. Total Environ. 2012, 437, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, N.; Rice, C.P.; Ramirez, M.; Torrents, A. Fate of Triclocarban, Triclosan and Methyltriclosan during wastewater and biosolids treatment processes. Water Res. 2013, 47, 4519–4527. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.S.; Murphy, M.; Mendola, N.; Wong, V.; Carlson, D.; Waring, L. Characterization of Pharmaceuticals and Personal Care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS. Sci. Total Environ. 2015, 518–519, 459–478. [Google Scholar] [CrossRef] [PubMed]
- Gasperi, J.; Geara, D.; Lorgeoux, C.; Bressy, A.; Zedek, S.; Rocher, V.; El Samrani, A.; Chebbo, G.; Moilleron, R. First assessment of triclosan, triclocarban and paraben mass loads at a very large regional scale: Case of Paris conurbation (France). Sci. Total Environ. 2014, 493, 854–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, H.; Liang, B.; Kong, D.; Li, X.; Wang, A. Fate, risk and removal of triclocarban: A critical review. J. Hazard. Mater. 2020, 387, 121944. [Google Scholar] [CrossRef]
- Tran, N.H.; Chen, H.; Reinhard, M.; Mao, F.; Gin, K.Y.H. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res. 2016, 104, 461–472. [Google Scholar] [CrossRef]
- Guerra, P.; Kim, M.; Shah, A.; Alaee, M.; Smyth, S.A. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Sci. Total Environ. 2014, 473–474, 235–243. [Google Scholar] [CrossRef]
- Sun, Q.; Li, M.; Ma, C.; Chen, X.; Xie, X.; Yu, C.P. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environ. Pollut. 2016, 208, 371–381. [Google Scholar] [CrossRef]
- Chen, J.; Meng, X.Z.; Bergman, A.; Halden, R.U. Nationwide reconnaissance of five parabens, triclosan, triclocarban and its transformation products in sewage sludge from China. J. Hazard. Mater. 2019, 365, 502–510. [Google Scholar] [CrossRef]
- Chen, F.; Ying, G.G.; Kong, L.X.; Wang, L.; Zhao, J.L.; Zhou, L.J.; Zhang, L.J. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. Environ. Pollut. 2011, 159, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Guo, H.; Wang, C.; Zhang, Y.; Cheng, X.; Wang, J.; Yang, B.; Du, E. ROS reevaluation for degradation of 4-chloro-3,5-dimethylphenol (PCMX) by UV and UV/persulfate processes in the water: Kinetics, mechanism, DFT studies and toxicity evolution. Chem. Eng. J. 2020, 390, 124610. [Google Scholar] [CrossRef]
- Pati, S.G.; Arnold, W.A. Comprehensive screening of quaternary ammonium surfactants and ionic liquids in wastewater effluents and lake sediments. Environ. Sci. Process. Impacts 2020, 22, 430–441. [Google Scholar] [CrossRef] [Green Version]
- Min, K.; Yang, Q.; Zhong, X.; Yan, D.; Luo, W.; Fang, Z.; Xiao, J.; Ma, M.; Chen, B. Rapid analysis of anionic and cationic surfactants in water by paper spray mass spectrometry. Anal. Methods 2021, 13, 986–995. [Google Scholar] [CrossRef]
- Li, W.L.; Zhang, Z.F.; Li, Y.F.; Hung, H.; Yuan, Y.X. Assessing the distributions and fate of household and personal care chemicals (HPCCs) in the Songhua Catchment, Northeast China. Sci. Total Environ. 2021, 786, 147484. [Google Scholar] [CrossRef] [PubMed]
- Olkowska, E.; Ruman, M.; Kowalska, A.; Polkowska, Ż. Determination of Surfactants in Environmental Samples. Part I. Cationic Compounds / Oznaczanie Surfaktantów W Próbkach Środowiskowych. Część I. Związki Kationowe. Ecol. Chem. Eng. S 2013, 20, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Ruman, M.; Olkowska, E.; Pytel, S.; Polkowska, Ż. Surfactants in Klodnica River (Katowice, Poland). Part II. Quaternary Ammonium Compounds. Ecol. Chem. Eng. S 2018, 25, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Dsikowitzky, L.; Hagemann, L.; Dwiyitno; Ariyani, F.; Irianto, H.E.; Schwarzbauer, J. Complex organic pollutant mixtures originating from industrial and municipal emissions in surface waters of the megacity Jakarta—An example of a water pollution problem in emerging economies. Environ. Sci. Pollut. Res. 2017, 24, 27539–27552. [Google Scholar] [CrossRef]
- Dsikowitzky, L.; Sträter, M.; Dwiyitno; Ariyani, F.; Irianto, H.E.; Schwarzbauer, J. First comprehensive screening of lipophilic organic contaminants in surface waters of the megacity Jakarta, Indonesia. Mar. Pollut. Bull. 2016, 110, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Kameda, Y.; Yamamoto, H.; Nakada, N.; Tamura, I.; Miyazaki, M.; Masunaga, S. Occurrence of preservatives and antimicrobials in Japanese rivers. Chemosphere 2014, 107, 393–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das Sarkar, S.; Nag, S.K.; Kumari, K.; Saha, K.; Bandyopadhyay, S.; Aftabuddin, M.; Das, B.K. Occurrence and Safety Evaluation of Antimicrobial Compounds Triclosan and Triclocarban in Water and Fishes of the Multitrophic Niche of River Torsa, India. Arch. Environ. Contam. Toxicol. 2020, 79, 488–499. [Google Scholar] [CrossRef]
- Gopal, C.M.; Bhat, K.; Ramaswamy, B.R.; Kumar, V.; Singhal, R.K.; Basu, H.; Udayashankar, H.N.; Vasantharaju, S.G.; Praveenkumarreddy, Y.; Shailesh; et al. Seasonal occurrence and risk assessment of pharmaceutical and personal care products in Bengaluru rivers and lakes, India. J. Environ. Chem. Eng. 2021, 9, 105610. [Google Scholar] [CrossRef]
- Guruge, K.S.; Goswami, P.; Tanoue, R.; Nomiyama, K.; Wijesekara, R.G.S.; Dharmaratne, T.S. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. Sci. Total Environ. 2019, 690, 683–695. [Google Scholar] [CrossRef]
- Juksu, K.; Zhao, J.L.; Liu, Y.S.; Yao, L.; Sarin, C.; Sreesai, S.; Klomjek, P.; Jiang, Y.X.; Ying, G.G. Occurrence, fate and risk assessment of biocides in wastewater treatment plants and aquatic environments in Thailand. Sci. Total Environ. 2019, 690, 1110–1119. [Google Scholar] [CrossRef]
- Chen, H.; Chen, W.; Guo, H.; Lin, H.; Zhang, Y. Pharmaceuticals and personal care products in the seawater around a typical subtropical tourist city of China and associated ecological risk. Environ. Sci. Pollut. Res. 2021, 28, 22716–22728. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, N.; Zhang, Y.; Hu, H.; Zhao, M.; Jin, H. Occurrence and partitioning of bisphenol analogues, triclocarban, and triclosan in seawater and sediment from East China Sea. Chemosphere 2022, 287, 132218. [Google Scholar] [CrossRef]
- Ferguson, P.J.; Bernot, M.J.; Doll, J.C.; Lauer, T.E. Detection of pharmaceuticals and personal care products (PPCPs) in near-shore habitats of southern Lake Michigan. Sci. Total Environ. 2013, 458–460, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Lyons, J.M.; Smith, D.J.; Drewes, J.E.; Snyder, S.A.; Heil, A.; Maruya, K.A. The occurrence and fate of chemicals of emerging concern in coastal urban rivers receiving discharge of treated municipal wastewater effluent. Environ. Toxicol. Chem. 2014, 33, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Baranowska, I.; Wojciechowska, I. Development of SPE/HPLC-DAD to determine residues of selected disinfectant agents in surface water. Polish J. Environ. Stud. 2012, 21, 269–277. [Google Scholar]
- Carmona, E.; Andreu, V.; Picó, Y. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water. Sci. Total Environ. 2014, 484, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Palmiotto, M.; Castiglioni, S.; Zuccato, E.; Manenti, A.; Riva, F.; Davoli, E. Personal care products in surface, ground and wastewater of a complex aquifer system, a potential planning tool for contemporary urban settings. J. Environ. Manag. 2018, 214, 76–85. [Google Scholar] [CrossRef]
- Petre, J.; Iancu, V.-I.; Galaon, T.; Simion, M.; Niculescu, M.; Vasile, G.-G.; Pascu, L.F.; Lehr, C.B.; Cruceru, L.; Calinescu, S.; et al. Occurrence of Pharmaceuticals and Disinfectants in the Dissolved Water Phase of the Danube River and Three Major Tributaries from Romania. Rom. J. Ecol. Environ. Chem. 2019, 1, 55–65. [Google Scholar] [CrossRef]
- Sadutto, D.; Andreu, V.; Ilo, T.; Akkanen, J.; Picó, Y. Pharmaceuticals and personal care products in a Mediterranean coastal wetland: Impact of anthropogenic and spatial factors and environmental risk assessment. Environ. Pollut. 2021, 271, 116353. [Google Scholar] [CrossRef]
- Brumovský, M.; Bečanová, J.; Kohoutek, J.; Thomas, H.; Petersen, W.; Sørensen, K.; Sáňka, O.; Nizzetto, L. Exploring the occurrence and distribution of contaminants of emerging concern through unmanned sampling from ships of opportunity in the North Sea. J. Mar. Syst. 2016, 162, 47–56. [Google Scholar] [CrossRef]
- Brumovský, M.; Bečanová, J.; Kohoutek, J.; Borghini, M.; Nizzetto, L. Contaminants of emerging concern in the open sea waters of the Western Mediterranean. Environ. Pollut. 2017, 229, 976–983. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, F.; Zeng, G.M.; Jiang, M.; Yang, Z.Z.; Yu, Z.G.; Zhu, M.Y.; Shen, L.Q. Quaternary ammonium compounds (QACs): A review on occurrence, fate and toxicity in the environment. Sci. Total Environ. 2015, 518–519, 352–362. [Google Scholar] [CrossRef]
- Li, X.; Brownawell, B.J. Quaternary Ammonium Compounds in Urban Estuarine Sediment Environments—A Class of Contaminants in Need of Increased Attention? Environ. Sci. Technol. 2010, 44, 7561–7568. [Google Scholar] [CrossRef]
- Li, X.; Luo, X.; Mai, B.; Liu, J.; Chen, L.; Lin, S. Occurrence of quaternary ammonium compounds (QACs) and their application as a tracer for sewage derived pollution in urban estuarine sediments. Environ. Pollut. 2014, 185, 127–133. [Google Scholar] [CrossRef]
- Venkatesan, A.K.; Pycke, B.F.G.; Barber, L.B.; Lee, K.E.; Halden, R.U. Occurrence of triclosan, triclocarban, and its lesser chlorinated congeners in Minnesota freshwater sediments collected near wastewater treatment plants. J. Hazard. Mater. 2012, 229–230, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Maruya, K.A.; Dodder, N.G.; Sengupta, A.; Smith, D.J.; Lyons, J.M.; Heil, A.T.; Drewes, J.E. Multimedia screening of contaminants of emerging concern (CECS) in coastal urban watersheds in southern California (USA). Environ. Toxicol. Chem. 2016, 35, 1986–1994. [Google Scholar] [CrossRef] [PubMed]
- Viganò, L.; De Flora, S.; Gobbi, M.; Guiso, G.; Izzotti, A.; Mandich, A.; Mascolo, G.; Roscioli, C. Exposing native cyprinid (Barbus plebejus) juveniles to river sediments leads to gonadal alterations, genotoxic effects and thyroid disruption. Aquat. Toxicol. 2015, 169, 223–239. [Google Scholar] [CrossRef]
- Chiaia-Hernandez, A.C.; Schymanski, E.L.; Kumar, P.; Singer, H.P.; Hollender, J. Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments. Anal. Bioanal. Chem. 2014, 406, 7323–7335. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.J.; Wang, S.; Tang, J.P.; Zhao, J.L.; Wang, L.; Wang, J.X.; Liu, S.L.; Li, F.; Long, S.X.; Yang, Y. Bioaccumulation of endocrine disrupting compounds in fish with different feeding habits along the largest subtropical river, China. Environ. Pollut. 2019, 247, 999–1008. [Google Scholar] [CrossRef]
- Barber, O.W.; Hartmann, E.M. Benzalkonium chloride: A systematic review of its environmental entry through wastewater treatment, potential impact, and mitigation strategies. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2691–2719. [Google Scholar] [CrossRef]
- Kang, H.I.; Shin, H.S. Rapid and Sensitive Determination of Benzalkonium Chloride Biocide Residues in Soil Using Liquid Chromatography–Tandem Mass Spectrometry after Ultrasonically Assisted Extraction. Bull. Korean Chem. Soc. 2016, 37, 1219–1227. [Google Scholar] [CrossRef]
- Chen, F.; Ying, G.G.; Ma, Y.B.; Chen, Z.F.; Lai, H.J.; Peng, F.J. Field dissipation and risk assessment of typical personal care products TCC, TCS, AHTN and HHCB in biosolid-amended soils. Sci. Total Environ. 2014, 470–471, 1078–1086. [Google Scholar] [CrossRef]
- Viglino, L.; Prévost, M.; Sauvé, S. High throughput analysis of solid-bound endocrine disruptors by LDTD-APCI-MS/MS. J. Environ. Monit. 2011, 13, 583–590. [Google Scholar] [CrossRef]
- Negahban-Azar, M.; Sharvelle, S.E.; Stromberger, M.E.; Olson, C.; Roesner, L.A. Fate of Graywater Constituents After Long-Term Application for Landscape Irrigation. Water, Air, Soil Pollut. 2012, 223, 4733–4749. [Google Scholar] [CrossRef]
- Sherburne, J.J.; Anaya, A.M.; Fernie, K.J.; Forbey, J.S.; Furlong, E.T.; Kolpin, D.W.; Dufty, A.M.; Kinney, C.A. Occurrence of Triclocarban and Triclosan in an Agro-ecosystem Following Application of Biosolids. Environ. Sci. Technol. 2016, 50, 13206–13214. [Google Scholar] [CrossRef]
- Lozano, N.; Rice, C.P.; Ramirez, M.; Torrents, A. Fate of triclocarban in agricultural soils after biosolid applications. Environ. Sci. Pollut. Res. 2018, 25, 222–232. [Google Scholar] [CrossRef]
- Yin, C.; Yang, X.; Zhao, T.; Watson, P.; Yang, F.; Liu, H. Changes of the acute and chronic toxicity of three antimicrobial agents to Daphnia magna in the presence/absence of micro-polystyrene. Environ. Pollut. 2020, 263, 114551. [Google Scholar] [CrossRef]
- Sreevidya, V.S.; Lenz, K.A.; Svoboda, K.R.; Ma, H. Benzalkonium chloride, benzethonium chloride, and chloroxylenol—Three replacement antimicrobials are more toxic than triclosan and triclocarban in two model organisms. Environ. Pollut. 2018, 235, 814–824. [Google Scholar] [CrossRef]
- Dong, X.; Xu, H.; Wu, X.; Yang, L. Multiple bioanalytical method to reveal developmental biological responses in zebrafish embryos exposed to triclocarban. Chemosphere 2018, 193, 251–258. [Google Scholar] [CrossRef]
- Gomes, M.F.; de Carvalho Soares de Paula, V.; Rocha Martins, L.R.; Esquivel Garcia, J.R.; Yamamoto, F.Y.; Martins de Freitas, A. Sublethal effects of triclosan and triclocarban at environmental concentrations in silver catfish (Rhamdia quelen) embryos. Chemosphere 2021, 263, 127985. [Google Scholar] [CrossRef]
- Jimoh, R.O.; Sogbanmu, T.O. Sublethal and environmentally relevant concentrations of triclosan and triclocarban induce histological, genotoxic, and embryotoxic effects in Clarias gariepinus (Burchell, 1822). Environ. Sci. Pollut. Res. 2021, 28, 31071–31083. [Google Scholar] [CrossRef]
- Lu, Y.; Jin, H.; Shao, B.; Xu, H.; Xu, X. Physiological and biochemical effects of triclocarban stress on freshwater algae. SN Appl. Sci. 2019, 1, 1685. [Google Scholar] [CrossRef] [Green Version]
- Won, E.J.; Byeon, E.; Lee, Y.H.; Jeong, H.; Lee, Y.; Kim, M.S.; Jo, H.W.; Moon, J.K.; Wang, M.; Lee, J.S.; et al. Molecular evidence for suppression of swimming behavior and reproduction in the estuarine rotifer Brachionus koreanus in response to COVID-19 disinfectants. Mar. Pollut. Bull. 2022, 175, 113396. [Google Scholar] [CrossRef]
- Capkin, E.; Ozcelep, T.; Kayis, S.; Altinok, I. Antimicrobial agents, triclosan, chloroxylenol, methylisothiazolinone and borax, used in cleaning had genotoxic and histopathologic effects on rainbow trout. Chemosphere 2017, 182, 720–729. [Google Scholar] [CrossRef]
- Amusan, B.O.; Koleosho, A.F.; Richard, G.E. First report on the acute toxicity of Chloroxylenol to the Whirligig beetle, Orectogyrus alluaudi (Coleoptera: Gyrinidae). Res. Sq. 2022, Preprint. [Google Scholar] [CrossRef]
- Nowak, M.; Zawadzka, K.; Szemraj, J.; Góralczyk-Bińkowska, A.; Lisowska, K. Biodegradation of Chloroxylenol by Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373: Insight into Ecotoxicity and Metabolic Pathways. Int. J. Mol. Sci. 2021, 22, 4360. [Google Scholar] [CrossRef]
- Li, M.-H. Comparative toxicities of 10 widely used biocides in three freshwater invertebrate species. Chem. Ecol. 2019, 35, 472–482. [Google Scholar] [CrossRef]
- Kresmann, S.; Arokia, A.H.R.; Koch, C.; Sures, B. Ecotoxicological potential of the biocides terbutryn, octhilinone and methylisothiazolinone: Underestimated risk from biocidal pathways? Sci. Total Environ. 2018, 625, 900–908. [Google Scholar] [CrossRef]
- Van Huizen, A.V.; Tseng, A.-S.; Beane, W.S. Methylisothiazolinone toxicity and inhibition of wound healing and regeneration in planaria. Aquat. Toxicol. 2017, 191, 226–235. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhang, T.Y.; Dao, G.H.; Hu, H.Y. Tolerance and resistance characteristics of microalgae Scenedesmus sp. LX1 to methylisothiazolinone. Environ. Pollut. 2018, 241, 200–211. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.S.; Kho, Y.; Ji, K. Effects of methylisothiazolinone and octylisothiazolinone on development and thyroid endocrine system in zebrafish larvae. J. Hazard. Mater. 2022, 425, 127994. [Google Scholar] [CrossRef]
- Tato, T.; Beiras, R. The Use of the Marine Microalga Tisochrysis lutea (T-iso) in Standard Toxicity Tests; Comparative Sensitivity With Other Test Species. Front. Mar. Sci. 2019, 6, 488. [Google Scholar] [CrossRef] [Green Version]
- Elersek, T.; Ženko, M.; Filipič, M. Ecotoxicity of disinfectant benzalkonium chloride and its mixture with antineoplastic drug 5-fluorouracil towards alga Pseudokirchneriella subcapitata. PeerJ 2018, 6, e4986. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; He, Y.; Li, H.; Yi, M.; Zhang, L.; Zhang, L.; Liu, L.; Lu, Z. Benzalkonium chlorides (C12) inhibits growth but motivates microcystins release of Microcystis aeruginosa revealed by morphological, physiological, and iTRAQ investigation. Environ. Pollut. 2022, 292, 118305. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Jung, J.-W.; Kim, Y.J.; Park, C.-B.; Shon, J.C.; Kim, J.-H.; Park, J.-W.; Kim, S.G.; Seo, J.-S. Proteomic analysis of whole-body responses in medaka (Oryzias latipes) exposed to benzalkonium chloride. J. Environ. Sci. Health Part A 2020, 55, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
- Albanese, K.A.; Lanno, R.P.; Hadad, C.M.; Chin, Y.-P. Photolysis- and Dissolved Organic Matter-Induced Toxicity of Triclocarban to Daphnia magna. Environ. Sci. Technol. Lett. 2017, 4, 457–462. [Google Scholar] [CrossRef]
- Satyro, S.; Saggioro, E.M.; Veríssimo, F.; Buss, D.F.; de Paiva Magalhães, D.; Oliveira, A. Triclocarban: UV photolysis, wastewater disinfection, and ecotoxicity assessment using molecular biomarkers. Environ. Sci. Pollut. Res. 2017, 24, 16077–16085. [Google Scholar] [CrossRef] [PubMed]
- Vingskes, A.K.; Spann, N. The toxicity of a mixture of two antiseptics, triclosan and triclocarban, on reproduction and growth of the nematode Caenorhabditis elegans. Ecotoxicology 2018, 27, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Shao, W.T.; Wang, W.L.; Wang, Q.; Chen, Z.Q.; Wu, Q.Y.; Hu, H.Y. Removal of methylisothiazolinone biocide from wastewater by VUV/UV advanced oxidation process: Kinetics, mechanisms and toxicity. J. Environ. Manage. 2022, 315, 115107. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.; Belden, J.B.; Minghetti, M. Applications of the RTgill-W1 Cell Line for Acute Whole-Effluent Toxicity Testing: In Vitro–In Vivo Correlation and Optimization of Exposure Conditions. Environ. Toxicol. Chem. 2021, 40, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhou, S.; Zhang, L.; Qin, C. Pronounced temporal changes in soil microbial community and nitrogen transformation caused by benzalkonium chloride. J. Environ. Sci. 2022, 126, 827–835. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, C.; Jiang, W.; Zhai, W.; Gao, J.; Wang, P. Effects of the presence of triclocarban on the degradation and migration of co-occurring pesticides in soil. Environ. Pollut. 2022, 310, 119840. [Google Scholar] [CrossRef]
- Ali, A.; Arshad, M.; Zahir, A.Z.; Jamil, A. Influence of triclosan and triclocarban antimicrobial agents on the microbial activity in three physicochemically differing soils of south Australia. Soil Environ. 2011, 30, 95–103. [Google Scholar]
- Snyder, E.H.; O’Connor, G.A.; McAvoy, D.C. Toxicity and bioaccumulation of biosolids-borne triclocarban (TCC) in terrestrial organisms. Chemosphere 2011, 82, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Zheng, G.; Wang, X.; Wang, M.; Chen, T. Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies. Front. Environ. Sci. Eng. 2019, 13, 41. [Google Scholar] [CrossRef]
- Jenjaiwit, S.; Supanchaiyamat, N.; Hunt, A.J.; Ngernyen, Y.; Ratpukdi, T.; Siripattanakul-Ratpukdi, S. Removal of triclocarban from treated wastewater using cell-immobilized biochar as a sustainable water treatment technology. J. Clean. Prod. 2021, 320, 128919. [Google Scholar] [CrossRef]
- Taweetanawanit, P.; Ratpukdi, T.; Siripattanakul-Ratpukdi, S. Performance and kinetics of triclocarban removal by entrapped Pseudomonas fluorescens strain MC46. Bioresour. Technol. 2019, 274, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Sipahutar, M.K.; Piapukiew, J.; Vangnai, A.S. Efficiency of the formulated plant-growth promoting Pseudomonas fluorescens MC46 inoculant on triclocarban treatment in soil and its effect on Vigna radiata growth and soil enzyme activities. J. Hazard. Mater. 2018, 344, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Mulla, S.I.; Hu, A.; Wang, Y.; Sun, Q.; Huang, S.L.; Wang, H.; Yu, C.P. Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C. Chemosphere 2016, 144, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Sipahutar, M.K.; Vangnai, A.S. Role of plant growth-promoting Ochrobactrum sp. MC22 on triclocarban degradation and toxicity mitigation to legume plants. J. Hazard. Mater. 2017, 329, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Liang, B.; Qiu, J.; Zhang, L.; Zhao, Y.; Jiang, J.; Wang, A. Functional Characterization of a Novel Amidase Involved in Biotransformation of Triclocarban and its Dehalogenated Congeners in Ochrobactrum sp. TCC-2. Environ. Sci. Technol. 2017, 51, 291–300. [Google Scholar] [CrossRef]
- Yun, H.; Liang, B.; Kong, D.; Li, Z.; Qi, G.; Wang, A. Enhanced Biotransformation of Triclocarban by Ochrobactrum sp. TCC-1 Under Anoxic Nitrate Respiration Conditions. Curr. Microbiol. 2017, 74, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Yun, H.; Kong, D.; Ding, Y.; Li, X.; Vangnai, A.S.; Wang, A. Bioaugmentation of triclocarban and its dechlorinated congeners contaminated soil with functional degraders and the bacterial community response. Environ. Res. 2020, 180, 108840. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, K.M.; Al-Fassi, F.A.; Al-Hazmi, N.M. Optimization of chloroxylenol degradation by Aspergillus niger using Plackett-Burman design and response surface methodology. Rom. Biotechnol. Lett. 2013, 11, 15040–15048. [Google Scholar]
- Choi, D.; Oh, S. Removal of Chloroxylenol Disinfectant by an Activated Sludge Microbial Community. Microbes Environ. 2019, 34, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Gomes, E.; Boscolo, M.; Da Silva, R.; Rodrigues, A. Fungal Biodegradation of the Biocide 2-Methyl-4-Isothiazolin-3-One. Austin J Microbiol. 2018, 4, 3–8. [Google Scholar]
- Wang, X.X.; Wang, W.L.; Dao, G.H.; Xu, Z.B.; Zhang, T.Y.; Wu, Y.H.; Hu, H.Y. Mechanism and kinetics of methylisothiazolinone removal by cultivation of Scenedesmus sp. LX1. J. Hazard. Mater. 2020, 386, 121959. [Google Scholar] [CrossRef]
- Ahn, Y.; Jeong, M.K.; Kweon, O.; Kim, S.-J.; Richard, C.J.; Woodling, K.; Gamboa da Costa, G.; John, J.L.; Hussong, D.; Bernard, S.M.; et al. Intrinsic Resistance of Burkholderia cepacia Complex to Benzalkonium Chloride. MBio 2016, 7, e01716-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertekin, E.; Hatt, J.K.; Konstantinidis, K.T.; Tezel, U. Similar Microbial Consortia and Genes Are Involved in the Biodegradation of Benzalkonium Chlorides in Different Environments. Environ. Sci. Technol. 2016, 50, 4304–4313. [Google Scholar] [CrossRef]
- Bergero, M.F.; Liffourrena, A.S.; Opizzo, B.A.; Fochesatto, A.S.; Lucchesi, G.I. Immobilization of a microbial consortium on Ca-alginate enhances degradation of cationic surfactants in flasks and bioreactor. Int. Biodeterior. Biodegradation 2017, 117, 39–44. [Google Scholar] [CrossRef]
- Bergero, M.F.; Lucchesi, G.I. Immobilization of Pseudomonas putida A (ATCC 12633) cells: A promising tool for effective degradation of quaternary ammonium compounds in industrial effluents. Int. Biodeterior. Biodegradation 2015, 100, 38–43. [Google Scholar] [CrossRef]
- Bassey, D.E.; Grigson, S.J.W. Degradation of benzyldimethyl hexadecylammonium chloride by Bacillus niabensis and Thalassospira sp. isolated from marine sediments. Toxicol. Environ. Chem. 2011, 93, 44–56. [Google Scholar] [CrossRef]
- Oh, S.; Kurt, Z.; Tsementzi, D.; Weigand, R.M.; Kim, M.; Hatt, K.J.; Tandukar, M.; Pavlostathis, G.S.; Spain, C.J.; Konstantinidis, T.K. Microbial Community Degradation of Widely Used Quaternary Ammonium Disinfectants. Appl. Environ. Microbiol. 2014, 80, 5892–5900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tezel, U.; Tandukar, M.; Martinez, R.J.; Sobecky, P.A.; Pavlostathis, S.G. Aerobic Biotransformation of n-Tetradecylbenzyldimethylammonium Chloride by an Enriched Pseudomonas spp. Community. Environ. Sci. Technol. 2012, 46, 8714–8722. [Google Scholar] [CrossRef] [PubMed]
- Jaén-Gil, A.; Ferrando-Climent, L.; Ferrer, I.; Thurman, E.M.; Rodríguez-Mozaz, S.; Barceló, D.; Escudero-Oñate, C. Sustainable microalgae-based technology for biotransformation of benzalkonium chloride in oil and gas produced water: A laboratory-scale study. Sci. Total Environ. 2020, 748, 141526. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, K.M.; Elahwany, A.; Farag, A.; Ghanem, D. Optimization the degradation of chloroxylenol by free and immobilized Klebsiella pneumoniae D2. Int. J. Curr. Adv. Res. 2017, 6, 7082–7091. [Google Scholar] [CrossRef]
INCI Name | Triclocarban | Chloroxylenol | Methylisothiazolinone | Benzalkonium Chloride |
---|---|---|---|---|
Acronym | TCC | PCMX | MIT | BAC |
CAS Number | 101-20-2 | 88-04-0/1321-23-9 | 2682-20-4 | 63449-41-2/68391-01-5/68424-85-1/85409-22-9 |
Formula | C13H9Cl3N2O | C8H9OCl | C4H5NOS | C9H13ClNR (R = C8H17 to C18H37) |
Molecular weight | 315.58 g mol−1 | 156.61 g mol−1 | 115.1 g mol−1 | - |
Structure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak-Lange, M.; Niedziałkowska, K.; Lisowska, K. Cosmetic Preservatives: Hazardous Micropollutants in Need of Greater Attention? Int. J. Mol. Sci. 2022, 23, 14495. https://doi.org/10.3390/ijms232214495
Nowak-Lange M, Niedziałkowska K, Lisowska K. Cosmetic Preservatives: Hazardous Micropollutants in Need of Greater Attention? International Journal of Molecular Sciences. 2022; 23(22):14495. https://doi.org/10.3390/ijms232214495
Chicago/Turabian StyleNowak-Lange, Marta, Katarzyna Niedziałkowska, and Katarzyna Lisowska. 2022. "Cosmetic Preservatives: Hazardous Micropollutants in Need of Greater Attention?" International Journal of Molecular Sciences 23, no. 22: 14495. https://doi.org/10.3390/ijms232214495
APA StyleNowak-Lange, M., Niedziałkowska, K., & Lisowska, K. (2022). Cosmetic Preservatives: Hazardous Micropollutants in Need of Greater Attention? International Journal of Molecular Sciences, 23(22), 14495. https://doi.org/10.3390/ijms232214495